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Let Ban denote the class of all Banach spaces over the complexes €. Then there are two important
categories connected with Ban,

One category Ban,, consists of all Banach spaces in Ban and all bounded linear maps between
Banach spaces.

The other category Ban, has the same objects as Ban, (ie, Obj(Ban)) == Obj(Bans)) and
the morphisms of Ban, consists only of all linear contractions (i.e, bounded linear maps ¢ satisfying
llell = 1) between Banach spaces. The category Ban, has the advantage that in it all limits and
colimits exist ([11).

We shall use the abbreviation “Category Ban” to mean either Ban; or Ban,, if some statements
hold for both categories,

Let K be a full subcategory of Ban, The purpose of this paper is to define a duality
D: BanK —s (BanK)® for contravariant functors which is admissible (linear and contractive
on Hom-—spaces) and self -adjoint on the right (Definition 4) and to prove some properties of
the dualities D defined as above (Theorem 5 and 6), where

Obj(BanX) = the class of all functors from K to Ban and Morph(BanX) = the class of
all natural transformations between functors, and K is the opposite category of the category
K.

For X, Y € Obj(Ban) a projective tensor product of X and Y is a Banach space X ® Y together
with a bounded bilinear map #: X X Y -— X ® Y such that for any bounded bilinear map
g: X X Y —» Z(an arbitrary Banach space) there exists a unique bounded linear map
: X 8Y — Zwithg =9on and ligh = ligll ([3], (4], [5]).

Proposition 1. If a projective tensor product exists it is uniquely determined up to isometrical
isomorphisms.
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Proof. Taking Z = X ® Y and ¢ = = we have the following commutative diagram

X xY i - X ®Y
'3 ,/
l /f»/f/\/x@*
A Lo
X®Y
and thus |}l = !m{l < 1. Suppose that there is a second tensor product (V, =*) of X and Y.
Then, in the commutative diagram
X xY a > X ®Y
" /
T
v =
n’ = n’or and ® = mor’, Since the factorization is unique, mex~ = lygy and x‘er = 1,. Thus
el =l £ 1 and il = S 1

and thus V and X ® Y are isometrically isomorphic. /77

Note that X ® Y means the algebraic tensor product X ®¢ Y over € and for each u = i}
X ® y; € X é Y

lulixey = Hull®™ = inf 3 lixill iyilt .

Moreover, X ® Y is a dense subspace of X ® Y with norm || 1[I ([1]).

The set of all morphisms from X to Y in the category Ban,, coincides with the Banach space
H(X, Y) of all bounded linear maps from X to Y, whereas the set of morphisms Hom(X, Y)
in Ban; consists of the unit ball {f € H(X, Y)! [ifll = 1} ¢ H(X, Y).

The above Hom ~functor H is a contra—covariant bifunctor into Ban and we will often consider

its covariant partial functor Hy = H(A, --), the action on morphisms being given by
H(A, f)g = fog for f: X — Y and g € H(A, X},

and the contravariant partial functors HA = H(-, A), the action on morphisms being given by
H(f, A)g = gof for f: X — Y and g € H(Y, A).

For the co-—covariant bifunctor ® defined by the projective tensor product X ® Y in Ban, its
partial functor X® — acts on morphisms by
— G0 —
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(X ®H)(Tx; ® y) = ox ® fly;) for f:Y —» Z
For Banach spaces X, Y and Z we have an isometrically isomorphism

H(X ® Y, Z) = H(X, H(Y, Z))

where ¢ < ¢ with ¢(x) (y) = ¢(x ® y) for x € Xandy € Y.

Therefore the contravariant functor HZ is adjoint on the right to itself, that is,

H(X, H(Y, Z)) = HX ® Y, Z) = H(Y ® X, Z)
= H(Y, H(X, 2)).

In particular, H? transforms colimits into limits in Ban,;, a special case being (lim Xy) * =
H(lim X, €) = lim (Xy, €).

Proposition 2. If a functor F: Ban —> Ban commutes with colimts, then F(—) = (-) &
F(C). On the other hand, if a contravariant functor G : Ban® — Ban transforms colimits into

limits, then G(—) = H(-, G(€)).

Proof. Let {Xs| s € S} be a family of Banach spaces, where S is an arbitrary index set.
If the product of this family exists, then it is also a Banach space ([1]) and denoted by SIEISXS.
If X, = X for all s € §, then we put SgSXS = Ig' (X). In particular, if X = € then we
put such that

IFX) =€) =15
We use the notation
I(X) = L(©) = 1§

for the coproduct of a family {Xg| s € S} of Banach spaces,

We have to note that every Banach space X may be represented as a colimit of space I,l,
ie, X = lm I} which is naturally in X, where n is a positive integer ([1], [3]). Then we have
the following :

F(x) = F(limI}) = lim (F(I}))

lim F(€C & -+ ® C€) (n—times)

lim (F(C) & - @ F(C)) (n-times)

= lim (€ @ F(C) & - & € & F(t)) (n—times)

— ]

I
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= lim ([, & F(C))
=lm[, & F(C) (X &~ commutes with colimits)
=X @ F(0).

G(X) = G(iml}) = imG(L) = lim 2 (G(C))

lim H(I, G(©))

= H(lim I}, G(€)) (by the property of H)

= H(X, G(©)). /77

For two functors F and F; from Ban to Ban a natural transformation a : F ~—» F| is a family
of morphism ax : F(X) — Fi(X) € Morph(Ban) satisfying the commutative diagram

F(X) X > Fi(X)
Fo)| | P
F(Y) b > F(Y)

for a morphism f: X —s Y in Morph(Ban) and farthermore

el = tlagll < oo,

= sup
X € Obj(Ban)

By Nat(F, F;) we means the Banach space of all natural transformations F —> F; with coordinate — wise
operators,

The unit ball of Nat(F, F)) is the set of all natural transformations F ——» F; for functors
F, Fl S Banl — Ban;.

Lemma 3. For functors F: Ban —s Ban and contravariant functor G : Ban® —» Ban we
have

Nat(H,, F) = F(A) and Nat(H? G) = G(A) ,

for all Banach space A.

Proof. For each ¢ € Nat(Ha, F) we have a morphism g5 : H(A, A) —s F(A). Then for
IA € H(A, A), ¢A(1A) = fA € F(A)
Thus we define

7: Nat(Hp, F) —— F(A)

— 2 —
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by #(9) = ea(la) = fa .
On the other hand, 77! is defined by
7 Y (fa)x : H(A, X) ——— F(X) .
il : 1]
f ———— 7} (Fa)x(f) = F(D)f4 .

Then by the commutative diagram

H(A, A) Fa » F(A)
H(A, f) i F(f)
H(A, X) L. > F(X)

it is clear that 77 1(fo)x(f) = ex(f) = F(f)f, .
Similarly, for each ¢ € Nat(HA, G)

¢: Nat(HA, G) ——— G(A)
w ' w

$ > $a(14)

and for each g4 € G(A) € Mga)x(g) = G(g)(ga) for g: A — X in Morph(Ban).
/77

Definition 4. A duality for contravariant functors in a covariant functor
D: Bank — (BanK)®
which is linear and contractive on Hom-spaces and self —adjoint on the right, ie,,
7er, : Nat (Fy, DF;) = Nat (Fy, DF;)

holds naturally in F; and F, via an isometric isomorphism #pg, with 755, = wpp,~!, where K
is a full subcategory of Ban.

Let G: K® x K% — Ban be a contra—contvariant bifunctor.

G is said to be symmetric if there is an isometric isomorphism t : G(X, Y) —» G(Y, X) which
is natural in X and Y such that tt = 1g, ie, t is an involution,

For example, H(—, Z;) ® H(—, Z;) : K% x K% —» Ban is a symmetric bifunctor,
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Theorem 5. Let G: K® X K® — Ban be a symmetric bifunctor. Then Dg: BankE —
(BanX.)*® which is defined by DgF(X) = Nf(lt (F, G(—~, X)) is a quality for contravariant functor,

Proof. We have to prove that Dg is admissible and self —adpint on the right. For a natural

transformation f: F — F since
Nat(f, G(—, X)) : Nat(F, G(~, X)) — Nat(F, G(~, X))
on Ban, we have
Dg(f)(X) : Nat(F, G(—, X)) — Nat(F,, G(~, X))

on (BanK.)® Therefore Dy is a covariant functor on Ban¥,
Since Nat is the Hom—functor of BanX, D is obviously admissible, Thus we have to prove
that D¢ is adjoint to itself on the right, '

Nat(F;, DgFy) = N)?t (F(X), DgFy(X))

= Ngt (F(X), N\?;It (F(Y), G(Y, X))

i

Nat (Fy(X) ®y Fy(Y), G(Y, X))

f

N{jt(Fg(Y) ® Fi(X), G(X, Y))
= N‘?t(FZ(Y), Ngt(F‘,(X), G(X, Y)))
= Ngt (Fo(Y), DgFy(Y))

= Nat (Fy, DgF)) . /77

Theorem 6. We have a one—to—one correspondence between dualities D on BanX. for contravariant
functors and contra—contravariant symmetric functors G: K® x K® -— Ban,
Thus our duality D has the form Dg of Theorem 5.

Proof. Let D be a duality for contravariant functors, For X, Y € Obj(Ban) we define
GP(X, Y) = DHY(X).
It is clearly a contravariant functor in X and since g: Y, —» Y, define a natural transformation
H?: HY —s HY: |

— 64 ~—
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on BanX, we have
GP(X, g) : DHY(X) —s DHY(X)

on (BanK)® Thus, GP(X, —) is a contravariant functor. Moreover, since DHY € Obj(BanX)®,
for each morphism f: X; — X, € Morph(Ban)

DHY(f) : DHY(X;) — DHX(X,),

and thus GP(f, Y) : GP(X,, Y) — GP(X,, Y). That is, G is a contra—contravariant bifunctor
satisfying the commutative diagram :

GP(X,, g)

GP(Xy, Y2) > GP(Xy, Yy)
o, ¥y | © j o, Y)
D
GY(X,, Yy) G (%, &) GP(Xy, Ya)

for f: X; — Xyand g: Y| — Y, .
By Lemma 3 we have

GP(X, Y) = Nat(H*, DHY)
= Nat(HY, DHX) (D is self ~adjoint)
= DHX(Y) (by Lemma 3)
= GP(Y, X)

Hence GP is symmetric and natural in X and Y.
On the other hand, we have GP = G for each symmetric bifunctor G on K® X K® , because
of that

il

GP(X, Y) = DGHY(X) (by the above definition)
Nat(HY, G(—, X)) (by Theorem 5)
= G(Y, X) (by Lemma)

= G(X, Y) (G is symmetric)

il

Moreover, Dg» = D because of that

I

Nat(F, GP(—, X)) (by Theorem 5)
= Nat(F, DH¥) (by the above definition)
Nat(HX, DF) (D is self —adjoint)

= DF(X) (by Lemma 3)
— 65—
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Therefore D «— Dg «—> G and thus we complete our proof. /7
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