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§ 0. Introduction

Many authors dealt with the partial differential operators of quasihomogenous type {4], [5],
[7], which is not invariant under the change of coordinates in general. In view of singular integral
operators Calderon [ 1] gave the proof on the uniqueness of the Cauchy problem when no bicharacteristic
is tangent to the initial surface. Using pseudodifferential operators Lascar [4], [5], studied the propagation
of singularities for partial differential operators of quasihomogeneous type. On the other hand
Hormander [2] gave some inequalities from which we can obtain uniqueness theorems for the
Cauchy problem, existence and regularity theorems for solutions of the differential equations P
(x, D)u = f. Isakov [3] extended Harmander's results to the the equations with quasihornogeneous
principal parts.

Let P(x, D) be a partial differential operator defined in an open set & < R". Our subjects are
related to the following two estimates :

(0.1) > DU () dx
£ K7 1§ e7°WP(z, D)u(x)Pdx

and

(0.2) :2-:-:;1 xms ez""(')lD"u(x)Izdx
S Kb | e20Np(x, D)u(x)® dx
+ Ky ; MU= laim]) -2 S e””(’)llru(x){zdx

mel-2/M

where u € CF({}) and 7 2 =, In this note, using commutation relations, we shall find the conditions
which are necessary for energy integrals (0.1) or (0.2) to be valid. By means of these conditions
Isakov obtained two inequalities which imply the uniqueness theorems of the Cauchy problem for
quasihomogeneous partial differential operators,

[ 85 e



2 Rak ~Joong Kim
§ 1. The Preliminaries

For an n — tuple m = (my, -+, m,) of positive integers, we write
Plx, D) = Shmsital)D with laim| = $afm,
and define the principal symbol of P{x, D)) by o(P)(x, &). Then
o(P)(x, §) == Linmi1ba(2)E,

The variables x; and §; for which m; = M = max g4c,m will be called the fundamental variables.
The set of corresponding indices 1 = j = n will be denoted by J, and the complement of J will
be denoted by J’. In the sequel we keep

M
/)

p = (pl' (L pn)‘ Pj s s j = 1’ eom,

fixed and set

Alx) = ;;'taj;‘ayxk/z ay = ay,

Vwl(x) = Va(x),

where aw(x) /ax;, = 0, for k € ],

Definition 1.1. A complex valued function f(x, §) € C* is said to be p — homogeneous of degree
ke Cif

(1.1) filx, &) = flz, t°6) = i¥(x, &), t >0

where lpé = (ro]el, HR t“’"é,‘),

Definition 1.2. We say that a partial differential operator P(x, D) is p — homogeneous of degree
k if the principal symbol of P(x, D) is p ~ homogeneous of degree k

We shall denote by [¢] the function defined implicitly by the relation :
L R
(1.2) ST =1 i (o1,
(0] =0

We say that g dominates f and write f << g if there exist positive constants C, C* such that
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fl€) = cg(&) for & > C’
If f << gand g << f, we write f ~ g,
Example 1.3. Let M; = I}y;pp and M = pM;. Then it follows that
¢l ~ {’z‘ My oM 2"-;;5],;1/@

Example 1.4. For a partial differential operator P(x, D)) == DiDED; + alx)DiD4Ds, we take
m = (12,4, 4). Then p = (1,3, 3),] = {1} and | " = {2, 3}. Note that m is not uniguely determined,

Example 1.5. For the heat operator P(x, t, D,, D)) = iD, + D{f + -~ + DZ + a(x)D,, we
have m = (2, -, 2, 1), ] ={L, 2, -, n}, ] = {n + land p = (1, -, 1, 2).

§ 2. Main Results

We shall prove conditions which are necessary for (0.1) or (0.2) to hold. In doing so we assume
that the coefficients of P(x, D) are bounded, that the coefficients in the principal part of P(x,
D) are in C{Q), and that w(x) is real valued and belongs to C%(D),

Theorem 2.1. Let N = Vyw(x), and let & == § + iyN with § € R, ¥y € R\|0} satisfy
(2.1) a(P)(x, §) = 0,
Assume that there exists a with laim| = 1 -~ 1/M such that {* =% 0. Then it follows that
22)  [EPM-V < 2K(F, ww(0)a(P)P(0, $)a(PYP(0, €)
~1m;; a(P)iy(0, &)a(PYP(0, €)1,
if (0.1) holds, and that

(2.3)  [EEM-U . gp?[€, y]HM-2
S 2K0F, @(0)a(P)0(0, )a(P)P(0, ¢)

+ ~—Im§ 6(P)iy(0, €)a(PY(0, ¢),

1
where (€, y] = 3p.,&i4 + vl if (0.2) holds, when the left hand side is positive,
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Theorem 2.2. lLet P have real coefficients and assume that (2.2) or (2.3) ere valid, If V@
(x) * 0, x € Q, and if § € R™\{0} satisfies

a(P)(x, §) = 0,
(2.4)

3 o)V, e);—x"i’; =0,
but for some j € ],
a(P)i)(x, &) * 0,
1t follows then that

(2.5)

{5]2(M*1) = C{;;’ :];‘;k

%, (P, §a(P)V(x, &) — a(P)y(x, )a(P)W (s, 5”%}'

o(P)V(x, £)a(P) ¥ (x, §) +

Proposition 2.3. Suppose that q(&) = 0, gV (&) * 0 for some j,
gqm(fo)Nj ={(  for a fixed N € C"

Then there are smooth functions € = &(r) € R* and 7 == 7{(r) ¢ R with &(0) = & and 7(0)
= () such that q(&(r) -+ ir(r)N) = 0.

Proof: Pick » ¢ R" so that
3 a(é) 'y * o,

By implicit function theorem, there is an analytic function z(7) in the neighborhood of 7 = ¢
satisfying

q{&y + 27 + T™N) = 0.

Since dzfdr = 0 at 7 = 0, z(7) = 0 or z(7) = Cr* + O(**!) for k = 2. There is a smooth
curve 7 = y(r) such that z(y(r)) is real. y(0) = 0. Take 7 = Imy(r), £(r) = & + m(y(r))
-+ Rey(r)N.

Proof of Theorem 2.2: From the condition (2.4) and from that

a(P)¥(x, & + #yN) = o(P)P(x, &)

e B
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+ (3 ol o(P)W)(x, 5)*- + O{y)}
if we take ¥ = Imy(r) and replace & by &(r) + #7z(¥(r)) + Rey(r)N, both (2.2) and (2.3)

are reduced to (2.5), when y —
We set

g = D; + iAy(x),
5 =D - iAg(a),

= ham
41

where A)(x) = 2A(x)/ax;. 1t is obvious then that
(41, 4] = 24,

(6% O] = 208, + 24,8,
(¢F 6] = 2ayd] T,

where [ is a positive integer. Let P(D) = ¥,4,D" be a partial differential operator with constant

coefficients, Since

[P(), 3] = Taflo7 - &, -1, g]é,7
+ o1 e B, Y8 8]

from induction it follows that

[F (), 4] —z;z«zyf—’l—(ﬂ

where A, is the j — th column of the matrix (ay), 2, = (.‘;‘L' e ;—3-« ). Next by the direct calculation
m ™

we obtain

[P(F), 68] = (26, < A, 3, > + 20, < Ay, 9, >
+2< A3 > 2 < Away > PMLT .

Repeating this process we can conclude :

Proposition 2.4. Let P(D), Q(D) be partial differential operators with constant coefficients. It
follows then that
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[P(F), Q)] =

3 0NN < A 7 SN A g S B ()T

Proposition 2.5. Let H(x) = S k-1haxxy, where hu = hy, be a real dusdratic form and let
b = (by, -+, b,) be a vector in C". Then there exists a constant C > () such that for
u € Ci’(R") the inequality

fa 12, H N } 2,4
§ e de < C § ¢,f§; bDui%e! dx

i

L5

valid if and only if
0% bbby 2 1.
Proof: It follows from Proposition 2.4 and from Lemma 8.1.3 2]

Proof of Theorem 2.1: We may assume that x = ( and that w(0) = (). Consider a function

v € C* such that

v'(x) = olp, x) =< x ()% > +0(x?), x —>
v(x) = 0(0, 2),

and set with a function ¢ € Cy (R™)
w(x) = e@P(x,/7).
By Euler identity it is obvious that o(P)0) is p — homogeneous of degree M(1 ~ 1/ m,). Since
e OD{Mp(x)) = (v /7)p(xp(x/T) + /7 (D) (x/7),
we obtain

P(x, DYu,(x) = (7 /y)M-1eo (7 /y)a(P)(x, To(x))p(x,/T)
+ 3 oz, Vo(x))/T (D) (x/7) + O(1)),

where O(1) denotes a function which is uniformly bounded for sufficiently large . It follows that
/2y /)M -Dr-L 1Pz, D)u,(x)%e?™) ds —s
fl<xa> ﬂ;’i + 3 a(P)I(0, ODP)ZA D dx, T —s oo,
where a = (Dya(P)(x, Vo(x)), *», Da(P)(x, Vo(x)). Similarly we find that

()
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Tn/z(y/T)zw—uZ L %D"u.,(x)lzez"“'(‘)dx

amist-1/

= X ke de

w1/ M
O N Ll S p——

where 24(x) = 37 wilx) — Imog(x)fy, gie(x) = 2°g/opx;. The last step of the formula
above follows from that [£"} % 0, for some «, Jaim| = 1 — 1/ M, and that

€2 == tz“"’”“? K7/ £,
We therefore obtain the inequality

(2.6) [C12M-D § 1p(x) 280 gy

= K fil<xa> J&%—)— + ‘Z a(P)V)0, C)Dﬂ(x){zeu(")dx,

if (0.1) holds. Since [¢%y*M~2~<#4>) i5 (p 1) — homogeneous of degree 2(M — 2) with respect
to (§, v) when laim| = 1 — 2/M, it follows that

" L 1 N
N R S N R A

ami-1-2/M

= [¢ y]aM-2),
Therefore we obtain from (0.2) the inequality
@7)  [PM-D§ g(x) %™ dx
sKfl<xa> -?—();"-2- + 3 a(P)D(0, O)D(x)2PA g
+ K[E y M2yt ig(x) %P dy,

If a(P)¥0, &) = 0 for all j € J, we immediately find that (2.6) cannot hold by just taking
any ¢ with support in the neighborhood of the origin where C)! < x, 4 > /9% < [£]2M-D),
Hence o(P)Y(0, ¢) * 0 for some j € J. Now we choose a function v(x) satisfying the following

system of equations

2 o), Ouu(0) = ~a(P)p(0, ¢), k € ]
(2.8) Z 2P, Oop(0) =0, k €
2 o(P)VO, ©)ou(0) = - a(P)((0, €)

This implies ¢ = 0. It is obvious from Proposition 2.5 that

— 9] —



8 Rak —Joong Kim

(29 [PMD £ 2K 5 fop(0) - 220

x a(P)V(0, $)a(P) (0, €.
Now we have, in view of (2.8)
%, o(0)a(P)0(0, ©)a(PYP(0, €) = - 5 (Pw(0, ©)a(PYP(0, ¢).
Thus we obtain

[EPM-N< 2Ky (T, w(0)a(P)9(0, €)a(PYF(0, €).
+ - ImF o(P)w(0, PP, O,

Next we assume that (2.7) holds. When [¢]2M-1 < (,[¢, y]¥M-242 it follows as before that
o(P)¥(0, &) # 0 for some j € J. Repeating argument above, we again obtain (2.3).
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