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Minimal Complete Class of Generator Designs
of Group Divisible Treatment Designs
for Comparing Treatments with a Control

Kwang Hun Kim * and U Sun Lee **

ABSTRACT

Bechhofer and Tamhane(1981) proposed Balanced Treatment Incomplete Block
.(BTIB) desings for comparing p test treatments with a control treatment in blocks
of size k. Notz and Tamhane(1983) solved the problem about determination of the
minimal complete class for k = 3. However there are a number of design parameters
for which BTIB designs do not exist. We suggest a new class of designs called Group
Divisible Treatment Desings(GDTD’s) that is a larger class including BTIB designs
as a subclass. In this paper we give the minimal complete classes of generator
designs for GDTD’s with k = 2, p > 4(except prime number) and k = 3, p = 4(2)6.

1. Introduction

We consider the problem of comparing simultaneously several treatments,
called test treatments, with a special treatment called the control treatment in
blocks of size k. We shall use 0,1, ---,p to label the p+ 1 treatments being studied

with 0 denoting the control treatmnt and 1,2,- - -, p denoting the p test treatments.

Bechhofer and Tamhane(1981) proposed BTIB designs for this problem. Notz

and Tamhane(1983) studied minimal complete classes in BTIB designs. However
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there are a number of designs that do not exist in the class of BTIB designs. We
propose a new class of designs, called GDTD.

Our main objective in this paper is to provide a study of Minimal Complete
Class of Generator Designs(MCCGD’s) in a class of GDTD’s. The developments in
the paper rely on a paper by Kim,K.H(1990).

For given (p, k) a GDTD for any b blocks can be constructed from a class of
elementary GDTD’s called generator designs. For given (p, k) there exists a finite
number of generator designs (see Theorem 3.1) but this number can be very large.
However, it turns out that only a small subclass of these generator designs is suffi-
cient in that essentially all admissible designs can be built from this class. We refer
to this class as the minimal complete class. Admissible designs are important be-
cause they can be candidates for an optimal design. We show the minimal complete
nature of the classes of generator designs that we have constructed for k =2, p > 4
(except prime number) and k = 3, p = 4(2)6. The significance of these results is
that the optimal designs can be built out of the generator designs in the minimal

complete class.

2. Group Divisible Treatment Designs

Let y;;n be the response obtained by applying treatment i to the hth plot of
7th block; then the usual additive linear model(no treatment x block interaction) is

Yijh = p+ i + B + €ijn

where pu denotes-the general mean, «; the effect due to the ith treatment, §; the
effect due to the jth block and the ¢;;;,'s are uncorrelated random errors with mean
0 and variance 02 (0 < : <p, 1 <j<b 1< h < ry;). The quantity ry,
possibly equal to zero, denotes the number of replications of the ith treatment in
the j th block. We will use b to denote the number of blocks, while k will be used
to denote the common size of each block. We consider only connected GDTD’s for
the contrasts ag — a; (1 < ¢ < p) are estimable. Let @y — &; be the BLUE of
ay — di (1 £ i < p). Then we have the following definition.
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Definition 2.1. For given (p, k,b) a GDTD is a proper block design for which

the p test treatments can be partitioned into m groups of size n such that

b
@) D rojris,
j=1
b
(ii) Z riTitj, i and ' are in the same group, i # ¢/,
=1
and

(iii) E rijTi;, ¢ and ¢’ are in different groups,
i=1

do not depend on ¢ and i/, ¢, ¢ =1,2,---,p.

b
Let A = Zr,-jr,vj (: #14, 0<1i, i < p). The following theorem states
i=1
the necessary and sufficient conditions that a design must satisfy in order to be a

GDTD. The proof of this theorem is given in Kim,K.H.(1987).

Theorem 2.1. For given (p, k,b) a design is GDTD iff
Ao1 = Aoz = -+ = Agp = Ag (say)
Xii = A1 (say) (i and ¢’ are in the same group, ¢ # 1')
and

Xiir = A2 (say) (¢ and ¢’ are in different groups ).

Furthermore,

Ver@a- = 2 [L 4 20 (=)

mnije; €2 €3

=c?0? (say) (1<i<p),

— o~ o~ 1 m m-1 1 mrn-1 m-1
corr(tpg — @;, ag —ay) = |—— —+ —- + +

€1 €2 €3 €1 €2 €3
=p; (say) (i and i’ are in the same group, i #1i')

and

corr(a — &, & — &) = [l__l_]/[l_*_m(n—l)_*_m—l]

€ €3 (] €9 €3

=py (say) (¢ and i’ are in dif ferent groups)
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where ) = Ao /k, e2 = (Ao + nA; + (m — 1)nA)/k, e3 = (Ao + mnAz)/k and the
parameters c?, p; and p; depend on the design employed. Clearly, for a GDTD
to be implementable we must have Ag > 0. Also note that if A\; = A; then these
designs are called BTIB designs.

3. Minimal Complete Classes of Generator Designs for GDTD

we introduce the definition of a generator design for GDTD

Definition 3.1. For given (p, k) a generator design is a GDTD such that no
proper subclass of its blocks forms a GDTD on the same group structure and none

of its blocks contains only one of the p + 1 treatments.

Generator designs are important for the construction of GDTD’s, as any such
design is either a generator design or a union of copies of generator designs. In

" n
n

fact, if for given (p,k) there are
has parameters (b;, Ay, A”, A), i = 1,2,--+,n; then GDTD D = | J £:Ds,

generator designs D; (1 < 1 < n) where D;
n

i=1
obtained by taking union of f; > 0 replications of D; on the same group structure

has parameters (b, Ag, A1, A2) given by,

n n n n
b= fibiy do= D FA8, =3 £, =) .

i=1 =1 =1 =1
For p > 4 (except prime number) and k£ = 2 there are exactly five relevant
generator designs for GDTD’s (see Theorem 5.1 of the present paper). But it is
not clear whether for any (p, k) there are only finitely many generator designs.
This question is answered in the préof of Theorem 3.1. This theorem is proven by
the following two lemmas which are self-evident. First we give the notation used
in the lemmas: For given (p, k) let S be the set of all distinct blocks which can
be used in a GDTD and let us label these blocks in same mannar 1,2,---,5; S
consists of all samples of size k with replacement from integers 0,1,---,p except
those p + 1 samples of the type (i,2,-- ¢) for 0 < i < p. Next index the pairs
(0,1), (0,2), ---, (0,p), (1,2), (1,3), ---, (p—1,p) by 1,2,---, ¢t = p(p + 1)/2.
We relabel the pairs (¢,i') (0 < ¢ < p) in order of the pairs (¢,i') (¢ and 4’ are in
the same group, ¢ # i') and the pairs (3,:') (¢ and ¢’ are in different groups). The
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numbers of these are p(n — 1)/2 and p(p — n)/2 respectively. Let Q= {Q4n} be a
t x s matrix where Qg = risrirn (0 <1 <’ < p), g is the index of the pair (7,7')
(1 < g <1t), and h is the index of the block (1 < h < s). Then any design can be

represented by a S — vector w= (wy,ws,--,w,) where w, > 0 is the frequency of
the hth block in the design (1 < h < s)and b= Z W
h=1

Lemma 3.1. A design with a frequency w is GDTD iff

w ,=2‘.,=(}‘0)"')A07Ala"'a>‘17Aé,"'))‘2) (31)

o

2 p(n;— D pe_n)

for some integers Ao > 0, A; > 0 and A, > 0 but not all zero.

Lemma 3.2. If w(!) and w(? are two GDTS’s with wgz) > wgl) for h =
1,2,--+,s (with a strict inequality for at least some h denoted by w® > w)) on

the same group structure then w=w? - w(!) is also a GDTD.

Theorem 3.1. For given (p, k) there exist only finitely many generator de-

signs.

Proof. Suppose that the theorem is not true. Then there exists an infinite
sequence of generator designs w® w® ... Choose a subsequence { w(i) } from
this sequence with the property w(+1) > w(i); such a subsequence can always
be chosen. Then from Lemma 3.2 it follows that w(%i+)-w(%) is a GDTD design.
Therefore, w(*i+1) is not a generator design. Thus we have reached a contradiction

which proves the theorem.

The representation (3.1) can be used to construct GDTD’s in particular gener-
ator designs for at least small values of p and k. Many of the generator designs given
in the present paper were constructed by using (3.1): the rest were constructed by
using the methods of Kim.K.H(1990). To employ (3.1) it is first necessary to know
the feasible values for the triple (A, A1, Az); these feasible values are obtained from
Lemmas 4.2 and 4.3. Next for given (Ao, A1, A2) a lower bound on b is obtained

from Lemma 4.1.

Now we define the concepts of inadmissible and admissible designs. These
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concepts are motivated by the problem of joint confidence interval estimation of the
ap — a; by Kim.K.H(1990).

Definition 3.2. Suppose that for given (p, k) we have two GDTD’s D; and
D, with parameters (by, A\\”, A0, A1) and (by, AP, AP, M), D, is inadmissible
with respect to (wrt) D; iff b < by, & < ¢, pgl) > p§2) and pgl) > p£,2) with
at least one inequality strict. If a design is not inadmissible then it is said to be
admissible. If b; = b,, ¢? = ¢}, pgl) = p§2) and pgl) = p;(f) (or equivalenty b; = by,
/\gl) = /\((,2), /\51) = /\gz) and )\gl) = /\;2)) then Dy and D, are equivalent. For given
(p, k) the condidates for an ”optimal” design will be all admissible designs that can
be constructed from a given class of generator designs. Now we give the definition

of the minimal complete class of generator designs for GDTD’s.

Definition 3.3. For given (p,k) the smallest class of generator designs
{Di(1 < i £ n)} from which all admissible designs for that (p, k) (except possi-
bly any equivalent ones) can be constructed is called the minimal complete class of

generator designs (MCCGD's) for GDTD’s.

To obtain the minimal complete class from given (p, k) we proceed in two steps.
In the first step we delete any equivalent generator designs. Futhermore, if the
union of two or more generator designs yields an equivalent generator design, then
we delete the latter design. In the second step we delete the so-called strongly(S-)
inadmissible generator designs from the class of nonequivalent generator designs
obtained in the first step. The concept of S-inadmissibility is defined as follows.

Definition 3.4. If for given (p,k) we have two GDTD’s D; and D; (not
necessarily generator designs), we say that D; is S-inadmissible wrt D, if D, is
inadmissible wrt D;, and if for any arbitraryGDTD D, we have that D, U Dj is in-
admissible wrt Dy UD3. An easily verifiable sufficient condition for S-inadmissibility
of Dy wrt Dy is that

b < by, AV =@ AW S B0 50 (3.2)
with at least one inequality being strict. We use a special case of (3.2) namely

by < by, AV =2@, AN =P, A0 =P (3.3)
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repeately in the sequel to decide whether a given design D, is S-inadmissible or

equivalent wrt another design D;.

4. Theoretical Results

We give the relations between the parameters of a GDTD.

Lemma 4.1. For given (p,k) a GDTD D with parameters (b, Ao, A1, Az)

satisfies the following ineqalities on b:
beq4 bey
<bL — 4.1
- - (4.1)
where eq = (20 + (n — )X +n(m —1)X2)/k -1 and p=mn.

Furthermore, the lower inequality is an equality iff the design is binary (i.e. ri; =0
or,0<i<p;1<5<h).

Proof. Let r; denote the number of replications on the ith treatment, r; =

b
Zr;,' (0 <1 < p). From (4.3a) and C* = {ro+(n=DA+n(m—DA} - A By~
j=1

A2 B2] / k of Kim,K.H.(1987).

We have
b
kro =plo+ Y13 (4.2)
Jj=1
and
kri = Ao+ (n — 1)A; + n(m —1),\2+Z . (1<i<p) (4.3)

Adding (4.2) and (4.3) we obtain

P

> ri=kb= [21)/\0 + (n—D)pr; +n(m — L)pA; + iir?]] / ko (44)

1=0 =0 j=1

subject to the restriction that the r;j are nonnegative intergers satisfying Z rij =k
=
p b :
for 1 € 5 < b, it can be easily verified that ZZT?J' is minimized when each

=0 j=1
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ri; = 0 or 1 and it is maximized when for each j there is a pair of treatments 4y, ¢3
(1 #12, 0<%y, 42 <p)suchthat ryj =k —1,r,; =1and ry; =0 for i # 13, 2
(0<i<p, 1<)

Furthermore, the minimum value of }_ 5 r?j is kb which when substituted in
(4.4) yields the lower bound on b in (4.1). The maximum value of 373 r is
b(k? — 2k + 2) which when substituted in (4.4) yields the upper bound on b in (4.1).

If the design is binary in terms of test-treatments then the test-treatments are
replicated equally in the design with a common replicate size, r = Ag + (n — 1)A; +
n(m — 1A /k - 1.

Lemma 4.2. When £ is odd, the quantities pAg and A\g+(n—1)A; +n(m—1)A,

must be even.

Proof. Let b;; denote the number of blocks in which the ith treatment is
replicated [ times (0 <1 <k—-1, 0<:<p).

Note that

k-1 b k—1
re=3 by, Y rk= Pby (4.5)
=1

=1 =1
Substituting (4.5) in (4.2) and (4.3) we get

k-1

Pro =Y I(k —1)by (4.6)
and -
k-1

Ao+ (n—Dh+n(m=—1Dr =D I(k—Nby (1<i<p) (4.7)

=1
By noting that when k is odd, the coefficients I(k — ) are even for 1 <1 <k -1
the lemma follows.
Lemma 4.3. For any GDTD for p > 4 (except prime number), k = 3 we have
(Tl - 1)/\1 + n(m - 1)A2 > Ao (48)

if A\; > 0, A2 > 0 and if the design does not contain the generator design

00 ... 0
1 2 ... p;.
1 2 ... p
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Proof. The lemma follows trivially for A\g = 0. Thus assume that Ao > 0.

0 0

we may change any blocks of the type | 0 | forz > 1 to | ¢ | without affect-
) 7

ing Ao or A; or A;. We may assume that for some : > 1 there are no blocks of

0
the type | i | because otherwise the GDTD would contain the generator design
i

00 0
1 2 p ¢ . For that particular ¢ we can write
1 2 p

(n — l)Al + n(m - 1)/\2 - /\0

P b P b b
= E Z TiiTit] + Z rijtir] — Zr,-]-roj (4.9)
i'=1 j=l i'=1 j::l ) j=1
i #i N - y

) B : (i and 1’ are in dif ferrent groups)
(i and ¢’ are in the same group

b P P
S o G S D % S
=1 =1 =
i'#i
— (: and ' are in the same groups )
(i and i’ are in the same group )

> 0.

The last step of (4.9) follows because the summand is negative iff r;; = 2, ro; =1

and ry; = 0 for ¢ # ¢', a possibility that is ruled out.

5. MCCGD's for k =2 and p > 4 (except prime number)

Theorem 5.1. For k = 2 and p > 4 the MCCGD’s consists of the D;, D,,
Ds, Dy and Ds which are given below.

DIE(b=p, To =D, r=1, ’\0=17 ’\l=0’ /\2=0)

Block 1 2 p
Plots 1 0 0 0
Plots 2 1 2 P
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Dy =(m=2, b=P'QE, ro=0, r=mn, A =0, Ay =0, A; =1).

Block 1 2 n_;
Plots 1 1 1 -.1 2 2 .-2 n n --n
Plots 2 n+l n+2-p n+l n+2.-p -+ -+ n+l n+2-p

D3E(m=2, b=££-2—lm,rg=0,r=n—1, )\0=0, /\1=1, /\2=0)

Block Teer  eee e e e e !n—llp
Plots-1 1.--1 2...2 n—-1 n+l-n+l n+2-n+2 p — 1
Plots 2 2--n 3-meeeees n n+4+2-- p n43- p oo p

Di=(m=3,b=np, ro=0,7r=2n, Ag =0, Ay =0, Ay =1).

Block 1
Plots1 1 1 -1 2 . 2 .02 n+1l n+1 n+
Plots 1 n+l n+2 -~ p n+1 n+2 -~ p -+ v 2n+1 2n+2 p
np
n+2 n+2 - n+2 - 2n 2n cer 2n
2n+1 2n+4+2 --- p - - 2n+1 2n42 --- p

D5E(m=3’ b:ﬁn——z—llﬂ’ r0=0, r=n-—1, /\0=0, A1 =1, /\2=0).

Block Toee v eenens e e

Plots 1 1...12--.2 n—1ln+l-n+ln+2-n+2 n+1--2n+1

Plots 2 2-en3--ne e n n+2 imn n+3-- 2n ------ 2n+2 p e

Proof. For each p and m = 2, the above mentioned designs Dy, D; and D3
(in case m = 3, D;, D, and Ds) are completely binary and are the only possible
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generator designs and since they are distinct and neither of them is S-inadmissible
wrt the other one, they construct the MCCGD’S for k = 2 and that particular p.

6. MCCGTD's for k =3 and p = 4(2)6

In this section we give MCCGD’S fork = 3, p = 4(2)6 and prove the minimal
complete nature of the class in each case. The method of proof in each case is the

same and we outline the general method here.

To show that for given (p, k), a class of generator designs {D;,D2,---,Dn}
is minimal complete, we consider an arbitrary GDTD D for that (p,k) having
parameters (b, Ao, A1, A2). Then for that D we show that there exists a GDTD

D* = U F;D; such that A§ = Ao, A} = Ay, A5 = A; and b* < b. Thus D is either
i=1

" equivalent to or S-inadmissible wrt D* ((3.3) of section 3). The proof is completed
by finally noting that the class {D1, Do, -, Dn} consists of nonequivalent generator
designs, none of which is S-inadmissible wrt to any other ones or unions of any other

ones and therefore that class is minimal complete.

In the Proofs below for given (p, k) we must consider several cases depending
on the values of (A\g, A1, Az); in each case we construct the desired D* such that
Af = Ao, A} = A1, A5 = Az and explain why D* requires the smallest possible
number of blocks(by using Lemma 4.1) which implies that b* < b.

Theorem 6.1. For p=4, k=3, m =2 and n = 2 the MCCGD’s is as given
in Table 1.

Proof. Consider an arbitrary GDTD D with parameter (b, Ao, A1 Az) for p = 4,
k=3, m=2andn=2.

Case 1. A\; =0, Xy = 0: It is easy to verify that D is equivalent to D* = f1.D;
where fi > 1. Thus, henceforth assume that A; or A; must be greater than or equal
to 1.

Case 2. )\ = 0(mod 2), \; = 0(mod 2): By Lemma 4.3, \;/2+ X2 —X0/2 20
and by Lemma 4.2, Xo + A1 + 2X; is even and hence when A\¢ = O(mod 2) and
A1 = 0(mod 2), A;/2+ A2 — Ao/2 must be odd or even. If A;/2+ A; — Ag/2 = 0(mod
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Table 1. MCCGD’s for p =4, k =3 (m=2, n=2)

D; Design b Ag')' /\?) /\S;)

D, 0 0 0O 4 2 0 0
0 00O
1 2 3 4

D, 0 0 2 1 1 0
1 2
3 4

D; 0 00 O 4 2 0 1
11 2 3
2 4 3 4

D, 0011 2 5 1 1 2
1 3 2 3 2
2 4 4 4 3

Dy 0 00 0 1 2 6 2 0 2
113 3 1 2
2 2 4 4 4 3

Dg 1 2 2 0 2 0
1 2
3 4

D; 11 2 3 0 2 1
2 3 2
3 4 4

Dy 1 11 2 4 0 2 2
2 2 3 3
3 4 4

Dy 111213 6 0 2 3
2 22 313
3 3 4 4 4 4

2) then let fs = Xo/2, fo = 3{M/2+ A2 — Xo/2} and D* = f3D3 U fyDy. D*
requires the smallest possible number of blocks namely 41 /3421 /3+4X2/3+2/3
which is the next higher integer to the lower bound of 4X¢/3 + 2A;/3 +4X2/3 on
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b given by Lemma 4.1. If A\;/2 + Ay — A\/2 = 1 (mod 2) then let f3 = A¢/2,
fs = 5{M/2+ Az = Ao/2 — 1} and D* = f3D5 U fsDs. D* requires the smallest
possible numbers of bolcks since D3 and Dg are binary.

Case 3. )y = 0O(mod 2), \gp > 4 and A\; = 0(mod 2): By Lemma 4.3,
A1/2+X2—2—(Ag—4)/2 > 0 and by Lemma 4.2, A; /24 X; —2— ()¢ —4)/2 must be
odd or even. If A\; /24X —2—(Xo—4)/2 = 1(mod 2) then let f = (Ao—4)/2, f3 =1,
fe=1,fs = ${\/24 X -2~ (A —4)/2—1} and D* = f,D,U fsDsU faDs U fs Ds.
D* requires the smallest possible number of blocks namely 4Xo/3+2X; /3+4X2/3+1
which is the next higher integer to the lower bound 4)¢/3 + 2X;/3 + 4X2/3 on b
given by Lemma 4.1.

Case 4. \g = 1: When )¢ = 1, \; must be odd by Lemma 4.2 and hence A\, >
1. Therefore A\; —1 must be even. let f, =1, f¢ = (A} —1)/2 and D* = f,D,U fe Ds.
D* requires the smallest possible number of blocks namely 4g/3+2X;/3+4X2/3+
2/3 which is the next higher integer to the lower bound of 4Xo/3 + 2A1/3 + 42 /3
- on b given by Lemma 4.1.

Case 5. )¢ = 1(mod 2), A\; = 1(mod 2) : By Lemma 4.3, (A; —1)/2+ A3 —
(Mo —1)/2 > 0 and by Lemma 4.2, (A1 — 1)/2+ A2 — (Ao — 1)/2 is odd or even. If
(A1 —1)/2+4 Xz — (X — 1)/2 = 0(mod 2) then let f = (Ao —1)/2, f3 = (A1 —1)/2,
fr = ${(\ =1)/2+ X2 —(Xo—1)/2} and D* = f,D,U fsD3U frD7. D* requires the
smallest opssible number of blocks namely 4Xg/3+2A;/3+4A2/3+1/3 which is the
next higher integer to the lower bound of 4Ag/3+2\;/3+4A2/3 on b given by Lemma
4.1. If (\; = 1)/2+ Xy — (Ao — 1)/2 = 1(mod 2) then let f, =1, f3 = (Ao — 1)/2,
fs = %{()\1 —1)/2+ A= (Ao —1)/2-1} and D* = fD,U f3D3U fgDg. D* requires

the smallest possible number of blocks since Dy, D3 and Dy are binary.

Theorem 6.2. For p =16, k=3, m =2 and n =3 the MCCGD’s is as given
in Table 2. :

Proof. Consider an arbitrary GDTD D with parameters (b, Ag, A1, Az) for
p=6k=3, m=2andn=23.

Case 1. )\; =0, Ay = 0: It is easy to verify that D is equivalent to fi1.D; for
some f; > 1. Thus, henceforth assume that A; or A; must be > 1.

Case 2. )¢ = 0(mod 3), A\; = 0(mod 3): By Lemma 4.3, 2A;1/3+X2—X¢/3 >0
and by Lemma 4.2, Ao + 2\; + 3); is even and hence when A\¢ = 0(mod 3) and
A1 = 0(mod 3), 2X1/3+ Az —Ao/3 is even. Let fo = Ao/3, fo = ${2M1/3+A2—Xo/3}
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2and n =3

6, k=3, m=

Table 2. MCCGD’s for p

/\gi) )\gi) /\gi)

bi

Label
D,

[as e iila)
O O
oo
O oM
CON

OO

O <H O

SN O

[om R A IR S ¢

O M

(ol I T

O -

D,

~ M0

N < w0

AN MmO

— <P O

o0 ©

oM <H

O -~ N

D;

O ©
O H o
S ;N ©
nW3v4
O N
[o R A IS
S~ O
S —

O =N

D,

12

[AVERS Rt )

N MmO

AN 10D

< O

<t D

— N QO

O

O 0O

(=R, 2

(oo~ RS

O~ AN

O~ N

Ds

15

o 10 ©

o <P 10

r~ 1) O

— 10

—t ¢ <H

— N

N <H

[S IR Tl

N o O

NN O

~ <P O

— <P O

O QO

M

S — N

De

N < ©

- D0

Dy

10

oD ©
oM <H o
o™ ©
A <H
Ao ©
— 0 O
— < ©
— 0 <H
— N 10

~ N

Dy

18

< 0O O

0 QO

o <H ©

[2r S i Te)

N 10 ©

[aVIRS R e

[5\ lar Vo]

o M D

AN M <H

— 10 O

— < ©

- <{

— MO

— 0 <H

— N ©

— N W0

— N H

— AN M

Dy

faDa U feDg. D* requires the smallest possible number of blocks since

and D*

D, and Dg are binary.

1(mod 3): By Lemma 4.3, 2(A; — 1)/3 + A2 +

0(mod 3), A\ =
2—X¢/3 > 0 and be Lemma 4.2, 2(A; —1)/3+ A2 +2— Xo/3 is even. Let f,

Case 3. )

’\0/3,
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Ji=1, fo = %{20‘1 —1)/34+ A2 +2— X¢/3} and D* = fyDy U frD7 U foDy. D*
requires the smallest possible number of blocks since Dy, D7 and Dy are binary.

Case 4. ) = 0(mod 3), A\; = 2(mod 3): By Lemma 4.3, 2(A\; — 2)/3 + A2 +
2—X/3 > 0 and by Lemma 4.2, 2(\; —2)/3+ X2 +2— Ag/3 is even. Let f, = Ao/3,
fr=1, fo = §{200 = 2)/3+ X2 + 2= Ao/3} and D* = £,D; U fsDs U foDs. D*
requires the smallest possible number of blocks since D;, D3 and Dy are binary.

Case 5. )\ = 1(mod 3), \; = 0(mod 3): By Lemma 4.3, 2X; /3+ X3 —1—(Ao—
1)/3 > 0 and by Lemma 4.2, 2);/3+ A2 — 1 — (Ao —1)/3 must be even. Let fo =1,
fs = (o —1)/3, fr = 3{2M1/3+ X2 =1~ (X —1)/3} and D* = f,D, U fsDsU f1 D1.
D* requires the smallest possible number of blocks since D;, Ds and D7 are binary.

Case 6. )¢ = 2(mod 3), \; = O(mod 3): By Lemma 4.3, 2X;/3 + Ay —
2 — (A —2)/3 > 0 and by Lemma 4.2, 2;/3 + A\; — 2 — (A¢ — 2)/3 must be
even. Let fi = (Ao —2)/3, fs = 1, fo = £{2\1/3 + X2 — 2 — (Mo — 2)/3} and
D* = f,D4U fsDs U fg Dg. D* requires the smallest possible number of blocks since
Dy, Ds and Dy are binary.

Thorem 6.3 For p=6, k =3, m =3 and n = 2 the MCCGD’s is as given in
Table 3.

Proof. Consider an arbitrary GDTD D with parameters (b, Ao, A1, A2) for
p=6k=3 m=3andn=2.

Case 1. ); =0, Ay = 0: It is easy to verify that D is equivalent to f;.D; for
some f; > 1. Thus, henceforth assume that A\; or A\, must be > 1.

Case 2. )\ = 0(mod 4), \; = 0(mod 4): By Lemma 4.3, A1 /4+ A2 —Ao/4 > 0.

If A1/4+ A2 — Ao/4 = O(mod 2) then let f, = 2, fo = Xo/4, fo = 5{\i/4+
A2 — Ao/4} and D* = f3D, U f3D3 U feDs. D* requires the smallest possible
number of blocks since D;, D3 and Dg are binary. If A\1/4 + A2 — Ao/4 = 1(mod
2) then let fo = 2, fs = 1, fs = Ao/4, fo = §{\/4 -+ \p — Ao/4 — 1} and D* =
f2Da U f3D3 U fsDs U feDs. D* requires the smallest possible number of blocks
since Dy, D3, Ds and D¢ are binary.

Case 3. )¢ = 1{mod 4), \; = 1(mod 4): By Lemma 4.3, (A1 —1)/4 4+ X2 —
(Ao —1)/420.

If (A, — 1)/4 + A2 — (Ao — 1)/4 = O(mod 3) then let fo = (Ao —1)/4, fs = 2,
fo=%{(\ ~1)/4+ X2 — (Ao —1)/4} and D* = £,D, U fsDs U fyDs. D*
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Table 3. MCCGD’s for p=6, k=3, m=3 and n =2

Label b AW A /\gi)

D, 0 00000 6 2 0 0
0 00000 O
1 23 45 6

D, 0 00 3 1 1 0
1 2 3
4 5 6

D3 0 00 O0O0OT1 4 8 2 0 1
112233235
5 6 4 6 4 5 3 6

Dy 0 000O0OOOOOO OO 12 4 0 1
111122233445
23 56 3 46 45 5 66

Dy 11 2 3 4 0 0 1
2 5 4 4
3 6 6 5 6 6

D 1112 23 6 O 2 1
2 43 35 4
4 5 6 5 6 6

requires the smallest possible number of blocks since Dy, D¢ and D, are binary. If
(A —1)/44 Ay — (Mo — 1)/4 = 1(mod 3) then let fo = (Ao —1)/4, fs =1, fo = 2,
fs = ${(u—1)/4+ X2 — (Ao —1)/4—1} and D* = f,D,U fuD4 U fsDs U fs Ds. D*
requires the smallest possible number of blocks since D,, Dy, D¢ and Ds are binary.
If (M —1)/44+ X3 — (Ao —1)/4 = 2(mod 3) then let f, = (Ao —1)/4, fs =2, f6 =2,
fa= %—{(/\1 —1)/4+ A2 — (Mo —1)/4—2} and D* = f,D,U fsDs U fe D6 U f4Dy.
D* requires the smallest possible number of blocks since D3, Ds, D¢ and D, are
binary.

Case 4. Ao = 2(mod 4), A\; = 0(mod 4): By Lemma 4.3, \;/4+ Az — 1 —
(Mo —2)/420.

If/\1/4+/\2—1—(/\0-—2)/4 = O(mod 2) then let f2 = 2, f4 = 1, f5 = (A0—2)/4,
fo= §{M/4+ X2 —1— (N —2)/4} and D* = f,D, U fsDs U fsDs U fsDs. D*



Minimal Complete Class 63

requires the smallest possible number of blocks since D,, Dy, D5 and Dg are binary.
If A /4+ X2 —1—(ho —2)/4=1(mod 2) then let f =1, fs = (Ao —2)/4, fs =2,
fo = {M1/4+ A2 —2—(X0—2)/4} and D* = f,D,U f4D4U f5 D5 U fe Dg. D* requires
the smallest possible number of blocks since D, Dy, D5 and Dg are binary.

7. Discussion

The class of GDTD’s contains the designs that do not exist in the class of
BTIB designs. The class of these designs is larger than the class of BTIB designs
and provides us with designs that improve on the optimal designs in thier class.
But determination of the MCCGD’s in GDTD'’s for given(p, k,m,n) was an open
problem. We solve the problem for k = 2,3. The other values of p and k is of less
practical interest. The optimal designs can be constructed by using the generatcr

designs in the minimal complete class for that case.
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