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1. Introduction

Let M be an n—dimensional Riemannian manifold with nonnegative Ricci curvature and @ be
a bounded domain of M with boundary.

We consider the equation

(LD div( |[VulP2vu) + Mu) =0in 3, p > 1,1 >0
u = 0 on Al

We shall only consider sufficiently smooth solutions. The set of values A, for which (1. 1) has
a positive solutions, is called the spectrum,

The spectrum is an interval (A,, A*), where 0 £ A, < A* £ oo and the end points A, and
A* may or may not belong to the spectrum. In linear case, f(u) = |u/? % is exceptional : then
A, = X', Another important distinction to be made is between the “forced case™ f(0) > 0 and
the “unforced case” f(0) = 0. The operator A, with p * 2 arises from a variety of physical
phenomena, Recently, the eigenvalue problems of A, with indefinite weight with respect to Dirichlet
boundary condition were investigated by Otani and Teshima [4] and Anane[1). We refer to [2],
[3] for more reference and for other aspects of A,

Sperb [6] obtained the spectrum of the equation Au + Af(u) == 0 on Euclidean space. The
purpose of this paper is to show that the spectrum of the equation &u + Af(u) = 0, p 2 2
can be obtained on Riemannian manifold, We will use the summation convention for both kinds

of indices,
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2. The Auxiliary —Function for Solutions of Au + Af(u) = 0

Proposition 2.1. Let M be an n—dimensional Riemannian manifold and Q be o bounded domain

of M and u be a sufficiently smooth solution of the equation

2.1 div(v(q)Vu) + wig)f(u) =0, ¢ = Vufin Q.
If

G = S‘:_,U_i'f_!z__s_ ds + a§,fly)dy,
then

8G + 22 wuyGl + LGy 2 (@ — (e + 29074
+ T (o + 20— wife) + AR o g,
Proof. In local coordinate (x), x5, -+, x,), the Riemannian metric is given by g = gydx'ds’. Throughout

this proof a comma followed by a subscript will denote a covarient derivative, whereas superscripts

will be used for contravarient derivatives, We can see that, for each &,

(2.2) Cp = (EEEL ), + afu, ., and
(2.3)
AG = G}
_ (39'+w20 g wiv :220 q) ) dupthutuy + 2(-&1—-;02“’2’— Yuu g

+ 2o EH iy &t aftu + of (w)g.

where v = v(q), w = w(q), f = flu), and primes will denote derivatives with respect to the

corresponding arguments,

k we use the Ricci identity :

In order to eleminate the term w'uy -
(Z 4) gk ko= (AU)J + u“Rﬁ.

We can write (2. 1) as
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(2.5) du= - By, - By

We differentiate (2.5) with respect to x and multiply by «*

(2.6)
(Bu) wt = Lo q,(-@—’- uptu; + 2 et - - q 't
4 v oy T v v Sl
" - -
- —2"“ wttug — “Z"E— up® gyt
_ & k. — W’ qft = L frup
PR v v’

Substituting (2. 4) into (2.3) and using (2.5) and (2, 6), we obtain that

2.7
AG + 2‘%’" u’u,kC_kj = Z(ﬁ%ﬁ" )u“kw‘"

+ 4«,,u-**ufu,k{3"’+‘20"9 _ w(v+220’q) _ plotage)

w w ot
2 ;1 3(v)* 2qv’p " (2qv” +v)v'w’
A 2
+ Blugu'u,)” | oo T o t
()2 —op” , \ , kil 0w’
+ e (o + 2gu W+ (o + 2q0 Juute . (T *T)

+ of (w)g ~ g OTR) L ap g o0 oy (2R o gy

We now apply the schwarz’s inequality in the form

(2.8) ugwtupd 2 uptulug.
Furthermore, from (2. 2), the following identities hold

(2.9) gty =

_._owfg
5o+ 2q07) T MGk

(2.10) Sg V2 ____“wlq_..}z

(u.ik“ “,k) { 2(0 + 2qv ) + Bkc,k
. @ .
(2.1D) u"u"kw‘ujk = {.2_(.;_*"2’1.__} %07 ‘g + CiGy

where the terms Ay, B;, C; need not be determined explicitly. Combining (2. 7) with (2.8)~
(2.11), we are led to
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8G + 22° updGi + LiGx 2 (a ~ D) il + 20) %L

2 .
+ 58 @) - w2 R
where the term L; is singular at the point where Vu = (,

Lemma 2.2. Let M be an n—dimensional Riemannian manifold with nonnegative Ricci curvature.
Let ) be a bounded domain of M and the mean curvature of K} be positive. Let f be an increasing
Sunction such that f(s) 2 0, for s > 0 and let u be a solution of the equation

-2 4 Y
div(¢T7 vu) + Mu) = 0in 0, ¢ = [vull, A > 0, p > 0.
(2.12)
u=0 on A
then

c= L2 ;1) qg' + 2§, fly)dy

has a maximum at Vu = (.

Proof. By Proposition 2.1 and maximum principle [5], G has a maximum at vu = ( or at

boundary point of (3, We assume that G has a maximum point x; on 2. We may choose an

orthonormal frame field e, ey, -+, €, = —;—- at x; where v is the unit outward normal vector. Then

05 L () =2 251 G 2y g g2

v
In addition on a0, (2.12) can be written as

(2.13) (r - g7 (2 )%éﬁ—) + ot B+ Mw) = 0.

Let M, be a mean curvature at x;, It is well known that, [6]

(2.14) Ay = Dgu + (n ~ 1)MO% + ?;}2‘— = (n - l)Mnf:,‘!‘ + ‘Z‘,’g‘

at x; Substituting (2. 14) into (2. 13), we obtain

du _ —(n-DMy o M) 2
» (p-1 Y Lo
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Hence it holds that

2(n - 1) M‘)q'r‘ <0

2G
—;7(:(,)=-— 1 Z

’I‘hereforewehave,%%—-(xo)=0,If-§-(xo)zOth’enq=0at:0,HemeGhasamaximmn

at Vu = (.

3. Main Theorems

Theorem 3.1. Let M be an n~—dimensional Riemannian manifold with non—negative Ricci curvature.
Let Q be a bounded domain of M and the mean curvature of ) be positive. Suppose that

WEANNPLN
(a) ET(T)“—‘ %,Hf(s) =l > 0,
and f is a positive increasing function for s > 0, f(0) = 0,

(b) inf,soH(s) = Hy with H(s) = §,(F(s) — F(t))~ ,414 dt, %—f— = f(s).

If u is a positive solution of the equation (2. 12) then

rzaz 2ol By s
where d is the radius of the largest geodesic ball contained in Q.

Proof. We define a function G(x) = lf—l’—ii g% + 2§ f(y)dy where g = | vu 2. By Lemma
2.2, G has a maximum at Vu = 0, Then

cw = HEAL gF 4 2((fldy < 2F(up)

where u,, = max,epu(x). This inequality can be written as

2.15 [V | Ap L
(215) (F(up) ~ F(u))'/? = (pml e

Let x, be the point where u = u,, and x a point on a0 nearest to x, in geodesic distance, Let
y be a geodesic joining a point x; to a point ¥ and parametrized by arc length, Since
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§,0vids = Syw-%dsz Syd(“(ds(” - ds = {,du,

we have

- d 1
H(um) = SO (F(um)__:‘(“)}l/p = (lpgl )pd.

In particular, it follows that Hy = infoH(s) = ( —;éf—i— )',l,”d. Since f is increasing, we have for

s > t, F(s) — F(t) = f(s)(s — t) so that

g1

dt P
p—1"f(s)

TFH=FO)T

H(s) = § = )71? > 0.

Because of our assumption in (a), we see that Hy > 0, and clearly we must have 2 2 1, =2

p—-1,H
(B2 >0

Corollary 3.2. Let M and { satisfy the assumptions of Theorem 3.1 and u be a solution of the
equation (2. 12) with f is an increasing function for s > 0 and f(0) > 0. Then A 2 &, = (.

Proof. In proof of Theorem 3.1,

sl

) d P L
S”(F(s)-"F(t))r/"?2 p—1 (f(s) ) = 0.

H(s) =

Hence Hy = inf,oH(s) = 0 and A 2 0.

Theorem 3.3. Let M be an n—dimensional Riemannian manifold with nonnegative Ricci curvature.
Let O be a bounded domain of M and the mean curvature of A} be positive. Let f be an increasing
function and f(s) > 0 for s 2 0.

Then equation (2. 12) has a positive solution for A € (0, A*) and

* ..._2_..... p-ld=p o .L?-p—:.l-
A2 ST s
where d is the largest radius of geodesic ball contained in 0,

Proof. If u_ = 0, then, in (2.12), Af(u) = 0. Hence u_ is a subsolution of (2. 12). Let ¢
be a solution’ of the equation
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div(jwgP2vg) +1 =0 in 8, ¢ =0 on a0
Define u by cp, where ¢ is constant. Let #,, be the maximum value of $(x) in 0. Since

div(i vu P7AVu) + M(uw) = div(e ! V9 PEop) + Af(ed)

. ~1
If —cp-1 + lf(@m) < (0, then u is a super solution of (2. 12). Hence, for A = f(c; )’ the

— - .
equation (2.12) has a solution, Using Proposition 2.1 we see that ¢, < -P-—’D—Ld”"‘. Hence it holds

that

i el

P
) fet =t d7T)

Let s = cl’—g-—l- d7T. Then

o1 Sv—l(__ll._ yw-lg-#
s p -1
2
f(qu) f(s)

In the case of

-1
A —L _ye-14-» el
SGTTrT I w o
the equation (2. 12) has a positive solution and
* P14~ .:?f:.l_
A ?,(p__l) d"sg% oy

Remark. In case that M is an n—dimensional Euclidean space and p = 2, Sperb[6] obtained

that A* 2 %Sﬂpwo’}‘(%’ .

Corollary 3.4. Let M, O, H, and f satisfy the hypothesis of theorem 3.1. Then the equation
(2. 12) has a positive solution for A € (X, A*)

p=1 (H © 2 (=B pldP sup
where A, 2 - (- >0andA g(p_l)” d SUP>0 Y

Proof. By the same method that we used in theorem 3.3, we obtain that
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. P -y i
A z(p_l)” d”guopf(s) .
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