A Duality for Contravariant Functors on the Category Ban*

Won-Kee Jeon

Department of Mathematics, Chonbuk National University, Chonju, Chonbuk 560-756, Korea.

Let Ban denote the class of all Banach spaces over the complexes C. Then there are two important categories connected with Ban.

One category Ban_∞ consists of all Banach spaces in Ban and all bounded linear maps between Banach spaces,

The other category Ban_1 has the same objects as Ban_∞ (i.e., $Obj(Ban_1) = Obj(Ban_\infty)$) and the morphisms of Ban_1 consists only of all linear contractions (i.e., bounded linear maps φ satisfying $||\varphi|| \le 1$) between Banach spaces. The category Ban_1 has the advantage that in it all limits and colimits exist ([1]).

We shall use the abbreviation "Category Ban" to mean either Ban₁ or Ban_∞ if some statements hold for both categories,

Let \underline{K} be a full subcategory of Ban, The purpose of this paper is to define a duality $D: \underline{Ban}^{\underline{K}} \longrightarrow (\underline{Ban}^{\underline{K}})^{op}$ for contravariant functors which is $\underline{admissible}$ (linear and contractive on $\underline{Hom-spaces}$) and $\underline{self-adjoint}$ on the right (Definition 4) and to prove some properties of the dualities D defined as above (Theorem 5 and 6), where

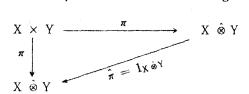
 $Obj(Ban\frac{K}{K}) =$ the class of all functors from \underline{K} to Ban and $Morph(Ban\frac{K}{K}) =$ the class of all natural transformations between functors, and \underline{K}^{op} is the opposite category of the category K.

For X, Y \in Obj(Ban) a projective tensor product of X and Y is a Banach space X $\hat{\otimes}$ Y together with a bounded bilinear map $\pi: X \times Y \longrightarrow X \hat{\otimes} Y$ such that for any bounded bilinear map $g: X \times Y \longrightarrow Z$ (an arbitrary Banach space) there exists a unique bounded linear map $\hat{\varphi}: X \hat{\otimes} Y \longrightarrow Z$ with $\varphi = \hat{\varphi} \circ \pi$ and $||\varphi|| = ||\hat{\varphi}||$ ([3], [4], [5]).

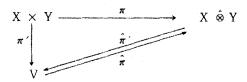
Proposition 1. If a projective tensor product exists it is uniquely determined up to isometrical isomorphisms.

^{*} This paper was supported by NON DIRECTED RESEARCH FUND, Korea Research Foundation, 1991.

Proof. Taking $Z = X \otimes Y$ and $\varphi = \pi$ we have the following commutative diagram



and thus $||\pi|| = ||\hat{\pi}|| \le 1$. Suppose that there is a second tensor product (V, π') of X and Y. Then, in the commutative diagram



 $\pi' = \hat{\pi}' \circ \pi$ and $\pi = \hat{\pi} \circ \pi'$. Since the factorization is unique, $\hat{\pi} \circ \hat{\pi}' = 1_{X \hat{\otimes} Y}$ and $\hat{\pi}' \circ \hat{\pi} = 1_{V}$. Thus

$$||\pi'|| = ||\hat{\pi}'|| \le 1$$
 and $||\pi|| = ||\pi|| \le 1$

and thus V and X $\hat{\otimes}$ Y are isometrically isomorphic. ///

Note that $X \otimes Y$ means the algebraic tensor product $X \otimes_{\mathbb{C}} Y$ over \mathbb{C} and for each $u = \sum_{i=1}^n x_i \otimes y_i \in X \hat{\otimes} Y$

$$||u||_{X \hat{\otimes} Y} = ||u||^{\wedge} = \inf \sum_{i=1}^{n} ||x_{i}|| ||y_{i}||.$$

Moreover, $X \otimes Y$ is a dense subspace of $X \hat{\otimes} Y$ with norm $\|\cdot\|^{\wedge}$ ([1]).

The set of all morphisms from X to Y in the category Ban_{∞} coincides with the Banach space H(X, Y) of all bounded linear maps from X to Y, whereas the set of morphisms Hom(X, Y) in Ban_1 consists of the unit ball $\{f \in H(X, Y) \mid ||f|| \leq 1\} \subset H(X, Y)$.

The above $\operatorname{Hom-functor} H$ is a contra-covariant bifunctor into Ban and we will often consider its covariant partial functor $H_A = H(A, -)$, the action on morphisms being given by

$$H(A, f)g = f \circ g$$
 for $f: X \longrightarrow Y$ and $g \in H(A, X)$.

and the contravariant partial functors $H^A = H(-, A)$, the action on morphisms being given by

$$H(f, A)g = g \circ f$$
 for $f: X \longrightarrow Y$ and $g \in H(Y, A)$.

For the co-covariant bifunctor $\hat{\otimes}$ defined by the projective tensor product $X \hat{\otimes} Y$ in Ban, its partial functor $X \hat{\otimes} -$ acts on morphisms by

$$(X \hat{\otimes} f) (\sum x_i \otimes y_i) = \sum x_i \otimes f(y_i)$$
 for $f: Y \longrightarrow Z$.

For Banach spaces X, Y and Z we have an isometrically isomorphism

$$H(X \hat{\otimes} Y, Z) \simeq H(X, H(Y, Z))$$

where $\hat{\varphi} \longleftrightarrow \varphi$ with $\varphi(x)(y) = \hat{\varphi}(x \otimes y)$ for $x \in X$ and $y \in Y$.

Therefore the contravariant functor H² is adjoint on the right to itself, that is,

$$H(X, H(Y, Z)) = H(X \hat{\otimes} Y, Z) = H(Y \hat{\otimes} X, Z)$$

= $H(Y, H(X, Z)).$

In particular, H^Z transforms colimits into limits in Ban_1 , a special case being $(\varinjlim X_d)' = H(\varinjlim X_d, \mathbb{C}) = \varinjlim (X_d, \mathbb{C}).$

Proposition 2. If a functor $F: Ban \longrightarrow Ban$ commutes with colimts, then $F(-) = (-) \hat{\otimes} F(\mathbb{C})$. On the other hand, if a contravariant functor $G: Ban^{op} \longrightarrow Ban$ transforms colimits into limits, then $G(-) = H(-, G(\mathbb{C}))$.

Proof. Let $\{X_s \mid s \in S\}$ be a family of Banach spaces, where S is an arbitrary index set. If the product of this family exists, then it is also a Banach space ([1]) and denoted by $\prod_{s \in S} X_s$. If $X_s = X$ for all $s \in S$, then we put $\prod_{s \in S} X_s = I_S^{\infty}(X)$. In particular, if $X = \mathbb{C}$ then we put such that

$$I_{S}^{\infty}(X) = I_{S}^{\infty}(\mathbb{C}) = I_{S}^{\infty}.$$

We use the notation

$$I_{S}(X) = I_{S}^{1}(\mathbb{C}) = I_{S}^{1}$$

for the coproduct of a family $\{X_S | s \in S\}$ of Banach spaces,

We have to note that every Banach space X may be represented as a colimit of space I_n^1 , i.e., $X = \varinjlim_n I_n^1$ which is naturally in X, where n is a positive integer ([1], [3]). Then we have the following:

$$\begin{split} F(\mathbf{x}) &= F(\varprojlim I_n^1) = \varprojlim (F(I_n^1)) \\ &= \varinjlim (F(\mathbb{C} \oplus \cdots \oplus \mathbb{C}) \text{ (n-times)} \\ &= \varinjlim (F(\mathbb{C}) \oplus \cdots \oplus F(\mathbb{C})) \text{ (n-times)} \\ &= \varinjlim (\mathbb{C} \ \hat{\otimes} \ F(\mathbb{C}) \oplus \cdots \oplus \mathbb{C} \ \hat{\otimes} \ F(\mathbb{C})) \text{ (n-times)} \\ &- 61 - \dots \end{split}$$

$$= \lim_{n \to \infty} (I_n^1 \ \hat{\otimes} \ F(\mathbb{C}))$$

$$= \lim_{n \to \infty} I_n^1 \ \hat{\otimes} \ F(\mathbb{C}) \ (X \ \hat{\otimes} - \text{ commutes with colimits})$$

$$= X \ \hat{\otimes} \ F(\mathbb{C}).$$

$$G(X) = G(\lim_{n \to \infty} I_n^1) = \lim_{n \to \infty} G(I_n^1) = \lim_{n \to \infty} I_n^{\infty} (G(\mathbb{C}))$$

$$= \lim_{n \to \infty} H(I_n^1, G(\mathbb{C}))$$

$$= H(\lim_{n \to \infty} I_n^1, G(\mathbb{C})) \ (by the property of H)$$

$$= H(X, G(\mathbb{C})). / / /$$

For two functors F and F_1 from Ban to Ban a natural transformation $\alpha: F \longrightarrow F_1$ is a family of morphism $\alpha_X: F(X) \longrightarrow F_1(X) \in Morph(Ban)$ satisfying the commutative diagram

$$F(X) \xrightarrow{\alpha_X} F_1(X)$$

$$F(f) \downarrow \qquad \qquad \downarrow F_1(f)$$

$$F(Y) \xrightarrow{\alpha_Y} F_1(Y)$$

for a morphism $f: X \longrightarrow Y$ in Morph(Ban) and farthermore

$$||\alpha|| = \sup_{X \in \text{Obj}(Ban)} ||\alpha_X|| < \infty.$$

By Nat(F, F_1) we means the Banach space of all natural transformations $F \longrightarrow F_1$ with coordinate—wise operators.

The unit ball of Nat(F, F₁) is the set of all natural transformations $F \longrightarrow F_1$ for functors F, F₁: Ban₁ \longrightarrow Ban₁.

Lemma 3. For functors $F: Ban \longrightarrow Ban$ and contravariant functor $G: Ban^{op} \longrightarrow Ban$ we have

$$Nat(H_A, F) = F(A)$$
 and $Nat(H^A, G) = G(A)$,

for all Banach space A.

Proof. For each $\varphi \in \text{Nat}(H_A, F)$ we have a morphism $\varphi_A : H(A, A) \longrightarrow F(A)$. Then for $1_A \in H(A, A)$, $\varphi_A(1_A) = f_A \in F(A)$.

Thus we define

$$\eta: Nat(H_A, F) \longrightarrow F(A)$$

by
$$\eta(\varphi) = \varphi_A(1_A) = f_A$$
.

On the other hand, η^{-1} is defined by

$$\eta^{-1}(f_A)_X : H(A, X) \longrightarrow F(X)$$

$$\psi \qquad \qquad \psi$$

$$f \longrightarrow \eta^{-1}(F_A)_X(f) = F(f)f_A$$

Then by the commutative diagram

$$\begin{array}{cccc} H(A, A) & \xrightarrow{\varphi_A} & F(A) \\ H(A, f) & & & \downarrow F(f) \\ H(A, X) & \xrightarrow{\varphi_X} & F(X) \end{array}$$

it is clear that $\eta^{-1}(f_A)_X(f) = \varphi_X(f) = F(f)f_A$.

Similarly, for each $\psi \in Nat(H^A, G)$

and for each $g_A \in G(A)$ $f^{-1}(g_A)_X(g) = G(g)(g_A)$ for $g: A \longrightarrow X$ in Morph(Ban).

Definition 4. A duality for contravariant functors in a covariant functor

$$D: Ban^{K} \longrightarrow (Ban^{K})^{op}$$

which is linear and contractive on Hom-spaces and self-adjoint on the right, i.e.,

$$\eta_{F_1F_2}$$
: Nat $(F_1, DF_2) \simeq Nat (F_2, DF_1)$

holds naturally in F_1 and F_2 via an isometric isomorphism $\eta_{F_1F_2}$ with $\eta_{F_2F_1} = \eta_{F_2F_2}^{-1}$, where K is a full subcategory of Ban.

Let $G: \underline{K}^{op} \times \underline{K}^{op} \longrightarrow Ban$ be a contra-contvariant bifunctor.

G is said to be <u>symmetric</u> if there is an isometric isomorphism $t: G(X, Y) \longrightarrow G(Y, X)$ which is natural in X and Y such that $tt = 1_G$, i.e., t is an involution.

For example, $H(-, Z_1)$ $\hat{\otimes}$ $H(-, Z_2)$: $\underline{K}^{op} \times \underline{K}^{op} \longrightarrow Ban$ is a symmetric bifunctor.

Theorem 5. Let $G: \underline{K}^{op} \times \underline{K}^{op} \longrightarrow Ban$ be a symmetric bifunctor. Then $D_G: Ban\underline{K} \longrightarrow (Ban\underline{K})^{op}$, which is defined by $D_GF(X) = Nat(F, G(-, X))$ is a quality for contravariant functor.

Proof. We have to prove that D_G is admissible and self-adjoint on the right. For a natural transformation $f: F \longrightarrow F_1$ since

$$Nat(f, G(-, X)) : Nat(F, G(-, X)) \longrightarrow Nat(F, G(-, X))$$

on Ban, we have

$$D_G(f)(X): Nat(F, G(-, X)) \longrightarrow Nat(F_1, G(-, X))$$

on $(Ban^{\underline{K}})^{op}$. Therefore D_G is a covariant functor on $Ban^{\underline{K}}$.

Since Nat is the Hom-functor of Ban-K, D_G is obviously admissible. Thus we have to prove that D_G is adjoint to itself on the right.

$$\begin{aligned} \text{Nat}(F_1, \ D_GF_2) &= \ \text{Nat} \ (F_1(X), \ D_GF_2(X)) \\ &= \ \text{Nat} \ (F_1(X), \ \text{Nat} \ (F_2(Y), \ G(Y, \ X)) \\ &= \ \text{Nat} \ (F_1(X) \ \hat{\otimes}_{\, Y} \ F_2(Y), \ G(Y, \ X)) \\ &= \ \text{Nat} \ (F_2(Y) \ \hat{\otimes} \ F_1(X), \ G(X, \ Y)) \\ &= \ \text{Nat} \ (F_2(Y), \ \text{Nat} \ (F_1(X), \ G(X, \ Y))) \\ &= \ \text{Nat} \ (F_2(Y), \ D_GF_1(Y)) \\ &= \ \text{Nat} \ (F_2, \ D_GF_1) \ . \ \ / \ / \ / \end{aligned}$$

Theorem 6. We have a one—to—one correspondence between dualities D on Ban K for contravariant functors and contra-contravariant symmetric functors $G: \underline{K}^{op} \times \underline{K}^{op} \longrightarrow Ban$.

Thus our duality D has the form D_G of Theorem 5.

Proof. Let D be a duality for contravariant functors. For X, Y ∈ Obj(Ban) we define

$$G^{D}(X, Y) = DH^{Y}(X)$$

It is clearly a contravariant functor in X and since $g: Y_1 \longrightarrow Y_2$ define a natural transformation

$$H^2: H^{Y_1} \longrightarrow H^{Y_2}$$

on $Ban \frac{K}{L}$, we have

$$G^{D}(X, g): DH^{Y_{z}}(X) \longrightarrow DH^{Y_{1}}(X)$$

on $(Ban\underline{K})^{op}$. Thus, $G^D(X, -)$ is a contravariant functor. Moreover, since $DH^Y \in Obj(Ban\underline{K})^{op}$, for each morphism $f: X_1 \longrightarrow X_2 \in Morph(Ban)$

$$DH^{Y}(f): DH^{Y}(X_{2}) \longrightarrow DH^{X}(X_{1}),$$

and thus $G^D(f, Y): G^D(X_2, Y) \longrightarrow G^D(X_1, Y)$. That is, G^D is a contra-contravariant bifunctor satisfying the commutative diagram:

for $f:\, X_1\,\longrightarrow\, X_2$ and $g:\, Y_1\,\longrightarrow\, Y_2$.

By Lemma 3 we have

$$G^{D}(X, Y) = Nat(H^{X}, DH^{Y})$$

= $Nat(H^{Y}, DH^{X})$ (D is self-adjoint)
= $DH^{X}(Y)$ (by Lemma 3)
= $G^{D}(Y, X)$

Hence G^D is symmetric and natural in X and Y.

On the other hand, we have $G^D=G$ for each symmetric bifunctor G on $\underline{K}^{op}\times\underline{K}^{op}$, because of that

$$G^{D_6}(X, Y) = D_G H^Y(X)$$
 (by the above definition)
= Nat(H^Y, G(-, X)) (by Theorem 5)
= G(Y, X) (by Lemma)
= G(X, Y) (G is symmetric)

Moreover, $D_{G^p} = D$ because of that

$$D_{G^D}F(X) = Nat(F, G^D(-, X))$$
 (by Theorem 5)
 $= Nat(F, DH^X)$ (by the above definition)
 $= Nat(H^X, DF)$ (D is self-adjoint)
 $= DF(X)$ (by Lemma 3)
 $-65-$

Therefore $D \longleftrightarrow D_G \longleftrightarrow G$ and thus we complete our proof.

111

References

- [1] J. Cigler, V. Losert and P. Michor: Banach Modules and Functors on Categories of Banach Spaces, Marcel Dekker, INC. (1979).
- [2] E. J. Dubuc: Kan Extensions in Enriched Category Theory, Springer Lecture Notes 145 (1970).
- [3] C. Herz and J.W. Pelletier: Dual Functors and Integral Operators in the Category of Banach Spaces, Preprint, Vienna, (1973).
- [4] J.W. Negrepontis: Duality of functions on Categories of Banach spaces, J. Pure Appl. Algebra 3 (1973) pp. 119~131.
- [5] K. L. Pothoven: Compact functors and their duals in Categories of Banach Spaces, Trans. AMS 155 (1971) pp. 148~159.