CO2 레이저 표면경화처리된 중탄소 저합금강의 내마모 특성에 미치는 레이저 표면경화 인자의 영향

Effect of Laser Surface Hardening Factors on the Wear Resistance of Medium Carbon Low Alloy Steel Surface-hardened by Using CO2 Laser Technique

  • Park, K.U. (Department of Metallurgical Engineering, Dong-A University) ;
  • Roh, Y.S. (Department of Metallurgical Engineering, Dong-A University) ;
  • Han, Y.H. (Research Institute of Ship and Ocean Engineering) ;
  • Lee, S.Y. (Department of Metallurgical Engineering, Dong-A University)
  • 발행 : 1992.06.30

초록

This study has been performed to investigate into some effects of the power density and traverse speed of laser beam on the optical microstructure, hardness and wear characteristics of medium carbon low alloy steel treated by laser surface hardening technique. The results obtained from the experiment are summarized as follows : (1) Optical micrograph has shown that finer lath martensite is formed and the amount of undissolved complex carbides increases as the traverse speed increases under the condition of a given power density, whereas the coarsening of lath martensite and the reduction of undissolved complex carbides occur with increasing the power density at a given traverse speed. (2) Hardness measurements have revealed that as the traverse speed increases, hardness values of outermost surface layer more of less decrease under low power densities, but are uniformly distributed under high power densities, also showing that they are uniformly distributed at low traverse speeds and more or less decrease at high traverse speeds with increasing the power density. (3) The effective case depth has been found to decrease from 0.26 mm to 0.17 mm with increasing the traverse speed from 1.5 m/min to 3.0 m/min at a given power density of $25.48{\times}10^3w/cm^2$ and to increase from 0.20 mm to 0.36 mm with increasing the power density from $19.11{\times}10^3w/cm^2$ to $38.22{\times}10^3w/cm^2$ at a given traverse speed of 2.0 m/min. (4) Wear test has exhibited that the amount of weight loss of laser surface hardened specimen with respect to sliding distance at a given load increases with increasing traverse speed at a given power density and decreses with increasing power density at a given traverse speed.

키워드