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CONTINUOUS GROUPS OVER

THEIR ENDOMORPHISM RINGS

JAE MYUNG CnUNG

Let R be a ring and M be a left R-module. If M is (quasi-) injective,
then it satisfies the following conditions [6]:

(Cd Every submodule of M is essential in a direct summand of Mj
(C2 ) If a submodule A of At is isomorphic to a direct summand of

M, then A is a direct summand of M.
Also if Af has (C2 ), then it sa.tisfies the following condition;

(C3 ) If Afl and Af2 are direct summands of M such that M I n M 2 =
(0), then All EB .~f2 is a direct summand of M.

Mohamed and Bouhy [7] defined a module M to be continuous if it has
(Cd and (C2 )j Af to be quasi-continuous [8] if it has (Cl) and (C3 ).

Fieldhouse [3] a.nd Vhre [9] extended the notion of von Neumann reg
ularity to modules and Zelmanowitz [10] developed following equivalent
conditions of regularity:

THEOREM. [10. Theorem 2.2]. For an R-module M, tbe following
conditions a.re equivalent:

(1) At is regulal·.
(2) For evelY m E AI, Rm is projective and a direct summand of

M.
(3) For every 1nl,' .. , mt E At, L:~=l R1nj is projective and a direct.

summalld of Al.

In [4]' injectivity, quasi-injectivity and continuity are the same con
cepts for the torsion free abelian groups (as Z-modules). But the above
are distinguished for the groups as modules over their endomorphism
rings. And it is easy to show that every abelian group is not regular
over Z but some groups are regular over their endomorphism rings.
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In this paper we discuss injectivity, projectivity, quasi-injectivity, con
tinuity and regularity of groups over their endomorphism rings.

Throughout this paper let G be a torsion free abelian group of finite
rank n, E denote the endomorphism ring of G and S donote the center
of E. We note that S is the endomorphism ring of E-module G.

A submodule N of M is closed if it has no proper essential extensions
in M. Consider the following condition:

(C~) Every closed submodule of M is a direct summand of M.

Then a module M has (Cd if and only if it has (CD [6, Proposition
2.4J and we have the foUo'Wing re~ult.

PROPOSITION 1. Continuity and quasi-continuity are inherited by
closed submodules.

We call a module (ring) finite dimensional if it contains no infinite
direct sums of submodules (left ideals). An E-module G is finite dimen
sional since G is a group of rank n.

In general, a direct sum of regular modules is regular [10, Theorem
2.8] but a direct sum of continuous modules need not be continuous
[7, Example 2.5]. Therefore a regular module need not be continuous.
However, we have the following results for an E-module G.

PROPOSITION 2. Let G be regular over E. Then every submodule of
EG is finitely generated.

Proof. Let X be a submodule of G. Then X is a fully invariant
subgroup of G and rank X = k ~ n. Let {x}, X2, ... , Xk} be a maximal
Z-independent subset of X and A = Ex} + EX2 + '" + EXk. Then
A is a finitely generated projective submodule of X and A EEl B = G
for some submodule B of G by [10, Theorem 2.2]. For any x E X,
x = a +b for some a E A and b E B. Since {x}, X2, ... ,Xk} is a maximal
Z-independent subset of X, mx E A for some 0 =I m E Z. From
mx - ma = mb E A n B = (0), we have b = 0 and x = a E A. Hence
X = A is finitely generated over E.

COROLLARY 2.1. Let G be regular over E. Then

(1) Every submodule of EG is projective and a direct summand of
G.

(2) G is quasi-injective (llence continuous) over E.
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Proof. (1) Obvious.
(2) Since every submodule X of G is a direct summand of G, any

E-homomorphism f : X --+ G can be extended to a homomorphism
] : G --+ G. Thus G is quasi-injective over E.

COROLLARY 2.2. Let G be regular over E. Tben S is a regular ring.

Proof. Apply [10, Theorem 3.4] and S = center of E.

PROPOSITION 3. Let G be regular over E. IfA and B are submodules
of G such that A. ~ B, tben A = B.

Proof. By Corollary 2.1.(1), A and B are direct summands of G.
Thus A = eG and B = fG for some idempotents e and f in S. Since
Hom(eG, lG) and fSe are isomorphic, there exist a E fSe and /3 E eSf
such that (:Ja = e and o:(:J = f. Then e = (:Ja = (:Jfa = f{3a = fe =
a{3e = o:e/3 = a/3 = f. Therefore A = B.

PROPOSITION 4. Let G be continuous over E. Tben every monomor
pbism in S is an automorphism.

Proof. For any maximal Z -independent subset {x 1, X 2, .•. , X n} of G,
Ex} +EX2 +... +EXn is essential in G. Let f E S be a monomorphism.
Then {fxllfx2,"" fx n } is a Z-independent subset of G and so Efxl +
Efx2 + ... + Efx ll is essential in G. Hence f(Exl + EX2 + ... + Ex n )

is essential in G and is contained in f( G) = Im f. Therefore Im f is
essential in G and l is an automorphisll1 by [6, Lemma 3.14].

Now we consider the case that S is regular.

PROPOSITION 5. Let S be a regular ring. Tben G bas (C2 ) as an
E-module.

Proof. Let Cl, submodule .4 of G be isomorphic to a direct summand
B of G. Then B = eG for some idell1potent e E S. For the isomorphism
f : B --+ A. and the inclusion i : A --+ G, ] = ife E E. Since e E S
and f : B --+ A is all E-homomorphisll1, h](x) = h(ife(x)) = hf(ex) =
l(he(x)) = f(eh(:r») = (ife)h(x) = ]h(x) for every h E E and every
x E G. Hence h1 = 1h for every h E E, and] E S implies that A = Im7
is a direct summand of G. Therefore G has (C2 ).
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COROLLAYR 5.1. Let S be a regular ring. If G has (Cl), then G is
continuous over E.

COROLLARY 5.2. Let S be a regular ring. If G is unifonn over E,
then G is continuous over E.

PROPOSITION 6. Let S be a regular ring and I E S, H Ker I is
essential in G, then I = o.

Prool. Since S is regular and I E S, Ker f is a direct swnmand of G.
But Ker f is essential in G. Therefore Ker1= G i.e. 1=0.

PROPOSITION 7. Let E be'areg(;]ar ri~g. If G is projective over E,
then G is regular over E.

Proof. For any x E G, consider the following exact sequence of E
modules:

I 71'

0-+ Ex ----10 G -t G/Ex ----10 0

where i is an inclusion and 11' is a natural projection. Since E is regular,
G/ Ex is flat over E and G is projective over E by assumption. Therefore
we have a homomorphism a: G --t Ex such that a(x) = x by [9, Lemma
2.2]. This means that ai = 1 on Ex and hence Ex is a direct summand
of G. Thus G is regular over E.

COROLLARY 7.1. Let E be a regular ring. Then G is regular over E
if and only itG is projective over E.

LEMMA 8. IfG is injective over E, then E ~ Qnxn the ring ofn x n
matrices over Q.

Proof. If G is injective over E, then G = E9n
QXi for a maximal

Z-independent subset {Xl, X2, • •• ,xn } and E ~ Qnxn.

COROLLARY 8.1. Let E be a regular ring. If G is injective over E,
then G is regula!· over E.

Proof Apply Lemma 8 and Corollary 7.1.

PROPOSITION 9. Let E be a commutative regular ring. If G is con
tinuous over E, then G = Q:,: for some x E G.

Proof Since G is finite dimensional and continuous over E, G =
E9~=1 Gi for some indecomposable continuous submodules Gi of G [5,
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Proposition 1.1.9]. For each i, Gi = eiG for some primitive idempotent

ei E S = E and hence eiE ~ End(EGi) and E = E9~=1 ejE. Since Gi
is indecomposable and continuous, ejE is a local ring. For a non-unit
f E eiE , Ker f is essential in Gi and so f = 0 by Proposition 6. Thus
eiE is a field and E is semisimple. Therefore G is injective over E and
E ~ Qnxn by Lemma 8. Since E is commutative by assumption, n = 1
and G = QG = Qx for some x E G.

REMARK. If E is a commutative regular ring, then continuity, regu
larity, projectivity and injectivity are the same concept for EG.
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