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A Note on Complete Convergence in C,(R) and L'(R) with
Application to Kernel Density Function Estimators

Sungho Lee *
ABSTRACT

Some results relating to C,(R) and L!(R) spaces with application to kernel
density estimators will be introduced.  First, random elements in C,(R) and
L'(R) are discussed. Then, complete convergence limit theorems are given to
show that these results can be used in establishing uniformly consistency and L*

consistency.

1. Introduction

The estimation of a probability density function f(t) by the kernel method has
generated a vast area of research and challenging problems since the pioneering work
of Rosenblatt (1956) and Parzen (1962). The measure of deviation(or closedness)
of the estimator f,(¢) from f(¢) has many choices of both local and global nature

as well as modes and rates of convergence. For example, the uniform distance,

sup
t

fal®) — f (t)l, is a random variable which is a global measure of deviation while

falt) - f(t)‘ is a r.v. which is a measure of deviation at each t. Other commonly

used measures of deviation include

MSE(falt) =E(fa(t) - £(1)",
IMSE(fa()) = / E(f(t) - f(t)* dt, and

/
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fa)-F®| &, 1<p<oo.
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A general function space expression for the kernel density estimators is

n

Sp = Z ananka
k=1

where the array {a.,} consists of weights (possibly r.v.’s) and {X,} is an
array of r.v.’s which take values in a function space determined by the chioce of
K and where the norm relates to the measure of deviation of f, to f. Thus, it
appears that laws of large numbers for Banach spaces of functions could be used to
establish the general asymtotic properties of kernel density estimators. In general,
laws of large numbers hold in separable Banach spaces under the assumption of
tightness of distribution or geometric conditions on spaces (Radamacher type p
spaces). Results relating to tightness are in Taylor and Wei (1979) and Daffer and
Taylor (1982). Several authors, most notably Beck (1963), Hoffmann-Jorgensen
and Pisier (1976) and Woyczyski (1980), have obtained results relating the laws of

large number for sequences of independent r.v.’s to type p spaces, 1 <p < 2.

Notice that C,(R) = {f : f is continuous and lllim f(t) = 0} is a separable
t|—o0 .
Banach space with the sup norm ||f|] = sup |f(¢)]. Thus the kernel density
' —oo<t<00
estimator (cf : Parzen (1962) and Rosenblatt (1971))

Fult) = n—i—il{ (t “hf"> (1.1)

" k=1

is a random variable taking values in Co(R) if K € Co(R) (cf:Taylor and Hu(1986)).
Similar results can be obtained in L'(R) (cf : Lee (1990)).

Theform of f,(t) in (1.1) necessitates the consideration of laws of large numbers
for arrays of random elements in Co(R) and L!(R) which are rowwise independent.
However, C,(R) and L!(R) is only of type 1 (cf : Lee (1990)).  Thus, different
techniques other than type p and/or tightness are needed. In this paper, random
elements in C,(R) and L*(R) will be introduced. Then complete convergence limit
theorems are given to show that these results can be used in establishing uniformly

consistency and L! consistency.
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2. Random Elements in C,(R) and L(R)

Let (©2,4,P) be a probability space and E be a separable Banach space with
norm denoted by || ||. A random element (r.e.) X in E is a function from { into
E which is A-measurable with respect to the Borel subsets of E. The expected
value of X is defined by the Bochner integral and is denoted by EX. A random

variable X is said to be subgaussian (with parameter «) if for some a > 0

t2a?
E[exp(tX)] < exp (——5—) Vte R.

Definitions are directly extended to random elements in C,(R) and L'(R) and
similar results are obtained (cf : Taylor and Hu (1986), Lee (1990)).

Lemma 2.1. (Taylor (1978)) If E is a separable Banach space, then a
function X : § — E is a random element if and only if f(X) is a random variable
for each f € E*, where E* is the dual space of E.

Let X be a mapping from (2,4,P) into C,(R). For each w in 2, X(w) is an
element of C,(R) whose value at t we denote by X(t,w)(or Xi(w)). For fixed ¢,
let X(t) denote the real valued function on Q with value X(t,w) at w; X(t) is the
composition I, X. Similarly, let (X(¢1), --,X(tx)) denote the mapping from Q
into RF with value (X (¢;,w),", X(tk,w)) at w.

Lemma 2.2. (cf : Billingsley (1968)) Let X be a random element in C,(R)
if and only if for each t € R, X(t) is a random variable.

Similarly, the following characterization of random elements in LY(R)is in-
dicated in Taylor and Lee (1990).
Lemma 2.3. (cf : Taylor and Lee (1990))
(a) Let X be a function from R x Q into R such that
(i) Yte R X(t,"):w — X(t,w) is a random variable,

(i) Vw € @ X(-,w): t = X(t,w) is a Riemann integrable function. If
Vw € @ X(-,w)is identified with X (-,w), the equivalence class of X (-, w),

then X is a random element in L!(R).
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(b) Let X be a random element in L'(R).  Then there exists a function
X :RxQ — R such that

(i) Yw € Q X(:,w) is a Lebesgue integrable function,

(i) Vt € R X(t,-) is an extended random variable.

Remark. For each random element X in L'(R), X will denote the function

from R x Q into R with properties described by (i) and (ii) of Lemma 2.3(Db).

The expected value for a random element in a normed linear space is defined
by the Pettis integral (cf : Taylor(1978)). That is, X has expected value EX € E
if f(EX)=E(f(X)) Vf € E*. In aseparable Banach space, the Pettis integral
is equal to the Bochner integral when the Bochner integral exists. In particular a
random element X has a Bochner integral EX € E if and only if E || X|| < oo (cf :
Taylor (1978)). Thus, if X is a random element in C,(R), the expected value of
X is defined by the Bochner integral EX and (EX)(t) = E(X(t)) (cf : Taylor and
Hu). A similar characterization of expected values in L!(R) is obtained by Taylor
and Lee (1990).

3. Complete Convergence

In this section complete convergence results for sums of triangular arrays of
random elements in C,(R) and L!(R) are compared. These results were designed to
establish uniformly consistency and L! consistency of the kernel density estimates.

Examples are given to show how the results can be applied.

Lemma 3.1. (cf : Taylor and Hu (1986)) Let X be a random element in
Co(R) and let E |X(u) — X(v)|" < H Ju—v|’ Yu,o € Randy >0, 6> 1, H > 0.

Then fore >0, a€ Rand b> 0
b&
P| sup |X(s)=X(a)|>€e| <HKs—
a<s<at+b €Y

where K. is a constant depending on v and 4.

Theorem 3.2. (cf : Taylor and Hu (1986)) Let {X,, : 1<k <n, n>1}
be a triangular array of random elements in Co(R) such that EX,, =0 Vn and k
and let % < d<1. Suppose that for every n,
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(i) Xnp.(t)=0 for |t|> Bn®, >0

(ii) X, -+, Xn, are independent, subgaussian random elements where the
corresponding ay, satisfy

al(t)=) ok ()< An?, 2d>p
k=1
(i) E|Xn,(w) - Xn,(v)) <HnPlu—v|®, $20, 6§ >1. Then,

1 n
i 2 X

k=1

— 0 completely.

Example 3.1. Let X;,---, X, be random sample having the same density
£(2) belonging to C,(R). If E|X;[*" < oo for some r > 0, then the kernel density

~ t—X
estimator f,(t) = — K A k) uniformly converges to f(t) completely, where

K(t) is bounded with compact support and satisfies (1.2) and h, = O(n¢™?) for
some —;— <d<l

For each n and k, let X,,(t) = K (t-Zhﬁ) Yo (t) =K (t ; Y") where

Y: = XiXx,"<n). Since E |X1[*" < o0, it suffices to show that

iP n'dzn:Ynk - f >e} < oo.
n=1 k=1

By Theorem 3.2, the result follows. L!(R) counterpart to Theorem 3.2 is given

under more strict assumptions as follows.

Theorem 3.3. (cf : Taylor and Lee (1990)) Let {X,, : 1<k <n, n>1}
be a triangular array of random elements in L*(R) such that EX ne =0 Vn and k,
and let % <d<1. Suppose that for every n,

() X.,, -+, Xn, are independent, subgaussian random elements where the

corresponding functions a,, satisfy

a(t) = Za?,k (t) < An?,
k=1
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(i) X, (t)=0 for |[t| > Bn®, 0<s<d-E,
() [Xne(2,w) = Xn,(v,w)] < Crlu—v|* as,0<a<1 Cp= O(nf),

B >0. Then,
% Zf(nk — 0 completely if d > s + .
n

k=1

Example 3.2. Let X;,---, X, be a random sample have the same density
f(t). K E|X;|" <co forsome r >2, then the L'-error, [|fa(t)— f(t)|dt, of
the kernel density estimator,

fult) = n; ZK(t—hxk>’
d

hn =0 (n?71),

converges to zero completely if 2d > 1+ %, where K(t) is bounded with compact
support and satisfies (1.2).

For each n and k, let

X,,,,(t):K(t_hX") _EK (t—th>’

_(t=-Yi t—Y;
Y,.,,(t)_K( ™ )—EK( e ),

where Yy = XeI[x, |r<n]- Then

g:lp[/ ﬁ(t)—f(t)ld»e] Sgp[”n—denk >§]
+iP[/[f(t)—Eﬁ;(t)ldt>§] < 0

n=1

by Theorem 3.3 and Lemma 1 (Devroye, 1983).
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