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Abstract

In this paper, we consider an iterative algonithm for solving a new class of quasi complementarity
problems of finding ueR™ such that

g(u) € K(u), Tu + A{u) € K*(u), and < g(u), Tu + A(u) > = 0,

where T, A and g are continuous mappings from R" into itself and K*(u) is the polar cone of
the convex cone K(u) in R", The algorithms considered in this paper are general and unifying
ones, which include many existing algorithms as special cases for solving the complementarity problems,
We also study the convergence criteria of the general algorithms,

1. Introduction

Variational inequality theory provides us not only a general and unified framework to study
a wide class of nonlinear problems arising in various branches of mathematical and engineering
sciences, but also gives us new numerical methods for solving them. Closely related to the variational
inequality problem is the complementarity problem, which plays an important and fundamental
role in general equilibrium theory of economics and transportation, management sciences, and operations
research, In recent years, various useful extensions of these two different problems have been introduced
and analyzed, see Bensoussan and Lions [4], Baiocchi and Capelo [3], Karamardian [11], Pang
[28], Noor [19, 25], and the references therein,

In this paper, we introduce and study a new class of quasi complementarity problems, which
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is called the general mildly (strongly) nonlinear quasi complementarity problem. Using the variational
inequality technique, we propose and analyze a new and unified iterative algorithm, We also study
the conditions under which the approximate solution obtained from the iterative algorithm converges
to the exact solution. Several special cases, which can be obtamed from our main results are also
discussed.

In section 2, we introduce new classes of varational inequality and complementarity problems
and discuss several special cases. Algorithms and convergence results are considered and discussed
in section 3 and 4.

2. Formulation and Basic Results

We denote the inner product and norm on R? by‘ (., and . u, respectively.
Let K be a closed convex cone in R* and T, g : R® — R? be the continuous mappings. Given
a nonlinear mapping A : R* — R" and a point-to-set mapping K : u - K(u), which associates
a closed convex set K(u) of R" with any element u of R® consider a problem of finding ueR"
such that g(u) €K(u) and

{Tu+A(u), g(v)—g(u)) & 0, for all g{v) €K(u) 2.1)

problem of the type (2.1) is known as the general mildly (strongly) nonlinear quasi variational
inequality problem, which is mainly due to Noor [13].

Note that if K(u) = K, then problem (2.1) is equivalent to finding UeR" such that g(u) eK
and

{Tu + A(u), g(v) — g(u)} = 0, for all g(v) €K, (2.2)

which is called the general strongly nonlinear variational inequality problem, For applications and
iterative methods see Noor [12, 14].

Example 2. 1.

It is worth mentioning that a large number of unrelated general equilibrium problems, moving
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and free boundary value problems of odd order can be studied in the general framework of the
variational inequality problems (2.1) and (2.2). As an example of odd order free boundary value
problem leading to general quasi variational inequality problem (2.1), we consider the third order
obstacle problem

Tu 2 f(x, u(x) ), m 0

u(x) = Mu(x), in 0 (2.3)
[Tu—f(x, u(x)) ] [u(x)~Mu(x) ] =0 in Q

u(0) = 0, uw(0)=0=u'(l)

where 0 = [0, 1] is a domain, T = (—d*/dx®) is the differential operator of third order, f
is a given nonlinear function of x and u(x), and Mu(x) is the obstacle function, where M is an
operator of the form

Mu = 1 + inf u(x+#, x€ Q,
E20
x+€&€q

see Mosco [10] for further details. To study the problem (2. 3) via the variational inequality technique,
we define K(u)={ueH?(Q), u(x) 2 Mu(x) on 0}, which is a closed convex set in HZ(Q),
see Oden and Kikuchi {26], for the definition of the space H/®(0). Now using the technique
of K-positive definite operators, as developed in [30], we can show that the problem (2.3) is
equivalent to finding ue H*(0) such that g(u) € K(u) and

< Tu+ A(u), gv) — g(u)) 2 0, for all g(v) e€K(u),

where

( Ty, g(v)) = — §(DPw) (Dv) dx = {y(Dhu) (d*) dx,
and

CAu), g(v) > = [f(x, u(x)) Dv dx,
with

-4 _
= & = D.
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It is clear that with g = (d /dx), we have the variational inequality problem {2,1). Well-known
examples of obstacle, unilateral moving and free boundary value problems, which may be written
in the form (2.1) or (2.2) includes fluid flow through porous media, journal bearing lubrication
problems, contact problems in elasticity, etc,, where f(u) == f(x, u(x) ) is of the form e e"—1,

Ut n = 2

Related to the general mildly (strongly) nonlinear quasivariational inequality problems, we now
introduced a new class of complementarity problems, which will be called general mildly (strongly)
nonlinear quasi complementarity problem of finding ueR” such that

g(u) eK(u), Tu+A(u) €K (u), <g(u), Tu+Au)> = 0 (2.4)

where K*(u) is the polar cone of the convex cone K(u) in R® In many important applications,
K(u) has the form

K(u) = m(u) + K, (2.5)

where m is a point-to-point mapping.

Remark 2.1

For different choices of the mapping T, g A and the convex sets K, we may obtain various
previously known results considered by many authors including Baiocchi and Capelo [3], Bensoussan
and Lions [4], Chan and Pang [5], Crank [6], Glowinski, Lions and Tremolieres [7], Lions and
Stampacchia [9], Noor [11, 15, 16, 17, 18, 19, 20, 21, 22], Oden and Kikuchi [26] and Pang
(28, 29].

3. lterative Algorithms
We need the following results in order to suggest an algorithm for finding the approximate solution

of the general mildly (strongly) nonlinear quasi complementarity problem (2.4). The first is a
generalization of a result of Noor [15].
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Lemma 3.1. If K(u) is a positive cone in R, and K < g(K), then ueK(u), defined by (2.5),
is a solution of general mildly (strongly) nonlinear quasi complementarity problem (2.4), if and
only if u satisfies the general mildly (strongly) nonlinear quasi variational inequality problem (2.
1).

Lemma 3.2. For K(u) given by (2.5), ue R" is a solution of the general mildly (strongly) nonlinear
quasi variational inequality problem (2.1), if and only if u satisfies the relation

u = F(u),

where

F(u) = u—g(u) + m(u) + Pylg(u)—2(Tu+A(u)—m(u) ] 3.1

for some p)0, where m is an arbitrary point-to-point mapping and Px is the projection of R?
into K.

Proof. Suppose that ueR" satisfies (2.1), then

(Tu+A(u), g(v)—g(u)) = 0, for all g(v) eK(u).

For some p ) 0, we can rewrite the above inequality into the following form

(P<{Tu + A(u), g(v)—g(u))) = 0,
which is equivalent to finding u€R" such that

(glu)—(g(u)—p(Tu+A(u))), g(v)—glu)> & 0, for all g(v) €K(u).

Hence by Lemma 3.1 [11], we have

g(u) = Py [g(u)—p(Tu+A(u)) .
Using the fact that Pge(v) = m(u) + Px[v~—m(u) ], we get

g(u) = m(u) + Pg[g(u) —o(Tu + A(u)) ~m(u) ]
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or equivalently
u = u—g(u) + m(u) + Pxlg(u)~A(Tu+A(u) )—mlu) |.
which is the required result.

From lemma 3.1 and lemma 3.2, we conclude that the solution of problem (2.4) may be obtained
by computing the fixed point of the function defined by (3.1). This formulation is very useful
in approximation and numerical analysis of the complementarity problems. One of the consequences

of this formulation is that we can obtain an approximate solution by an iterative algorithm,

Remark 3.1. We would like to emphasize that the fixed point formulation (3,1) of the problem
(2.4) 1s symmetric with respect to the mappings T and g. To show this fact, we need the well-
known [32] result that for all zeRr '

z = Pg(z) + Px(2)
= Pg(z) — Pxs(—2).

We may rewrite (3.1) as
F(u) = S(u) + Py[G(u) —S(u)] (3.2)

with S(u) = u—g(u) + m(u),

and
G(u) = u—p(Tu+A(u) ).

Taking z = G(u) —S(u), we obtain
0 = G(u)—S(u)=Px[G(u)~S(1) ] + Pxa[S(u)~G(u) ] (3.3)
Adding (3.2) and (3.3), we obtain

F(u) = G(u) + Pxs[S(u)~G(u) }, (3.4)
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which shows that F is implicitly symmetric,

On the basis of these observations, we now suggest and analyze a general and unified algorithm
for the problem (2.4) as:

ALGORITHM 3.1

Given yp, € R", compute un,, by the iterative scheme

umr'"'F(un)
= —g(Un)+m(ua) +Px[g{un) —A(Tup+A{tn) ) —m(ua), n = 0, 1, 2, -,

where 2) () is a constant.

If T is a linear affine mapping of the type T : u — Mu-q, for M e R™ and q € R", then algorithm

3.1 can be written in the form:

ALGORITHM 3.2

For any given u,€ R® compute un., by 'the iterative scheme

Uni=Un—& (Un) +m(un)+Px[g(tn) —PE{Mun+q+L(Unn—un)+A(un) j—m(ua) ],
for n=¢Q, 1, 2, = , (3.6)

where )0 is a constant, E is a positive diagonal matrix, and L is either a strictly lower or strictly
upper triangular matrix, This restriction on L may be relaxed, because the iterate un., may be
obtained by solving a variational inequality subproblem as pointed out in Pang [29], Here the original
data M remain intact throughout iteration, allowing this algorithm to be efficient for both large
scale and specially structured problems. It is also clear that each iteration of algorithm 3.1 and
algorithm 3.2 is itself equivalent to a general mildly (strongly) nonlinear quasi variational inequality
problem as implied by lemmas 3,1 and 3.2.

Remark 3.2. The algorithms 3.1 and 3.2 proposed in. this paper are general than and include

several previously known algorithms as special cases, see [1, 2, 5, 8, 15, 19, 22, 23, 24, 25] for
more details,
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4. Convergence Analysis

In this section, we consider the convergence properties of algorithms 3.2 and 3. 1.

Here we only consider the special case, when K = [0, b] is a closed convex set in R In this
case, we consider the projection operator Py, which is defined as

Py(u) = arg min_yv—uy,
veK

If K = R, then
(Pe(u) )y = max {0, w), i=1,2 - 0
In our case, we have

(Pg(u) )y = (Plo, b) (u) W
= min {max(0, u), by}, i = 1, 2, ==, n, where b==(b, by, ---,).

For notational purpose, Py, ,; will be denoted as P,, The operator P, has the following properties,

Lemma 4.1. [1] For any u and v in R?,

(i) u = v implies Py(u) = Py(v)

(i) Pg(u) — Pu(v) = Py(u—v)

(iii) Pu(u+v) £ Py(u) + Pulv)

(iv) Py(u) + Pe(—u) £ |ul; with equality if and only if ~b £ u = b,

In addition, the following concepts are also needed. A real matrix M € R®® is said to be Z-matrix
(a P-matrix), if it has nonpositive off —diagc;nal entries (positive principal minors), A square matrix
with non-positive off-diagonal elements and with a non-negative inverse is called an M-Matrix,
It can be shown that a matrix which is both a Z-matrix and P-matrix is an M-matrix [29],
see [31] for full details, If M eR™™ then [M| denotes the matrix obtained from M by replacing
each element My by its absolute value,

Definition 4.1. Let f: K C R* - R, We say f is:

— 14—



Iterative Algorithms for General Quasi Complementarity Problems 9

(i) strongly monotone, if there exists a constant & ) 0 such that

(f(u) = f(v), u=v ) 2 eyu—-vy? for all uy, veK

(ii ) Lipschitz continuous, if there exists a constant 8 ) 0 such that
w flu) — f(v) n = A nu—vy, for all uy, vek,

In particular, it follows that « = 4.

Theorem 4.1. Suppose that there exist nonnegative matrices W e R™ NeR™ and BeRP®

such that
im(u) — m(v)] £ Wiu—vl, foralliuy v, (4.1)
IA(u) — A(v)] & Nju—v|, for all u, v, (4.2)
iglu) — g(v)l £ Blu~vl, foralluy v (4.3)

If {up) and {Un} are the sequences generated by algorithm 3.2, then

lunu—unl = (I-PEILD)™ [2(14+B+W) + pEN + [I-pE(M-L)I] lun—uq-l. (4.4

and
luny—ul £ (I—pEILH)™ [2(0I+B+W) + pEN + [I-~pE(M—L)|] {us~ul. (4.5)

for each n, where u is the solution of the problem (2.4) and L is either strictly lower or upper

Proof. From algorithm 3.2 and lemma 4.1, we have

Upy—Un = Un—Un;— (2(un) —g(Un.1) ) + m(un) —m(un,)
+ Px[g(un)—g(uny) + I-PE(M—L)} (un—un.)
—PEL(upyy—Un) — (Un—tny) — (m{un) —m(up.,) )
+ PE(A(un)—A(una) ) 1.
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Again invoking lemma 4.1 and using the fact that Pi=Py, we obtain

Pyluna—Ua—{ (Un—~tn.) — (g(tn) —g{Un,) )+ (m(up) —m(un,) ) } |
= PK{ {I"“PE(M“L)} (Un”‘un--x)”PE[-I(Uma'”Un)‘f'/”E(A(Un)”A(U-n»-x) )
~ (un—tn ) — (M (Un) ~m(un,) )+{glun) —g(Uny) ) ] (4.6)

In a similar way, we have

Pkl —( (unu—tn) —{ (Un—tn,) — (g(un) ~&(Un-s) )+ (m(Un) —m(Un) ) } ]
= Pl {—I+PE(M~L)} (un—un-) +PEL (Uns—tn) —PE(A(un) — A(Un..) )
+(Un—Un) — (M(un) —m(un,) )+(g(un) —g(tn,) ) ] (4.7)

Adding the inequalities (4.6) and (4.7), and using lemma 4.1, we have

funu—Unl = 20un—un.{+2/g(Un) —g(Un) 1 +2im(un) —m(up,) |
+ :l“PE(M"'L)} {up~Up|+2E|L| !Unu“‘un§+PE!A(un) “A(Un-»x) |

using (4.1), (4.2), and (4.3), we have

Uny—Ual = [2(I+-B+W)+pEN+{I—pE(M~L)! ] fun—uny|+PEIL! lunsy—Uni
(I-PEIL!) lunu—ual = [2(I4+B+W)+pEN+{I~pEM=L) | ] fun—Utpn.,I.

Since L is either a strictly lower or upper triangular matrix, so the matrix (I-pEIL} ) is invertible

and its inverse is nonnegative, that is, (I—gE[L|) is an M-matrix. Hence
Wnu—tnl = (I-eEIL| )? [2(I4+-B4+W)+eEN-+HI—pE(M~L) | ] lun—un.),
which is the required result (4.4). Using similar arguments, we can obtain (4.5).

From theorem 4.1, we can obtain a sufficient condition for the convergence of the sequence
{un.} generated by algorithm 3.2 to be bounded and hence have an accumulation point, which
is the solution of the general mildly (strongly) nonlinear quasi complementarity problem (2, 4).

Theorem 4. 2. Assume that

o(G) (1,
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where

G = (I-pEIL])" [2(I+B+W) + #EN + {I-pE(M~-L) |}, (4.8)

with o denoting the spectral radius. Then for any initial vector u, the sequence {un.} generated
by algorithm 3.2 converges to a solution of problem (2. 4).

Proof. We note that the matrix G defined by (4.8) is non-negative,

Hence from theorem 4.1, we have
Uny—Unl £ G |[Un=Un4l.

since o¢(G) { 1, it follows that

limit Iumx"'un{ == () (49)

n-» o0
Next, by inductive arguments, we have

;l‘\mx*‘uof = :uml"’un‘ 4 eeerenens + ;ul’“Uo‘
= (G 4 ooee + 1) -l
= (I-G)" ju~ul,

where the last inequality follows from the fact that the matnx G is nonnegative and o(G){1:
see Ortega and Rheinboldt [27]. Hence we conclude that the sequence {um. is bounded and has
an accumulation point, say u”. Let {un} be a subsequence convering to u*. Then from (4.9) we
see that the sequence {un.} converges to u* as well, Since the mappings T and g are continuous,
s0 by passing to the limit n; - oo, we obtain

u* = u—g(u)+m(u)+Pxlg(u’) —PE (Mu+q+Au")} ~m(u’) ],

which is equivalent to the general mildly (strongly) nonlinear quasi complementarity problem (2.
4) by lemmas 3.1 and 3.2, that is, u* is the solution of (2.4). We finally show that the sequence

{uns} converges to u*. From (4.3), we obtain

upu—u*l & G |up—ut,
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where G is as defined by (4. 8). Since o(G) { 1, it follows that the entire sequence {u,,;) converges
to u*, and this completes the proof of theorem 4. 2.

It can be shown using the technique of Pang [29] that condition (4.2) for the nonlinear mapping
A is equivalent to the fact that A is Lipschitz continuous, that is, there exists a constant y )
0 such that

n A(u) —A() 1 £ ynu-vy, foraluy v

In the next theorem, we study the conditions under which the approximate solution obtained by
algorithm 3, 1 converges to the exact solution of the general mildly (strongly ) nonlinear quasi complementarity
problem (2.4). At the same time, we prove that the convergence analysis for the general mildly
(strongly) nonlinear quasi complementarity problem (2, 4) holds for any general closed convex set
K in R,

Theorem 4.3. Let the mapping T, g : R® — R be both strongly monotone and Lipschitz continuous
respectively. If the point-to-point mapping m and the nonlinear mapping A are both Lipschitz
continuous and up,, and u are solutions satisfying (3.5) and (2. 4), respectively, then u, — u strongly

in R® for

_ea—y(1-K) |, a-y(1-K) }—~K(2-K) (F#-y)
le {
B~y ' F—y

K{(1 and «) /K(@2-K) (F#-¥) + y(1-K)
with K = 2(n + /1-20 + &),

where a, ¢ are the strongly monotonicity constants of T and g, and 4, o, ¥ and # are the Lipschitz
constants of the mappings T, g, A and m respectively such that a8 and dso.

Proof. From lemmas 3,1 and 3.2, we see that the solution u of (2.4) can be characterized by
the relation (3.2). Hence from (3.2) and (3.5), we have

I Uny—U 1t = 1| Un—&(un)+m(un)+Px[g(un)
— P(Tun+A(un) ) —m(un) ]—u+g(u)-m(u)
~ Pg(g(u)—p(Tu + A(u)) — m(a) ] n
= nup—u—(g(ua)—g(u) ) 1+ nmus)—mlu) y
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+ 1 Px[g(un) — (Tua+A(un) ) —m(ua) ]
—Pxlg(u)—p(Tu+Au) )—m(u) | u

£ nup—u—{g(un) —g(u} ) u+ nmlun) —miu) 1
+ un—u—(g(un) —g{u) )~ (un—u)-p(Tun—Tu)
—p(A(un)~A(u) )~ (m(ua) ~m(u) ) n

by the non-expansivity of P, (see lemma 3.2 in Noor [11]).
£ Nup—u—(g(un) —g(u) —g(u) 1+2 1 mua)—m(u) u
+ nup—u—(g{ua)—g(u) ) i+ nua—u—~2(Tua—Tu) u
© + PuAlun)—Au)

Since T, g are strongly monotone and T, g, A and m are Lipschitz continuous, so by using method
of Noor [11] we get

Hun—u—(g(un)—g(u) ) u* £ (1-26+¢*) 1un—u (4.10)
and
nup—u—p(Tus—Tu) 1? £ (1-2ap+87) 1 un—un? (4.11)
and
nAun)—A(u) 1 S ynup—up (4.12)
and
nm{up)—m(u) 4 = 711 un—u It (4.13)

From (4.10), (4.11), (4.12), and (4.13), we have

Hupn—un = [2/1-204d +,/1-2ap+8¢* +2n+0y] 1ua—uii
= (K+py+t(o) ) nua—un,

where K = 2,/T=2040 + 21, t(p) = /1-2ap+ 57

HUpy—U I = @ 1l Up—U |y
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with g = K+pr+t(e) (1, ie, K + py + J/1-2ap+85 {1,

from which we have

plegoh) | e KK )

a ) /K2-K) (F#~¥) + y(1-K), and K ( L

Since ¢ { 1, so the fixed point problem (3.1) has a unique solution u and consequently the iterates
Unp+ converge to u strongly in R? which is the required result,
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