Phenobarbital 전처리가 사염화탄소 급성중독 환자의 간세포의 구조에 미치는 영향

영남대학교 의과학대학 병리학교실
변영수・남혜주・김미진・김동석・최원희・이태숙

서 론

가장 용 및 산업용 용제로 사용되어 왔던 사염화탄소는 최근 그 독성 때문에 사용이 현저히 감소되었으나 11 여전히 우리 생활에서 접촉할 기회가 많아 중독 사고가 드물지 않은 화학약품이다. 여러 종류의 동물에 사염화탄소를 투여하였을 때 간 소염의 중심단체 피사가 생기는 것은 이미 입증된 사실이다. 또 장기간 투여시 간경화증과 간암이 생긴다는 보고도 있다 12). 사염화탄소가 간독성을 나타내려면 내형질막의 cytochrome P-450 system에 의해 대사 활성화되어야 한다 15. 그래서 microsomal hydroxylation enzyme의 기능을 향진시키는 약물, 예를 들면 phenobarbital(PB), DDT 등에 의해 더 심해진다고 한다 16. 또 사염화탄소 투여시 가장 틀고 심한 세포질의 변화는 내형질막 혹은 시름체에 나타난다고 한다 17. 사염화탄소에 의한 간 피사성 병변과 PB 전처리에 의한 피사성 병변의 증강에 대한 많은 연구들이 있으나, 사염화탄소에 의해 주로 손상 받는 소기관인 내형질막과 시름체의 변형에 있어서 형태학적인 양상과 그 초기 변화에 대한 연구는 비교적 미미한 실정이다. 사염화탄소에 의해 치사성 손상을 받은 세포에서 나타나는 대부분의 세포질 병변은 독소에 의한 초기의 아치사상 손상에 의한 이차적 반응으로 비특이적인 소견이 나타나고, 이 독물질에 의한 특수 효과는 초기에 나타난다.

저자는 사염화탄소 투여시 간에 나타나는 구조적 변화를 제시하고, 또 PB의 미소체의 약물 대사 효소의 유도 물질로서 사염화탄소의 대사 투진시키는 작용을 하므로, 사염화탄소에 의해 일어나는 간의 형태학적 변화에 PB가 미치는 영향을 관찰하기 위해, 투여 실험동물로 사용하여 PB만을 투여한 군, 사염화탄소만을 투여한 군, 그리고 PB로 전처리한 후 사염화탄소를 투여한 군으로 나누어 각 군간의 변화에 대해 생학 현미경으로 관찰하였다. 또 사염화탄소의 주된 작용 대상인 내형질막과 시름체의 변화를 조사하기 위해 피사가 생기기 전의 초기에 내형질막과 시름체에 나타나는 변형의 양상과 정도를 관찰하고, 여기에 PB가 이들 소기관에 미치는 영향을 조사하기 위해 전자 현미경으로 관찰하였다.

재료 및 방법

실험동물 및 약물: 실험동물은 체중 150gm
내외의 Sprague-Dawley종의 수컷 쥐를 실험에 사용하였다. 본 실험에 사용된 사염화탄소는 일본 신소료공업주식회사제이며, PB는 대일제약주식회사의 투여일주사용제제를 사용하였다.

실험동물의 약물처리: 실험군은 PB 단독 투여군(PB group), 사염화탄소 단독 투여군 (CCl₄ group), PB+CCl₄ 투여군(PB-CCl₄ group)의 3군으로 나누었으며, 먼저 PB군은 PB를 체중 kg당 100mg의 용량을 복강내 주입하였다. CCl₄군은 체중 kg당 0.4mg의 사염화탄소를 olive유에 20%로 혼합한 복강내 주입하였다. PB-CCl₄군은 PB를 체중 kg당 100mg 먼저 주입하고, 24시간 뒤에 사염화탄소를 체중 kg당 0.4mg 투여하였다. 모든 군은 마지막 약물 투여후 6, 12, 24, 48, 72, 120시간에 각각 도살하였다. 실험동물은 각 군에서 2마리씩 회 생시켜 검사하였다.

조직 표본 작성 및 관찰: 광학 현미경적 검 색을 위해서는 도실후 즉시 체취한 간을 10% 중성 formalin에 고정시킨 뒤 paraffin에 포매하여 hematoxylin-eosin 염색을 하여 검사하였다. 전자 현미경적 검색을 위해서는 간 조직을 체 취한 즉시 1mm³의 크기로 자르고, 2.5% glutaraldehyde 용액 (0.1 M phosphate buffer pH 7.4, 0-4°C)에 2시간 전고정한 후, 1% OsO₄ 용액 (0.1 M phosphate buffer, pH 7.4, 실온)에 2시간 동안 후고정하고, 계열 ethanol로 탈수하여 propylene oxide로 치환한 후, Luft방법8에 의 하여 포매하였다. 포매된 조직은 1µm 두께로 박테하여 toluidine blue로 염색하여 관찰부위를 결정한 후, 초박절하여 Reynolds방법9에 따라 uranyl acetate와 lead citrate로 이중 전자 염색한 후, Hitachi H-600 전자현미경으로 관찰하였다.

성 적

광학 현미경적 소견
PB 단독 투여시 특별한 소견은 나타나지 않았다.
사염화탄소 단독 투여군: 사염화탄소 투여후 6시간 경과시 소엽 중심부를 중심으로 미만성으로 분포된 경미한 microvesicular fatty change가 나타났으며, 간혼 개개의 간세포가 호산성 피사의 소견을 보였고, 간혼 부위에는 미만성으로 pale cell들이 나타났다(그림 1). 이 pale cell은 정상 간세포에 비해 약간 팽창되었고, 세포질은 미세한 파리상이었다. 12시간 경과시 소엽 중간 부위 세포들이 투명하게 팽창되어 수포성 변화를 나타내었고, 혈은 능축되었다. 24시간에 간세포의 국소성 피사가 더 심해졌고, 수포성 변화를 나타내는 투명 세포는 소엽 중간 부위에 더 도감으로 분포하였다(그림 2). 48시간체지방변성은 경미하여 거의 관찰되지 않았고, 소엽 중심부에 소엽의 약 1/3 정도를 차지 하는 대량의 피사가 나타났으며, 많은 간세포가 소실되고 단핵구 침윤을 동반하였다(그림 3). 간혼 단독으로 흡수된 pale cell들이 관찰되었으나 심하게 팽창된 투명 세포는 관찰되지 않았다. 72시간 이후 적극적인 피사가 더 이상 관찰되지 않았고 간은 거의 회복된 상태를 보

Fig. 1. Light micrograph of liver. 6 hours after CCl₄ injection. Centrilobular hepatocytes show small fatty vacuoles. Midzonal hepatocytes have pale granular cytoplasm (arrow). A few hepatocytes undergo acidophilic necrosis (arrow head). ×400
여두었고 Kupffer’s cell의 파형성이 나타났다. 간혹 간 세포가 소실되고 단핵구들이 침윤된 부위가 있었고 지방변성이나 pale cell은 더 이상 관찰되지 않았다.

Fig. 2. 24 hours after CCl₄ injection. Periportal hepatocytes have reticular cytoplasms. Midzonal area reveals clear ballooned hepatocytes (arrow). Centrilobular area shows spotty necrosis (arrow head). x100

Fig. 3. 48 hours after CCl₄ injection. Centrilobular confluent necrosis occupies about 1/3 of the lobule. x40

PB 전처치후 사업화반소 투여군: 6시간에 증동도의 지방 변성과 불규칙하게 훼어진 pale cell들, 그리고 간혹 피사된 간세포가 나타났다 (그림 4). 12시간제 지방변성의 정도는 6시간에 유사했고, pale cell의 양은 증가되었다. 소엽 중심부에 피사된 간세포가 집단으로 나타났다. 24시간제 소엽 중심부와 중간부위에 지방변성이 나타났고, 소엽의 약 1/2을 차지하는 피사가 나타났으며 임파구 침윤이 동반되었다 (그림 5). 중간 부위에 pale cell들이 집단으로 나타났으나 미모양의 분포는 나타나지 않았다. 48시간에 거의 소엽 전체를 차지하는 광범위한 피사와 미만성의 지방변성이 나타났으며 pale cell은 더 이상 관찰되지 않았다 (그림 6). 72시간에 피사의 정도는 48시간에 비해 다소 약해진 감이 있으면서 소엽의 1/2이상을 차지하는 광범위한 피사가 지속되었고, Kupffer’s cell의 파형성이 나타났다. 120시간제 전부적인 피사는 더 이상 관찰되지 않았고 소엽 중심부에 간세포가 소실된 부위에 단핵구 침윤이 나타났으며 활발한 재생성 변화를 보여주었다.

Fig. 4. 6 hours after injection of CCl₄ in phenobarbital pretreated group. Microvesicular fatty change and midzonal pale cell change. x200

Fig. 5. 24 hours after injection of CCl₄ in phenobarbital pretreated group. Diffuse fatty change and centrilobular confluent necrosis occupying about 1/2 of the lobule. x100
Fig. 6. 48 hours after injection of CCl₄ in phenobarbital pretreated group. Massive confluent coagulative necrosis occupies almost entire lobule except for small portion of periportal area. x100

Table 1. Degree of fatty change of liver in treatment of PB, CCl₄, and PB–CCl₄, observed with light microscope

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Time(hrs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td>PB</td>
<td>−</td>
</tr>
<tr>
<td>CCl₄</td>
<td>+</td>
</tr>
<tr>
<td>PB–CCl₄</td>
<td>++</td>
</tr>
</tbody>
</table>

+: Barely discernible fatty vacuoles in medium power.
++: Readily discernible fatty vacuoles in medium power.

Table 2. Degree of necrosis of liver in treatment of PB, CCl₄, and PB–CCl₄, observed with light microscope

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Time(hrs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td>PB</td>
<td>−</td>
</tr>
<tr>
<td>CCl₄</td>
<td>+</td>
</tr>
<tr>
<td>PB–CCl₄</td>
<td>+</td>
</tr>
</tbody>
</table>

+: Individual hepatocytes or small groups of hepatocytes undergo necrosis.
++: Confluent zonal necrosis in centrolobular area.
Necrotic area occupies less than one third of lobule.
+++ : Confluent zonal necrosis in centrolobular area.
Necrotic area occupies from 1/3 to 1/2 of lobule.
++++: Confluent zonal necrosis in centrolobular area.
Necrotic area occupies more than 1/2 of lobule.
그 이후에는 관찰되지 않았다. PB-CCl4군에서는 6시간에 경미하게 나타나기 시작하여, 48시간에 가장 심한 응합성 피사가 나타났으며, 이는 72시간까지 지속되었다(표 2). Pale cell change는 CCl4군에서 6시간에 pale cell들이 단독으로 혹은 소집단으로 홀어져 있는 정도로 경미하게 나타나며, 12시간과 24시간에 심하게 나타났으며, 72시간 이후에는 관찰되지 않았다. PB-CCl4군에서는 6시간에 경미하게 나타나서, 12시간과 24시간에 중등도로 나타났고, 48시간 이후는 관찰되지 않았다(표 3). 표에서 보는 바와 같이 지방변성과 피사는 PB-CCl4군에서 더 심하게 나타났고, pale cell change는 CCl4군에서 더 강하게 나타났다.

Table 3. Degree of pale cell change of liver in treatment of PB, CCl4, and PB-CCl4, observed with light microscope

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Time(hrs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td>PB</td>
<td>-</td>
</tr>
<tr>
<td>CCl4</td>
<td>+</td>
</tr>
<tr>
<td>PB-CCl4</td>
<td>+</td>
</tr>
</tbody>
</table>

+ : Pale cells are scattered individually or in small groups mainly in midzonal area of the hepatic lobule.

++ : Intermediate state between (+) and (+++)

+++ : pale cells reveal bandlike distribution in midzonal area of the hepatic lobule.

전자현미경적 소견

PB 단독 투여군: 투여후 6시간 경피시 수포형과 완상형의 비파림성 내혈질막이 증가하였으며, 때로 작고 동근 외면차질성 물질이 관살내에 있었다. 이들은 glycogen 입자들과 밀접하게 섞여 있었고, 사립세포 사이의 간격에 미만성으로 존재하였다(그림 7). 24시간 경피시 비파림성 내혈질막의 증가는 더 심해져서 군데 군데 막어있다를 형성하였다(그림 8, 9). 이때 비파림성 내혈질막의 증가에 따라 약간의 약간 정도의 물질을 함유하는 표면이 해군한 큰 수포들이 나타났으며, 때로 사립세포 사립체동이 확장되었다.

Fig. 7. Electron micrograph of hepatocyte. 6 hours after injection of phenobarbital. SER of vesicular and tubular profile is increased and diffusely scattered. Luminal portion contains electron dense round material (arrow head).
Fig. 8. Hepatocyte, 24 hours after phenobarbital injection. Increased and clumped SER and lipid droplets.

Fig. 9. Hepatocyte, 24 hours after phenobarbital injection. Clumped SER are closely admixed with glycogen particles. Individual tubular diameter is not constricted.

Fig. 10. Hepatocyte, 3 hours after intraperitoneal injection of CCl₄. Endoplasmic reticulum is mildly dilated in diffuse fashion.

Fig. 11. Hepatocyte, 6 hours after CCl₄ injection. The hepatocyte shows severely dilated endoplasmic reticulum containing electron luculent flocculent material and occasionally dense laminated bodies (arrow head), disorganized dilated RER (arrow), and lipid droplet.
동도로 확장된 내형질막으로 채워져 있었다. 이 평창된 내형질막들은 사이에 수축되고 간질밀도가 증가된 사람체의 지방적이 나타났으며, 농축된 핵을 가졌다(그림 13). 12시간 경과시 내형질막의 뭉어리 형성이 더욱 심해졌고(그림 14) 결합. 자유 ribosome이 감소되었으며, 사람체는 부종, 수축, 혹은 사람체능의 확장할 보였다. 소염 중간부의 간세포의 수포성 공포들은 그 크기가 더 커지고 균일하지 않았으며, 그 사이에 작은 크기의 내형질막 뭉어리들이 가끔 나타났다.

Fig. 12. Hepatocyte, 6 hours after CCl₄ injection. Microbodies are increased (arrow head), some are dilated (arrow). Mitochondria show increased matri- rical density and dilatation of cristae.

Fig. 13. Hepatocyte, 6 hours after CCl₄ injection. Pale granular cells in midzonal area are almost entirely occupied by moderately dilated endoplasmic reticulum, between which are constricted mitochondria (arrow head) and lipid droplets present. Nucleus is pyknotic.

Fig. 14. Hepatocyte, 12 hours after CCl₄ injection. Clump of endoplasmic reticulum. Tubular diameter is constricted.

Fig. 15. Hepatocyte, 6 hours after injection of CCl₄ in phenobarbital pretreated group. The hepatocyte shows clumped endoplasmic reticulum (arrow head) and lipid droplets.

PB 전처치후 사염화탄소 투여군: 많은 지방적들의 출혈과 함께 내형질막과 사람체의 초기부터 심한 변성의 양상이 나타났다. 내형질막이 뭉어리로 형성되었으며, 간후 평창된 것이 나타났다. 뭉어리의 크기가 증가되었고, 관능의 반 경은 더 축소되었다(그림 15). 사람성 내형질막은 불규칙적인 배열, 분열, 확장, 결합 ribosome의 감소 등을 보여주었고, microbody와 pinocytotic vesicle가 증가되었다. 12시간에 뭉어 리로 된 내형질막의 막에 고전자달성 물질들이 축적되었고, 사람체는 심한 부종, 변형된 모양,
사립체와의 페포질을 나타냈다. 실제로 중간 부위의 pale cell에도, 수포성 콤폰이 사이에, 면어리로 된 내형질막들이 많이 나타났다(그림 16).

Fig. 16. Hepatocyte, 12 hours after injection of CCl₄ in phenobarbital pretreated group. The cytoplasm of pale cell in midzonal area is occupied with small and large hydropic vacuoles. Clumps of endoplasmic reticulum and lipid droplets are present.

고 참

사림화소소 투여시 간소염의 중심부에 피사상변이 생겼는데 그 형태학적 변화의 양상과 경도는 다른 보고들과 어느 정도의 차이점은 있으나 근본적인 결과는 유사하였다. 사림화소소의 작용 중의 간파자가 일어나는 것은 cytochrome P-450 dependent mixed function oxidase system에 의해 대사되고 활성화되어 free radical 대사물이 형성되기 때문이다. 반응성이 강한 free radical이 독성물질로서 간세포 손상을 일으킨다. 사림화소소의 최초 표적인 소기관에 대해서는 다양한 주장들이 있지만, 내형질막에서 cytochrome P-450에 의한 lipid peroxidation이 여러가지 생화학적, 형태학적 변화를 일으키는 주된 기전으로, 내형질막의 가장 빨리 손상받는다는 설이 많고, 또 사림체가 최초 표적 소기관으로 환속성이 소실되고 에너지 생성능력이 장애됨으로써 간에 여러가지 혈성의 독성 작용이 생긴다는 설도 있다.

PB은 간의 mixed function oxidase system의 유도 물질로서, 사림화소소를 투여하기 전에 PB를 투여시 사림화소소의 간독성이 증가한다고 할 보고가 있다고 한다. 본 실험에서도 PB 천저시 간의 경우에 간세포 피사가 비치지 않고 비치지지 않음을 정도로 소량일 뿐 나타나는 경미한 가역적인 변성 변화이다. 그러나 pale cell change는 천저시 간에 감소되었다. 전자 현미경 검사상 pale cell의 주된 변화는 내형질막의 수포성 폐장이었다. 간세포의 변성변화가 심해질수록 내형질막의 수포성 폐장은 감소되고 면어리 형성이 심하게 나타났다. 그러므로 pale cell change는 사림화소소에 의해 비교적 경미한 손상을 받은 세포의 변화로 해석하였다. 이 pale cell change가 평상 현미경상 피사가 심하게 진행되고 있을 때는 감소하였고, PB를 투여하여 사림화소소의 독작용이 증가한 경우에도 감소하였다.

PB는 간의 비파름성 내형질막을 증식시키고 여러가지 미소체 요소의 양을 증가시키는 반면, 그 외 다른 세포의 소기관이나 특수 효소에는 변화를 일으키지 않는다. 본 실험이도 PB투여시 주된 변화는 비파름성 내형질막의 증가이다. 그러므로 PB 투여 후 나타나는 간세포 구성요소의 증가는 사림화소소의 간독성이 증가와 밀접한 관계가 있는 것으로 생각되고 있다. 그러나 PB 천저시 간독성이 증가에 직접적으로 관여하는 인자가 비파름성 내형질막의
증가인간간의 약물대사 효소계의 증가효과인
치는 아직 불명확하다.

사염화란소 단독 투여시 가장 일찍 나타났으
며 현저한 소견은 내혈절막의 손상이었고, 그
나타나는 형태학적인 양상은 내혈절막의 막어리
형성과 수포형성이었다. 그리고 사염제의 경미
한 특성변화, 파포성 내혈절막의 변성과 거
기에 부착된 ribosome의 감소가 나타났다. PB
전처치시 내혈절막의 변성변화는 그 양상은 동
일하였으나 정도가 더 심하여, 초기부터 심하게
나타나서 내혈절막의 막에 변성되어 주기적인
막상물질의 고전자, 밀도성 물질의 축적 등,
내혈절막의 비가역적인 변화가 나타났다. 사염
제의 손상도 더 심해져 부종, 사염세포의 파괴,
기질밀도의 감소 등을 보였다. 내혈절막의 관상
집합체로 구성된 막어리는 사염화란소 단독 투
여, 혹은 PB 전처치 후 사염화란소 투여시 초기에
나타났고, 또한 PB 단독 투여시도 24시간 내에
나타났다. 이때 그 모양의 차이점을 보면, PB
단독 투여시의 개개의 세포 변역은 정상과
 거의 유사했다. 그러나 사염화란소 투여시는
세포와 수포의 집합의 정도가 더 심하여 밀집된
집단으로 나타났으며, 수축의 정도도 더 심해져
세포 변역이 감소되었다. 이로 미루어 볼 때 PB
단독 투여시의 증가된 비파포성 내혈절막의 막
어리는 비파포성 내혈절막의 중식으로 생각되
고, 사염화란소 투여시 나타난 유발된 내혈절
막의 막어리는, 심한 경우에는 여기에 무정형의
밀도 높은 축적물이 나타나는 것으로 보아, 세
판손상에 의한 변성의 양상으로 생각되었다.
여기서 변형된 내혈절막의 본체가 비파포성 내
혈절막인지 파포성 내혈절막인지에 관해서는
여러 의견이 있다. Fuse 등21)은 막어리로 된
내혈절막은 비파포성 내혈절막의 변형이라 했
고, Shinozuka22)는 파포성 내혈절막이 막성변
형에 주된 역할을 한다고 보고했다. 본 실험에
서는 특히 비파포성 내혈절막에 더 현저한 변
화가 나타난 것으로 보아 비파포성 내혈절막이
가장 먼저 손상받는 소기관으로 변형된 내혈절
막에 주된 역할을 하고 이차적으로 ribosome가
분리되고 변형된 파포성 내혈절막이 또 관여하
는 것으로 생각된다. 변형된 내혈절막의 차세한
성질과 변인 기전은, 뒤 다른 각도에서, 세
분한 간세포의 각 소기관에 미치는 사염화란소
의 독작용과, 이에 관계되는 여러 효소, 대사물
등의 생화학적 분석을 통반한 더 자세한 연구가
필요할 것으로 사료된다.

요 약

간에 피사성 변성병을 일으키는 사염화란소의
독작용이 phenobarbital로 전처리한 경우 형태
학적으로 어떤 영향을 받는가를 관찰하기 위해
 먼저 제종 kg당 사염화란소 0.4mg의 용량을
olive유에 20%로 화학하여 쥐의 복강내에 주입
하였다. 그 다음 PB 전처리에 의한 영향을 조
사하기 위해 전처리후 동량의 사염화란소를 주
입하였고 각각 투여후 6, 12, 24, 48, 72, 120
시간에 간 조직을 적출하여 형태학적으로 관찰
하여 다음과 같은 결과를 얻었다.

광학현미경하에서 사염화란소 단독 투여시 6
시간부터 소엽 중심부에 피사성 병변이 나타나
기 시작하여 48시간에 가장 심하였고, 72시간
에는 회복되는 양상을 보였다. 피사에 더하여
지방 병변, 수포성 변화가 심하게 동반되었다.
PB 전처리시 6시간부터 피사가 나타나기 시작
하여 72시간까지 지속되었으며 그 정도도 더
심해졌다. 지방병변은 사염화란소 단독투여군
보다 더 심해졌고 수포성 변화는 감소되었다.
전자 현미경하에서 사염화란소 단독 투여시
조기의 주된 변화는 내혈절막의 막어리 형성과
수포성 폐창이었고 PB 전처리시 이러한 내혈
절막의 변성 변화는 더 심하게 나타났으며 초
기부터 사염제의 심한 변화를 동반하였다.
이상의 결과로 보아 사업화단소의 간 독작용은 먼저 내형질막의 손상으로 시작하여, 이차적으로 다른 소기관에 손상이 수반되고 세포괴사가 나타나며, 이는 PB 전취치에 의해 약화될 수 있었다.

참고 문헌

Effect of Phenobarbital Pretreatment on the Hepatotoxicity of Carbon Tetrachloride in Rat

Young Soo Byun, Hae Joo Nam, Mi Jin Kim, Dong Suk Kim, Won Hee Choi, Tae Sook Lee

Department of Pathology
College of Medicine, Yeungnam University
Taegu, Korea

The purpose of this study was to evaluate the influence of phenobarbital (PB) on hepatotoxic effect of carbon tetrachloride (CCl₄) which induces centrilobular necrosis in liver. Rats were injected intraperitoneally CCl₄ dissolved in olive oil by a dose of 0.4mg/kg. For change related to PB pretreatment, rats were injected CCl₄ 0.4mg/kg after PB pretreatment. The liver samples were taken in 6, 12, 24, 48, 72, and 120 hours after CCl₄ and/or PB injection. Extracted liver tissue was examined with light and electron microscopes. The results were summarized as follows:

1. Light microscopic findings: In CCl₄ group, centrilobular necrosis developed from 6 hours after injection, was the most severe in 48 hours, and recovered after 72 hours. In addition to necrosis, fatty change and pale cell change were accompanied. In PB-CCl₄ group, necrosis occurred from 6 hours after CCl₄ injection and continued to 72 hours, and the degree of necrosis was more severe than that of CCl₄ group and pale cell change was decreased.

2. Electron microscopic findings: In CCl₄ group, the early principal change was clumping and vesicular dilatation of endoplasmic reticulum. In PB-CCl₄ group, the degenerative change of endoplasmic reticulum was aggravated and the mitochondria also revealed severe degenerative change.

According to the results, it was revealed that CCl₄ hepatotoxicity primarily began with the damage of endoplasmic reticulum, then damage of other cell organelles and cell necrosis followed, and these cytotoxic effects were aggravated by PB pretreatment.

Key Words: Phenobarbital, Carbon tetrachloride, Liver