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Characterization of Predicted Residual Sum of
Squares for Detecting Joint Influence in Regression f

Kwang Sik Oh*

ABSTRACT

In regression diagnostics, a number of joint influence measures based on various
statistical tools have been discussed. We consider an alternate representation in
terms of the predicted residual and g-leverage determined by the remaining points.
By this approach, we choose the predicted residual sum of squares for the keypoints
as joint influence measure and propose a new expression of it so that we can extend
the single case form to the multiple case one. Furthermore we suggest a seach

method for joint influence after investigating some properties of the new expressior.

1. Introduction

It is well known that inferences based on ordinary least squares regression can
be strongly influence by only a few cases in the data, and the fitted model may reflect
unusual features of those cases rather than the overall relationship between the
variables. An influential case is that, if removed, would substantially change certain
important features of the regression analysis under consideration. For example, the
deletion of a case may result in large changes in the estimated coefficients, the
fitted values or the estimated variances of thier statistics. An influential subset of
cases is a natural generalization of an influential case. Detailed discussion of the
rational for some existing single case measures and thier extensions to diagnostics
for joint influence cases can be found in Belsley, Kuh, and Welsch(1980), Cook and
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Weisberg(1982), and Chatterjee and Hadi(1988). Influence measures for individual
cases have been developed which are interpretable in terms of the position of the case
in the orthogonal subspaces spanned by the columns of X and the residual vector
e. In addition, thier single-case diagnostics can be computed efficiently. However,
in contrast with the single-case diagnostics, the detection of joint influence has
generally been regarded as computationally prohibitive in view of the large number
of subsets involved, and there exists a situation in which observations are jointly
but not individually influential, or the other way about. The situation is referred
to as a masking effect which means that the influence of one observation is masked
by the presence of another observation (Chatterjee and Hadi (1986)).

In this paper, we assume that a subset of k cases, to be called keypoints, has
already been selected as joint influential cases. We then discuss and interpret the
joint influence measures for these keypoints. In Section 2, we show notations and
definitions. In Section 3 we give a review of joint influence measures and examine
relationships between measures by predicted residual and g-leverage. In Section 4
we consider the predicted residual sum of squares for the keypoints to detect joint
influence. We propose a new expression of it so that we can'extend the single case
form to the multiple case one in Section 4.1. In Section 4.2, we investigate some
properties of the new expression and suggest a seach method for joint influence.

Two examples are given in Section 4.3. In Section 5, we give some comments.

2. Definitions and Notations

We consider a classical multiple linear regression model y = X + ¢, where y
is an nx1 vector of response variableé, X is an nxp known design matrix of rank
p, B is a px1 vector of unknown parameters, and ¢ is an nxl vector of random
errors with mean vector, E(¢) = 0, and dispersion matrix, Var(e) = o*I. The
ordinaiy least squares estimate of § is given by B = (X'X)'X'y and the vector
of residuals e is given by e =y — ¥, where ¥y = X E We assume that a subset
of k cases, Z, whose joint influence is to be examined, has already been selected.
We refer to the cases of this subset as “keypoints”. Without loss of generality, we
assign the keypoints to the last k rows of the data matrix and remind that in a

data analysis situation there are ,,Cy subsets of k data points whose joint influence
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may be investigated. Therefore, we partition the data matrix into a “reduced” data

matrix, V, augmented by the set of keypoints, Z.
15
X ¥y
We let B(Z) denote the OLS estimate based on the reduced data matrix, (X,,y,).

That is, E(,) = (X, X,) ' X!y, The predicted residuals d is given by d =y — ¥(,»,
where ¥ ;) = XE(Z). That is,

V
W=[X’y]=

Z

o ! !
€E=Yy—¥Y = [e1'7ez ’

d=y -y, =I[d,,d,].

The elements of e provide the difference between the y; and the regression surface
fitted to the full data. The vector e is orthogonal to the space spanned by the
columns of X. The elements of d provide the distance between the y; and the
regression surface fitted to the reduced data. The vector d, is orthogonal to the
space spanned by the columns of X,. The residual variance from OLS on the
full data set and the reduced data set are given by S? = e’e/(n — p) and S(zz) =
d,d,/(n — k — p) respectively. Following the above notation, the hat matrix, H =
X(X'X)"1X', can be partitioned as

[ X(XX)TIX!D X (X' X)X

BH=\%.(xx)x x.(xx)X

Especially, we set H, = X,(X'X)"1X..

The hat matrix for the reduced data is given by G, = X, (X! X,)" ' X!. There-
fore we define G = X(X!X,) !X’ as the augmented hat matrix for the reduced

data and G can be partitioned as

o [X(Xi X)X, XU(X:,XU)-IX;]_[GU Gv,]

X(X! X)X X,(X' X)X G. G,

The diagonal elements of G provide the squared X-space distance between the i
th case and the centroid of the reduced data, relative to the metric induced by
(X, X,)™!, for it = 1,---,n. The off-diagonal elements of G, and G,,, that is, g,;
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for: =1,2,---,n and for j = 1,2,---,n — k, are interpretable as the rate of change
in the ith fitted value, §; = zif,), with respect to y;. Following Bingham'’s(1977)

results showing that

BBy =(X'X)'X\(I - H,) e,
= (X:;Xv)_lX;ez _

we obtain expressions for the predicted residuals:

d-e= ? - ?(1) = X(X,',XU)_IX;ez = [%vz] e,.
Therefore,
d,=e, + szezv

d, = +G,)e,.

The above equations reveals that the elements of G,, and G,, that is, g;; for
i=1,2,---,n—kand j =n—k+1,---,n, are interpretable as the rate of change
of the difference in fitted value for the i-th case due to adding the keypoints to the
data, with respect to the j-th observed residual. Following Welsch(1982), and using

the updating formula for the inverse of a crossproduct matrix,
(X! X)) =(X'X) - (X' X)) XX (X' X)X, - nx,(x'x)™

and pre-multiplying by X, and postmultiplying by X, we obtain the following

equations;
G.= XZ(X:;Xv)_lX; = HZ(I - HZ)—I’

I+G,=(I-H,)"
and d,=(I-H,) e,.

3. An Alternate Representation of Joint Influence Measures

The diagnostic measures of jointly influential cases are usually based on the
residuals e and the hat matrix H (Belsley, Kuh, and Welsch, 1980, Cook and

Weisberg, 1982). Excellent summaries of the hat matrix H and residuals e are
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given in Rousseeuw & Leroy(1987) and Chatterjee & Hadi(1988). However, the
e-residuals, the diagonal elements, h;; of H,, and the sum of the squared residual

and h-leverage for each point are bounded by
2

hii + o <1 for 1=1,---,n.
2.4
j

That is, potentially influential points, those with high leverage, h;i, pull the fit

toward them. Therefore, an outlier may have a small e-residual. But neither the
elements d; of d,, the diagonal elements ¢;; of G, nor their sum are bounded(Lilliam
& Heiberger, 1988). Thus we favor an alternate, but fully equivalent, representation
in terms of the predicted residuals for the keypoints, d, and the elements of the

minor of the augmented hat matrix G,.

3.1 Outliers

The term “outlier” has been used implicitly or explicitly by many authors
to describe peculiar observations, extremely deviant observations, or observations
which differ from the main body of the data. These descriptions are truly informal
and sometimes confusing. In the following, we shall consider the so-called mean
slippage model to characterize certain peculiarity in the data. This approach to
outlier identification is to consider an enlarge version of the linear model and has
been used by many authors(e.g., Gentleman and Wilk(1975), Cook(1979), Cook
and Weisberg(1982)).

The mean slippage model for multiple outling cases can be written as y =
XB+ A6+ ¢ withy, X, 3, € as in Section 2, § an unknown k x 1 vector, A ann x k
matrix. Without loss of generality, we can assume A = [0, I%]. The likelihood ratio
test statistic for Hg : 6 = 0 versus H; : 6 # 0 is given by

_d(I+G.)7d./p

F = & m—F=p)

(3.1)

(Oh, 1989). Under the null hypothesis, this statistic F is distributed as F(p,n-k-
p). For further details on the detection of outliers see Barnett and Lewis(1978),
Hawkins(1980), and Marasinghe(1985).
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3.2 Influential Cases

An important class of measures of the influential cases is based on the idea
of the influence curve or influence function introduced by Hampel(1974). We give
a review of several influence measures based on the influence curve and provide
alternate representations. The general form of these measures is given by

If'{z, f,B(F)} - M - If {z,F, B(F)}

[

D(M,c) =

where If{-} is a generalization of the influence curve for 8. A large value of D(M,c)
indicates that the Z cases has strong influence on f relative to M and ¢ (Chatterjee &
Hadi, 1988). We consider four common approximations for the influence curve and
an appropriate choice for M and c. These are (i) the sample influence curve(SIC), (ii)
the sensitivity curve(SC), (iii) the empirical influence curve based on all cases(EIC),
(iv) the empirical influence curve based on reduced cases(EIC(;y). The most widely
used choices of M are (X'X) and (X, X,). Then we can obtain Table 1 and the
following facts(Oh, 1989);

Table 1. Alternative Representations of some Joint Influence Diagnostics

Influence Curve M measures Similarity

SIC ~ SC X'X  SIC(F)=Lld/(1+¢G.)G.q, Cook’s

X!X, SIC(R)=1ld,(I+6.)7'G.(I+G,)"'d, MDFFIT

EIC X'X  EIC(F)=1d,(I+G,)G.d,
' X!X, EIC(R)=1d.G.d, Welsch’s
EIC., X'X  EIC,)(F)=1d,(I+G.)"'G.(I+ G,)d, Belsley, Kuh, Wels

XiX, EIC()(R)=$di(I+G.)?G.(I+G.)"d,

(1) The main difference among these measures is in the power of (I+G.)™'G.(I+
G.)™™.
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(2) Setting M = X'X is more sensitive to G, then setting M = X, X,.

(3) These measures are arranged in an increasing order of sensitiving to G as
follows; { EIC(,)(R), EIC(,)(F),SIC(R), SIC(F), EIC(R), EIC(F)}.

(4) Well-known influence measures, such as Cook’s, Welsch’s, Cook & Weisberg’s
and, Belsley,Kuh & Welsch’s, fall into these measures.

4. Predicted Residual Sum of Squares For the Keypoints

The elements of d provide the distance between the y; value and the regression
surface fitted to the reduced data. We refer to the elements of d. as the predicted
residuals for the keypoints. In Section 3, we find that all of the joint influence
measures are expressed by the quadratic forms of d,. Now we decompose predicted
residual sum of squares for the keypoints, d,d,, to sum of quadratic forms and

investigate properties of the decomposed quadratic forms;
dd,=d,(I+G,)'d, +d,(I+ G,)'G.d..
From the equation in Section 2, we obtain

d(I+G,)'d, =€ (I-H,) e,
d(I+G,)'G.d, =e,(I-H,) 'H,(I- H,) e,
=(d—e)(d—e)
=(F-30) T -¥)-

From the above equations we find the following properties. The predicted residual
sum of squares for the keypoints is decomposed into two terms. One of the term is
the same as "Qutlier sum of square” which was proposed by Draper & John(1981)
and this is the numerator part of outlier test statistic F in Section 3.1. The other
term is the numerator part of Cook’s distance and this is the sum of squared changes
in fit to all n data points due to augmentation by keypoints. Thus, we consider a
joint influence measure PD, to detect outliers, influential cases, or both.
'd
PD, == (4.1)

c
where ¢ = ps®.
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This permits us to detect outliers and influential cases simultaneously. In spite of
appealing simplicity, this formular fails to explain the interaction among cases in
the subset, and has computational deficiency. In section 4.1, we propose a new
expression of PD, so that the single case can be combined with the multiple case.

In section 4.2, we show some properties of the new expression for a special cases.

4.1 A New Expression of PD,

We consider a new expression of predicted residual sum of squares for the
keypoints so that the single case can be combined with the multiple case. Predicted

residual sum of squares for the keypoints is written as
d.d, =e\(I — H,)"?

—e' [diag(I — H.)) ™" [diag(I — H.))(I - H.)"*[diag(I — H.)] [diag(I — H.)] "
=%e'z [diag(I — H.,)] " Q[diag(I - H.)] e.

where

Q =[diag(I - H.)|(I — H.) *[diag(I - H.)]
={[diag(I — H.,)] *(I — H,)™" [diag(I — H.)]
=R;2.

Nf=

¥

Let P, = % [dz'ag(I—H,)] _lez, then the element P,,, z; € 2, of P, is the predicted

residual for single case, z;. We derive a new expression as follows;

PD, = P'R;’P, (4.2)

-1 . .
2 is the correlation matrix

—1
where R, = [diag(I — H,)| *(I - H,)[diag(I - H.)
of the residuals for the cases in Z and diag(A) means that zeroes are substituted

for the off-diagonal elements of A and the off-diagonal elements of R, is given by
, s
V(@ = ha)( = hy)

Especially, if R;%2 = I, then (4.2) is denoted by

Yij = —

PD} = PLP, = ~{e,[diag(I - H.)| " [diag(I - H.)] e} = 3 P2

zZi€z
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which means the sum of the individual influences for the cases in Z. Note that it is
theoretically impossible to obtain R;? = I, but if some of the diagonal elements of
H, are close to 1 or 0, then R, is close to I (Hadi 1988), and as the result R;? will

be close to 1.

The new expression of (4.2) can be more effectively expressed than (4.1). The
reasons are as follows: (i) Since the new expression is made up of P, based on the
single case and R, based on correlation coefficients between residuals, we can find
out the interrelation between the single case and the multiple case. (ii) Elements of
e,, and R, for all combinations will be simultaneously calculated in most regression
diagnostics when the individual influence is calculated, so we only calculate R
when the joint influence is calculated. The problem that we need to calculate R;?

for all combinations may be improved in section 4.2.

4.2 Properties of the New Expression

We show some properties of the new expression for a case of k = 2, Z =
{2i,2;}, 1 < j. We derive two eigenvalues and corresponding eigenvectors of R;?,

where

(1+%) —27i;

(1-75)?F (Q-7i%)?
—2%; (1+9%)

(1 ‘7;‘21)2 (1 —71'2]')2

R;? =

The eigenvalues of the matrix are
— -2 _ -2
M =177 Ae=(1+7;)

and the coreesponding eigenvectors are

= 1?] e 1/\/§
—T -1
a-[a] = L]

=) = bl

From the above results, we have the following cases to consider the properties;

and

Zy
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(1) when 0 < v;; <1 0<A<ic<)y
(2) when 7;; =0 A=A =1
(3) when -1 < 7;; <0 0< A <1l<

Since the case (2) can be identified with the single case, we consider the case

of (1) and (3).

Now to determine influential domain for both cases, we take a procedure to

calculate the following increment from PD} to PD,.
PD, - PD} = PAR;* - DP.. (4.3)

Since \; —1>0>A;—1 or 272 > 0> A\ — 1, R;? — I is indefinite. Hence, (4.3)
becomes a hyperbola and for both cases the equations of asymptote are shown as

p_ (VO =D/ -2)-1) . s

. (1‘*'\/()‘1 —1)/(1—)\2))

and

L, (1 VeEDa=h)
T (VD% - 1)

(4.5)

by using P;, — P,; coordinates. Note that the slope of (4.4) is the same sign as that
of (4.5), and that as v;; — 0 the asymptotes (4.4) and (4.5) asymtotically approach

the P,; axis and the P,; axis respeétively.
Pz

(4.5)

By Ay

Cy 1]

Figure 1. The Domain of the Influential Subset for the case (1)
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sz

B2 A2

> Pei

(4.4)
Cz D2

(4.5)

Figure 2. The Domain of the Influential Subset for the case (3)

From the above Figures, the joint influential subset, which means that the
increment is positive, is determined by the domain B; and D; for the case (1), and
the domains A, and C, for the case (3). Note that these domains become larger as
|7i;1 — 1 from the asymptote property of the asymptote. In particular, if v;; — 1,
then (4.4) & (4.5) become P;; = P, and if v;; — —1, then (4.4) & (4.5) become
P, = Py,. 7Py P;; <0, then the influence of the subset is larger- than the sum
of the individual influences for its elements. Hence we can use it as a rough-and-
ready method to detect jointly influential observations. Even if v;; Py, P;; >0, the
subset may be influential, but in this case we regard the subset which is included
in the influential domains determined by (4.4) and (4.5) as jointly influential cases.
Now in order to decrease the number of candidate cases, we use the correlation
coefficient v;; because there will not be much difference between the joint influence
and the sum of the individual influence for the elements of the cases {zi,2;} when
75| is regarded as small. A calibration point for the correlation coefficient is giver
by |vi;] > 1.5p/(n — p) (Takeuchi 1991).

By using the above properties,we suggest the following steps as a search method
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for jointly influential cases.

Step 1. Calculate the single case values which are elements of R, and P,.

Step 2. Select cases for which |v;;| > 1.5p/(n — p). ‘

Step 3. Calculate (4.2) for subset (¢, 7), if the cases is included in the influential domains
determined by (4.4) and (4.5).

Step 4. Detect jointly influential cases from several viewpoints.

For Step 3, we calculate the ratio of P;; [ P;; for the subset, which is v;; P;; P, >
0 (Clearly the subset, which is ;; P;; P, <0, satisfies the condition, PD, > PD3.)
and compare it with the slopes of (4.4) and (4.5) such as;

Pz,'/Pz.‘ < (\/-—1)/(\/-'*'1)
or Pz,'/Pz.'<(\/'-+1)/(\/'-_1)
where - =M1 —1)/(1 = X2).

4.3 Example
(1) Artificial Data

As an illustration, consider the data in Table 2 . These data are constructed
by arbitrarily choosing 20 X values and generating the first 2 responses through
the model y = 5+ z; + (—1)"1110 + ¢;, ¢ = 1,2, the last 2 responses through the
model y; =5+ z; + 10 + ¢;, ¢ = 19,20, and the other responses through the model
yi = 5+ x; + ¢;, where the ¢;’s are péeudo—random normal variables with mean 0
and variance 1. They are plotted in Figure 3. If case 19 or 20 is deleted, the fitted
regression will change very little. If both are deleted, the estimates of parameters
may be very different. Conversely, if 1 or 2 is deleted the fitted line will change but
if both are deleted, the fitted line will stay about the same. Following the method,
cases (19,20), (1,3), (1,4), and (1,5) can be regarded as jointly influential cases from
Table 3. However case (1,2) is not detected as jointly influential. These mean that
there may exist a situation in which observations are individually influential but

not jointly and vice versa.
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Table 2. Artificial Data

OBS X Y OBS X Y
1 1 12.95 11 16 20.88
2 2 -3.13 12 17 21.57
3 8 14.07 13 18 22.01
4 9 13.89 14 19 23.98
5 10 1513 15 20 23.38
6 11 15.70 16 21 23.26
7 12 15.27 17 22 27.37
8 13 1775 18 23 28.86
9 14 1949 19 24 38.83
10 15 18.93 20 25 41.95

. 20
40

s

30

25

20

Figure 3. Plot of Artifical Data
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Table 3. Summary of Jointly Influential cases in Artificial Data

No Single case

muitiple case PD, \ v;;.

PD, P, 1 2 3 4 5 18 19 20
1 474 217 — 034 -020 -0.18 -0.16
2 253  -159 (432) — 018 -0.17
3 016 0.39 6.22* 52.46 -
4 002 013 5.42*  (2.60 —
5 002 013 5.28* —
18 010 -0.32 — 015 -0.16
19 172 131 1.68) —  -0.18
20 290 1.70 gz.ssg 6.78* —

. F(.10;2,18) = 2.62

- case( ) is not included in joint influence domain.

(2) Adaptive Score Data

This dataset is given by Mickey, Dunn and Clark(1967) and used by Draper
& John(1981), Lilliam & Heiberger(1988), Takeuchi(1991), and many authors. Ac-
cording to Cook & Weisberg(1982), they point out cases 2,18, and 19 as influential,
and cases (2,18), (18,19), and (11,18) as jointly influential cases by using eigenval-

ues of the hat matrix as a calibration point. Following the method, cases (2,18)

and (11,18) can be regarede as jointly influential cases from Table 4. However case
(18,19) is not detected as jointly influential.

Table 4. Summary of Jointly Influential cases in Mickey, Dunn, and Clark Data

No Single

case multiple case PD, \ v;j
PD, P, 2 9 11 18 19
2 0.53 -0.73 -— -0.56
9 0.05 0.22 — 0.16
11 0.60 0.78 —  0.20
18 1.04 -1.02 8.19* 1.33 2.65* — -0.18
19 421 205 (4200 —
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. F(.10;2,19) = 2.61
- case( ) is not included in joint influence domain.

5. Comments

We have concerned an alternate representation of joint influence measures in
terms of the predicted residual and g-leverage determined by the remaining points
and have found that this is useful for describing the relationships between many
popular diagnostics. By this approach, the predicted residual sum of squares for
the keypoint is decomposed into two quadratic forms which are used for detecting
outliers and influential cases. Hence we have considerd a joint influence measure
PD, which is the predicted residual sum of squares for the keypoints, d.d, divided
by ¢ = ps®.

Also we have proposed a new expression of PD, and suggested a seach method
for joint influence. The advantages from the theoretical point of view are that the
expression is based not only on the multiple case but also on the single case, and
that we can detect jointly influential cases with the masking effect by investigating
the difference between the joint influence and the sum of the individual influences.
The advantage from the practical point of view is that we can decrease the number

of combinations of cases by using the properties as mentioned in Section 4.2.
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