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ASYMPTOTIC PROPERTIES OF

THE ONE-STEP M-ESTIMATORS IN

NONLINEAR REGRESSION MODEL

IN Hw/\:"J CIIUNG AND KYEONG HEE KIM

1. Illtrod uctiOll

The class of :t\l-estimators was suggested by Huber (1964), who then
studied their properties in a series of papers; the results may be also
found in Huber's monograph (1981).

In the estimation of location, the M-estimator {j = (j(X1,·· • ,Xn ) is
defined as a solution of the equation

n

I: 1,I,(X, - (j) = 0,
i=l

where Xl,'" ,XIl is a random sample from the population with the
distribution fUllctioll F(.1' - e) which is symmetric about O. If F has
a density f which is smooth and if f is known, then the maximum
likelihood E'stinwtors are obtained by taking 'ljJ = - f' /f.

In the general estimation problem, suppose we have a random sample
Xl, ... ,X Il from Cl distribution F, the well-known maximum likelihood
estimator is defined as the value T Il = T(X I ,' .• ,Xn ) which minimizes

11

(1.1 ) I: -In f(Xi, T n ),

i=l

where F has a density f which is smooth. (1.1) may be generalized to

n

I: p(Xi , T n ),

;=1
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where p(x, t) is some function. Suppose that p has a derivative 'I/J(x, t) =
-Ntp(x, t), then the estimator satisfies the implicit equation

(1.2)
n

I>NXi,Tn ) = O.
i=l

Any estimator Tn defined by (1.2) is called an M-estimator.
In this paper we consider M-estimators for nonlinear regression mod­

els. Definitions of the model and the estimators are to be found in Section
·2: Statements andproor; ~r tfle asyIDpt'oti~ hehavior oltheone-step M- '
estimators are gi.ven in Section 3. Finally asymptotic confidence region
and test procedure for the nonlinear regression parameter are given in
Section 4.

2. M-estimators for nonlinear model

The class of M-estimators can be extened to the regression model. We
consider the following nonlinear regression model,

(2.1) Y· - g(x· 6) + E·) - )' )' j = 1"" ,n,
where Xj E :=: c ?Rm denotes the j-th fixed known input vector, 6 E ?RP

is the parameter vector from a parameter space El and 9 : :=: x e -t ?RI

is a known measurable function on :=: for each 6 E e. The random
errors El,'" ,En are independent identically distributed (i.i.d) random
variables which have a distribution function F. We shall write g(xj,9)
by gj(9).

The problem of interest is making inference about 6 in some optimal
way, on the basis of observations on Yj and x j, j = 1, . " ,n.

Let

i = 1,,,, ,p,(2.2)

n

Sn(6) = I: p(Yj - gj(8»
j=l

and consider the problem of finding 6, which minimizes Sn(e) when pis
convex and differentiable. After taking derivatives, we have

n f)
I:: 'IjJ(Yj - gj(e» f)(J.gj(9) = 0,
j=l l
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with 'l/J = p'. Since p is convex, the two approaches are essentially equiv­
alent; otherwise (2.2) may have more than one solutions (see [9]).

Let

Then the errors are given by

j = 1,··· ,n,

if e is true.
An M-estimator for the model (2.1) is defined quite naturally as a

solution 0= (01 , . .. , Op) of the system of equations

(2.3) i = 1,··· ,po

vVhen F has density .f and '1/.) = - f' / j, these are the likelihood equa­
tions, and if 4)( t) = t, 0 is the least squares estimator. Many authors
have provided conditions which insure the existence, consistency and as­
ymptotic normality of the nonlinear least squares estimator. Jennrich
(1969), Malinvaud (1970) and \Vu (1981) proved asymptotic normality
or consistency of the nonlinear least squares estimator when the errors
are i.i.d. random variables. \Vhen the errors are dependent, some results
connected with the rate of convergence of a least squares estimator are
given by Prakasa Rao (1984).

Let 8* = 8~ be Cl sequence in RP, then we shall say that eis a one-step
M-estimator of Type 1 if '1/.' is absolutely continuous with derivative 'l/J'
and 8 satisfies the equation

for all i = 1,··· ,p, with 8* = (8~, ... ,e;) and 0 = (81, ... ,Op). This
system of equations is an approximation to the system (2.3) if we use 8*
as an initial sequence.
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In the situations we are interested, t/J'(Rj(6*)) is well approximated
by its asymptotic expectation

(2.4) .4(t/J,F) = Jt/J'(t)dF(t).

In the next section, we shall use a slightly more general definition of
A(1/;, F) in the condition C2.

If A(t/J, F) is a consistent estimator of A(tP, F), we therefore define a
one-step M-estimator o/Type ~ as the solution nof the equations I

for all i = 1"" ,p, or equivalently, in matrix notation,

[t/J(R1(l1*)),'" , t/J(R n (6*))]D(6*)T = (0 - O*)D(O*)D(6*)TA(t/J,F),

where D(0) is the p x n matrix

o
{ 00/ j (6): i = 1,,,, ,p j = 1, ... ,n },

and T denotes transpose.
We shall give some asymptotic properties of one-steps. This clearly

requires some conditions on the model (2.1). We define, following Jen­
nrich (1969), a tail product:

DEFINITION 2.3. We shall say that the sequence {hj}~l where

h' - [h'1 ... h 'k] • Co _ ~kJ - J' 'J' 'Q ;:n..

has a finite tail product if

1 n

- " h '(Q)Th .({3)nL..J J J
j=1
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converges uniformly in (Q, (1) E e x e as n -+ 00. The limit is called the
tail product of {hj}~l'

We use the notation

then
n

L (Dgj(O))T (Dgj(O)) = D(O)D(B)T.
j=l

This notation will be used to give the condition on the model (2.1).

3. Asymptotic behavior of the one-step M-estimators

This section deals with the asymptotic properties of the one-step es­
timators under some regularity conditions.

In the definitions and arguments which follow we shall assume that
all probabili ties and expectations are calculated under the assumption
that 00 = (001 ,." ,Oop) is the true parameter unless the contrary is
specifically indicated. And for any t = (t},··· ,tp ) E ?RP, we use ItI to
denote the maximum of the absolute values of the coordinates of t.

First, the required conditions on the model (2.1) are given.
Condition A.
A1. The parameter space E> is a compact subset of ~p and 80 is an

interior point of E>.
A2. a~i gj( 0), i = 1"" ,p are continuous on e, where 8i is the i-th

element of 0 = (01 ,'" ,Op).
A3. {Dgj(O)}~l has a finite tail product and

is positive definite. We shall denote E(Oo) by E.
A4.
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where tn is a sequence in ?RP such that Itnl = O(l/..jn).

We shall also need some conditions on 'l/J.
Condition B.
Bl. EF(VJ(1L» = O.
B2. 0 < EF('l/J2(1L)) < 00.

Condition C.
Cl. J(1/;(x + h) -1/;(x))2dF(x):;: 0(1) as h - O.
C2. There exists A(1/;, F) such that

j('l/J(X + h) - 'l/J(x»dF(x) = hA('I/J,F).

If'I/J is differentiable, A( 'l/J, F) is given as in (2.4).

Finally we require a conditi~n on the initial sequence ()*.

Condition D.
()* - ()o = 0(11 jn).

Now we make some comment on the conditions:

REMARK. The conditions AI, A2 and A3 were also used for the as­
ymptotic normality of the nonlinear least squares estimator (see [8]). For
the linear model, Bickel (1975) showed the asymptotic nonnality of the
one-step M-estimators. In his paper, 0(1) was used instead of 0(1) in
the condition Cl, and that he used more conditions on 'I/J in addition to
the conditions Band C (see [2]).

Let M be a constant and define
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LEMMA 3.1. If .4.3, .4.4 and Cl hold, then ITn(t n + 00 ) - Tn((Jo)!
converges in probability to 0 where Itnl ::; All VTi.

Proof. Observe that

converges to 0 as 11 -----+ 00 by A3, A4, Cl and D. By the Chebyshev's
inequality, the result follows.

LEMMA 3.2. Let {X j } be independent random vectors in ~k with
means {{l j}, covariance matrices {l: j} and distribution functions {Fj}.
Suppose tllat

n -t 00,

and tllat

1 n i- L Ilx - {tjW dFj(x)
11 j=1 JJ.c-Jlj II>fy'n

converges to 0 as n -t 00 for each € > 0, where 11.11 denotes the Euc1idean
norm. Then

1 n

vn L(Xj - {tj)
n.

J=1

converges in distribution to the multivariate normal with mean 0 and
covariaJlce matrix V.

Proof. See [10].
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LEMMA 3.3. IfA3, A4, Cl and C2 hold, then

converges in probability to 0 where Itnl S; M/Vii.

Proof Observe that

Tn(tn + (0 ) - Tn(Oo)

1 n 8
= ~ .t; aO

I
gj(O*){t/JRj(tn + (0 ) - t/JRj(Oo)}

(3.3.1)
1 n a

+ ~L -allgj(O*){E(1jJRj (Oo» - E(t/JRj(tn +Oo)}.
n. Ut

J=1

By C2, the la.st term. in (3.3.1) is expressed by

By Lemma. 3.1, the result follows.

LEMMA 3.4. If the sequence A = (an) in ?Rk converges to a, then
the sequence S = (sn) defined by

1 n

Sn = - La;
n i=1

also converges to a.

Proof. See [1].
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THEOREM 3.5. Assume that all the conditions A, B, C, D hold and
b is one step of Type 2, then under the model (2.1), the distribution of
vn(8- (0 ) tends to a multivaJiate normal with mean 0 and covariance
matrix ](('l/J, F)'B-l, where

Proof· In Lemma 3.3, substitute 8* - 00 for t n , ilr;9j(8) for a~l 9j(8),
then

(3.5.1 )

converges in probability to 0 for any 8* such that 10* - BoI ~ M /..;n for
all k = 1"" ,p. By the definition of the one step of type 2,

It a
L a8. 9j(8*)'l/JRj(B*)
j=l k

= t(Oi - 8i) t a~.9j(B*) a~.9j(8*)A('l/J,F).
i=l j=l I k

By AI, there exists a neighborhood Nee centered at 80 which con­
tains 8* for all sufficiently large n, where 18* - 80 I :::; M/Vii. By the
multivariate version of the Taylor's theorem,

where [) lies in the interior of the line segment joining 80 and 8* in N.
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Then (3.5.1) reduces to

By A3, D and by the fact that

zn probability,

converges in probability to 0, for all k = 1,··· ,p. Hence, in matrix
notation,
(3.5.2)

)n{(8 -80 )D(B*)D(B*)TA(t/1, F) - [t/1R 1(Bo),··· ,1/'Rn (80 )]D(8*f}

converges in probability to 0, where le* - 60I :5 M / ,;no
Observe (3.5.2) is equal to

~ D(8*)D(B*)T ~ 1 TVii(e - 80 ) .4( t,b, F) - r.:;-[t/1R1( Bo),··· ,1/'Rn (80 )D(8*) .
n vn



and

(3.5.3 )

Let
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Xj = [1j1(€j)a~lgj(O*), ... ,t,b(€j)a~pgj(O*)]

and let Fj and Vj be the distribution function and the covariance matrix
of Xj, respectively, for each j = 1"" ,n. By the condition B,

Thus, by A3,
n

(3.5.4) lim ~L Vj = EF(1j12(u))~,
n-oo n

j=1

wher~ 10* - 00 1 SAII..;n. By AI, A2, B2 and Lemma. 3.4,

1 11 l- L lI:tWdFj
n j=1 Ilxll>(.jti'

converges to 0 as n -----+ 00 for any € > O. Hence by Lemma 3.2, (3.5.3)
converges in distribution to the multivariate normal with mean 0 and
the covariance matrix (3.5.4). Moreover, on the set

{18* - 80 I S 1111 ..;n},

J1i( 8-eo) (D( ()* )D( B*)TIn) .4( 1/', F) and (3.5.3) are asymptotically equiv·
alent.. By A3, D and by the fact tha.t

in probability,

the result follows.

Consistency is easily obtained by the following result given by Cramer­
Wold.
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LEMMA 3.6. Let X n = (Xn },··· ,Xnp ) and Y - (YI ,'" ,Yp ) be
random vectors, then

X n ----+ Y in distribution

if and only if

in distribution

m p7·obability.

m distribution,

J=l,

otherwise,

XnAT
----+ YAT

for each A = (A}, ... ,Ap ) E ~p.

Proof. See [10].

THEOREM 3.7. Under the conditions of Theorem 3.5,·

1J ----+ 90 in pf'obability

where iJ is one step of Type 2.

Proof. By Theorem 3.5 and Lemma 3.6,
~ T.;n(9 - ( 0 )A -t Z

JR( t/J, F)XE-I AT
for any A = (A}, ... , Ap ) E ?RP, where Z is the standard normal random
variable. By the Slutsky's theorem,

~ T
(3.7.1) (B-Bo)A -to

If we choose A such that

Aj = { 1,
0,

for j = 1"" ,p. Then by (3.7.1),

iJi -t BOi in probability,

where iJ = (iJI , ••• ,iJp ) and Bo = (BOI , •.• ,Bop ). Since the choice of i was
arbitrary, the result follows.

For example, consider the following nonlinear model 9j(B) = ()le(J2 X
j

where () = (BI , ()2) ranges over the unit rectangle e = [0, I} x [0, 1]
and Xl, X2, • •. is a bounded sequence of real numbers whose sample
distribution function is Gn which converges to a distribution function
G weakly. Asswlle that the true parameter 80 = (OI,ll'2) is an interior
point of e and that G is not degenerate. Then the condition A is clearly
satisfied (see [7]).
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4. Large sample inferences

305

In this section we shall consider tests of hypotheses and confidence
region for the parameter 0 in the model (2.1) when the sample size
is large. All large sample inferences about 0 are based on a chi-sqare
distribution. The asymptotic normality of .;;i(O-Oo) derived in Theorem
3.5 under the required conditions suggests the use of the quantity of the
quadratic form

~ ~ ~ T
Qn(O) = n(O - Oo)En(O - 00 )

where En = En(e) is the p x p matrix with (i,k)th element

where K(1jJ,F) = EF(1j,2(t)jA(tjJ,F)2.
The following theorem gives the large sample distribution of Qn(8).

THEOREM 4.1. Under the conditions of Theorem 3.5, Qn(8) has
asymptotically centnll clli-sCJaJ'e distribution witl1 p degrees of freedom.

Proof. The result follows immediately from Theorem 3.5.

By reference to the null limiting distribution of Qn(8), the proba­
blity of QnCe) ~ X~(et) is approximately 1- et where x;(a) is the upper
(lOOa)th percentile of a chi-square distribution with p degrees of free­
dom. When n - p is large, the hypothesis Ho : 0 = 00 is rejected in favor
of HI: 0 # 00 at a level of significance approximately a if
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