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FINITE RANK PERTURBATIONS

OF SEMI-FREDHOLM OPERATORS

DONG HAK LEE

The "finite ra..nk perturbation theorem"of Fredholm theory says that
if X and Y are Ballach spaces, if T E BL(X, Y) is semi-Fredholm, and if
J( E BL(X, Y) is fiuite rank then T + J( is semi Fredholm([l} Corollary
V.2.2; [2] Theorem 6.12.2). In this note we extend this result to incom­
plete normed spaces.

We recall [2] that if X and Y are normed spaces then if k > 0 and
if IIxll ~ kllTxll for each x E X then we call T E BL(X, Y) bounded
below, . if T is bounded below and has a closed range then we call T
closed, if y E {Tx : IIxll ~ kllTxll} for each y E Y then we call T
open and if y E cl{Tx : lIa~1I ~ kllTxll} almost open. The operator T E
BL(X, Y) will be called relatively open (respectively, relatively almost
open) if its truncation T" : X --+ T(X) is open(respectively, almost
open)(cf. [1], [4]). Thus bounded below is just relatively open one-one.
Relative openness can be tested with the (reduced) minimum modulus

,(T) = inf {IITa:lI: dist(x,T-1(O» 2:: I} if 0 =/: T E BL(X,Y):

if T = 0 we may take ,(T) = 00. Evidently, T is relatively open if and
only if ,(T) > 0 (d.[3]). If X and Y are complete then T is relatively
open if and only if T has a dosed range (cf. [1] Theorem IV.1.6). If M
and N are normed spaces we shall a.')sume M x N is a normed space in
such a way as to have the Cartesian product topology. If M and N are
closed subspaces of X satisfying

(0.1) _M + N = X and AI n N = {O}

then there is a one-one correspondence

(0.2) m + n +--+ (m + n) : X +--+ M x N.
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We shall say that M and N are complemented subspaces if they satisfy
(0.1), while the topology of X is the same as that induced on it by the
mapping (0.2) and the Cartesian topology of the product M x N. To
indicate that this is so we shall write X = MED N.

To prove the main result we need to three lemmas.

LEMMA 1. 1fT E BL(X, Y) is relatively open and if M is a subspace
of X then the restriction of T to M + T-l(O) is relatively open.

Proof. If T l is the restriction of T to M + T-1(O) then Tl-I(O) =
T-l(O). Hence ,(Tl ) 2 ,(T) > 0, which says that T l is relatively open.

LEMMA 2. Let T E BL(X, Y). If 111 is a closed subspace of X with
dim X/JI,1 < 00 and ifTM is the restriction ofT to M then

TM closed ==} T relatively open.

Proof. Suppose 111 is a closed subspace of X with dim X/M < 00. If
TM, the restriction of T to AI, is closed then there is a finite dimensional
subspace N of X for which

X = 111 EB N and T-l(O) ~ N,

and thus
T(X) = T(M) EB T(N),

where T(M) and T(N) are both closed. We thus have ([2J Theorem
2.5.1)

X ~ M x N and T(X) ~ T(M) x T(N).

Since, in particular, N is finite dimensional it follows from the open
mapping theorem that TN , the restriction of T to N, is relatively open.
Therefore, for each x = y + z E X with y E 111 and zEN, we have

IITx ll = /ITM(Y) + TN(Z)/I2 k(/ITM(y)1I + /ITN(Z)ID

2 k(k'lIvll + k"/Iz'ID with z' E z + T-l(O)

2 Klly+z'lI with K=inf{kk',kk"},

which says that T is relatively open.
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LEMMA 3. Let T E BL(X, Y). Suppose that for any closed subspace
111 of X with dimXjkI < 00, TM is not bounded below. Then given
e > 0, there is an infinite dimensional subspace M( €) of X such that T
restricted to 111(e) has norm not exceeding e.

Proof. See [1] Theorem IILl.9.

We recall ([2, Definition 3.2.7]) that T E BL(X, Y) is proper if the
mappmg
core(T):XjT-l(O) ---+ cl(TX) defined by setting

core(T)(x + T- 1(0)) = Tx E cl(TX) for each x EX

is invertible. Evidently,

T proper~ T relatively open and T(X) closed

We also recall ([2] Definition 6.10.1) that the operator T E BL(X, Y)
is called upper semi-Fredholm if it is proper with finite dimensional null
space, and lower scmi-Predholm if it is proper with the closure of its
range of finite co-dimension. If T is either upper or lower semi-Fredholm
we shall call it semi-Fredholm, and Fredholm if it is both. These concepts
are also ([2] (6.12.1.19)) dual to one another:

T lower semi-Fredholm~ T* upper semi-Fredholm.

The index of a Fredholm operator is given by

index(T) = dim T- 1(0) - dim YjT(X).

It is known ([2] Theorem 6.10.2) that the index is continuous even in the
incomplete spaces.

'Ve are ready for finite rank perturbations of the semi-Fredholm op­
erators for incomplete spaces. The third part of the next theorem was
noticed in [2, Theorem 6,3,4].
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THEOREM 1. If T and K are in BL(X, Y) then

(1.1)

(1.2)

and hence

T upper semi-Fredholm, K finite rank

===? T + K upper semi - Fredholm,

T lower semi-Fredholm, K finite rank

===? T + J( lower semi - Fredholm,

(1.3)
T Fredholm, I( finite rank

===? T +K Fredholm with index(T +K) = index(T).

Proof. Suppose T E BL(X, Y) is upper semi-Fredholm. Since T-l(O)
is finite dimensional, we can find a closed subspace M of X for which

Let TM be the restriction of T to M. Then TM is bounded below and
hence there is k > 0 for which

kllxll 5 IITM(x)1I for each x E M.

Suppose K E BL(X, Y) is finite rank. Clearly, T+K has a closed range
because T(X) is closed and K(X) is finite dimensional. Assume T + J(

is not relatively open. Thus, if KAt is the restriction of K to M then,
by Lemma 2, TAl + K!vI is not closed. Since TM(X) = T(X) is closed
and J(M(X) is finite dimensional, it follows that TM +KM has a closed
range and thus that TM +KM is not bounded below. Hence, by Lemma
3, there is an infinite dimensional subspace Mo of M for which

It therefore follows that
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which says that the restriction of K to Mo is bounded below. This,
however, contradicts the fact that K is finite rank. Therefore T + K is
relatively open; thus T +K is proper. We now prove that (T +K) -le0)
is finite dimensional. There is a closed subspace NI for which

Then, by Lemma 1, the restriction of T to NI +T-I(O) is relatively open,
and thus the restriction of T to NI is bounded below. Since K = -T on
NI and I{ is finite rank, NI must be finite dimensional. Thus, by (1.4),
(T + K)-I(O) is finite dimensional. This proves (1.1). For (1.2) apply
(1.1) to the duals of T and K. Towards (1.3) suppose T E BL(X, Y) is
Fredholm. Since AK is finite rank for each scalar A, we have, by (1.1)
and (1.2), T + AI{ is also Fredholm. Further, by the continuity of the
index ([2] (6.10.2.3», index(T + AI{) is a continuous function of A.
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