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NONLINEAR ERGODIC THEOREMS OF

SEMIGROUPS OF NONEXPANSIVE MAPPINGS

TAE HWA KIM AND MAN DONG HUR

1. Introduction

Let G be a commutative semigroup. Then, since every two ideals in G
have non-void intersection, (G, t) is a directed system when the binary
relation "t" on G is defined by t t s if and only if t E {s} UGs, s, t E G.
Let m( G) be the Banach space of all bounded real valued functions on
G and let D be a subspace of m(G) containing constants and invariant
under rs, s E G, where (rsf)(t) = jets) for every j E m(G). A net
{J..l",} of continuous linear functionals on D is called strongly regular if it
sa.tisfies the following conditions:

(a) sup IIlt""l < +00;
'"

(b) lim J..l '" (1) = 1;
'"

(c) lim lip", - 7':lt", 11 = 0 for every s E G.
'"

Let E be a uniformly convex Banach space and let ~ = {Set) : t E G}
be a representation of G as nonexpansive mappings on a closed convex
subset C of E into C, i.e., S( ts)x = S( t )S(s)x for all t, s E G and
x E C. Let F(Q) denote the set of common fixed points of ~ in C, i.e.,
{x E C: S(t)x = x for all t E G}. Then, as well known, F(~) (possibly
empty) is a closed convex subset of Cj see [ljTheorem 8].

As the title suggests, the purpose of this paper is to provide the non
linear ergodic theorems for commutative semigroups of nonexpansive
mappings in Banach spaces. First, we prove the exsistence of a nonex
pansive retraction P of C onto F(~) such that PS(t) = S(t)P = P for
every t E G and Px E co{S(t)x : t E G} for each x E C, where coA
denotes the closure of the convex hull of A. Secondly, we show that if
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E has a Frechet differentiable norm, then, such a retraction P is unique
and further if D is a subspace of m(G) containing all the functions h x •

on G with x E C, x* E E* given by h x• (t) =< S(t)x, x* > for each
t E G, then for any strongly regular net {p",} of continuous linear func
tions on D, ~p.", x converges weakly to Px for each x E C, where ~p.", is
a mapping of C into F(~) such that < S'p.",x,x* >= J.'Jh x.) for every
x E C and x* E E*.

2. Preliminaries and Some Lemmas

Throughout this paper, we assume that a Banach space E is real. We
denote by E* the dual space of E and the value of x* E E* at x E E
will be denoted by < .r, x * >. Let D be a subset of E. Then, coD is the
closure of the convex hull of D.

Let G be a commutative semigroup and let m(G) be the Banach
space of all bounded real valued functions on G with the supremum
norm. Then, for each s E G and f E m(G), we can define r sf in
m(G) by (rsJ)(t) = f(ts) for all t E G. Let D be a subspace of m(G)
containing constants. A linear functional p on D is called a mean on D
if IIpll = p(l) = 1. Further, if D is invariant under every T s , 8 E G, then
a mean p on D is invariant if p(rsf) = p(f) for all s E G and fED.
For s E G, we can define a point evaluation Os by os(l) = f(8) for every
f E m(G). A convex combination of point evaluations is called a finite
mean on G. A finite mean p on G is also a mean on any subspace D of
m(G) containing constants. Then we have the following:

LEMMA 2.1. Let f : G -+ E be a function such that the weak closure
of {f(t) : t E G} is weakly compact and let D be a subspace ofm(G)
containing all the functions hx• on G with x* E E* given by hx.(t) =<
f(t), x* > for each t E G. Then, for any f.t E D*, there exists an element
f p. in E such tl1at

< fp., x* >= J< f(t), x* > dp(t)

for all x* E E*, where J < f(t), x* > df.t(t) = f.t(h x.). (Such an fp. will
be written by J f(t)df.t(t»).
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Proof. We define a functional F on E* by

F(x*) = 1< f(t), x* > df-l(t)

for every .1~* E E*. Then, F is an element of E** since

IF(:r*)1 = I1 < f(t),x* > df-l(t) I
~ sup 1< f(t),x* > I·llf-lll

tEG

~ (sup Ilf(t)II)llx*II' 11f-l1l
tEG

fm'every x* E E*. Now to show FE E,let Ko = co{f(t) : t E C}. Then,
Eo is weakly compact. Further let El = {11f.lIIX : x E Ko}, E z = {ry :
o :::; r ~ I, y E ]{l}. Finally, let E 3 = ]{z - Kz. Then, J{3 is a circled
weakly compact convex subset of E. If n is the natural embedding of
E into E**, then 11(1':3) is also a circled weak* compact convex subset
of E**. Thus, it is sufficient to show F E n(1{3). If not, then, by the
separation theorem, there is an :r* E E* such that

sup{1 < ::;**,.r* > I: z** E n(E3 )} < F(x*),

On the other hand,

sup{1 < z**,:I'* > I: z** E n(E3 )} = sup{1 < z,x* > I: Z E J{3}

?:::sup{1 < z,.r* > I::: E Ez} = SUp{7" < y,x* > I : 0 ~ r ~ 1,y E Kd
?::: sup{1 < 11f.lllf(i), .1.* > I: t E G} = 11f-l11 sup 1< f(t), x* > I

tEG

?:::II < f(t),x* > df-l(t)! = IF(x*)I,

which gives a contradiction. Hence, for each f.l E D*, there exists an
fJ.L E J{3 such that < f'l' .r* >= F(:r*) = J < f(t), x* > dll(t) for every
.r* E E* . This completes the proof.

\Ve note that /1 is Cl mean on D if and only if
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inf Jet) :s:; J.t(f) :s:; sup Jet)
tEG tEG

for every j E D; see [3]'[5].

LEMMA 2.2. Let f, D be given as Lemma 2.1. Furthermore, if D
contains constants and if J.t is a mean on D, then jlA = J j(t)dJ.t(t) E
co{j(t) : t E G}.

P~f. bet F, Ko ;nbenls ittthe pmof of Lemma 2.1. Suppose? (j
n(Ko )' Then there is an x* E E* such that

sup{< z**,x* >: z** E n(Ko)} < F(x*).

But, by (2.1),

F(x*) =J < j(t),:r* > dJ.t(t):S:; sup < f(t),x* >
tEG

:S:;sup{< z,x* >: Z E Ko} = sup{< z**,x* >: z** E n(]{o)},

which gives a contradiction. Hence, j lA = J f( t )dJ.t(t) E J(o'

The following two lemmas are crucial to prove nonlinear ergodic theo
rems for commutative semigroups of nonexpansive mappings in a Banach
space.

LEMMA 2.3. Let G be a commutative semigroup and let D be a
subspace ofm(G) containillg constants and invariant under TB' s E G.
Let E be a Banach space and let j : G -+ E be a function such that for
each x* E E*, a function h;r;. : t 1-+< j(t),x* > is in D and the weak
closure of {J(t): t E G} is weakly compact. Then, for a weakly compact
convex set K C E, the following are equivalent:

(a) for any weak neighborhood W of I<, there exists a finite mean
,X on G such that J j(ts)d'x(t) E W for every sE G;

(b) there is a net {A,,} of finite means on G such that for any weak
neighborllOod TV of K, there is a o ,vitll J f(st)dA..(t) E W for
every a ?: a o and s E G;

(c) for any invariant mean J.t on m(G), fit = Jf(t)dJ.l(t) E K;
(d) for any invariant-mean It on D, fit = JJ(t)dJ.t(t) E K.
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Proof. (b):=.?(a) and (d):=.?(c) are clear. To prove (a):=.?(d), let J.t be
an invariant mean on D and let W be a weak neighborhood of K. Then,
it is easy to see that there is a weakly closed convex neighborhood W' of
K with W ::> W'. For such a TV', it follows from (a) that there exists a
finite mean A = 2::7=1 aibti on G with a1, ... ,an ~ 0, 2::7=1 ai = 1 and
t},··· ,tn E G such that 2::7=1 ad(tis) EW' for every s E G. Since IJ. is
invariant, we have

< Jp, x* >=J< J(t), x* > dJ.t(t)

= t ai J< f(ti t ), x* > dJ.t(t)
i=1

= J< t ad(tit ), x* > dJl-(t)
i=1

J
n

= < ~ad(tit)dJl-(t),x* >
i=1

for every x* E E. Then, by Lemma 2.2, we have

Jp =Jf(t)dJl-(t) = Jt ad(tit)dJl-(t) E W'.
t=1

Since J( is weakly closed, we have Jp = JJ(t)dJl-(t) E K.
Now to show (c):=.?(b), By Theorem 1 of Day [3], there exists a net

{A",} of finite means on G such that IIA", - r;A""1 -+ 0 for each s E G,
where r; is the conjugate operator of r s' If we deny (b), then there
exists a weakly open neighborhood W of J{ such that, for every a, there
is fJ", !:: a and s'" E G with

(2.2)
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By taking a subnet of {r;,. '\,(1,. }, if necessary, we may assume that r;a '\,(Ia
converges to "l E m( G)* in the weak* topology. Then "l is an invariant
mean on m(G). Indeed, for each s E G, we have

So, jr- A converges weakly to jn E J( by (c), which gives a contradic-
'Q (JOt. "'

tion to (2.2).

Let G be a commutative semigroup and let D be a subspace of m(G)
containing constants and invariant under every rs, s E G. Then, a net
{Ji .. } of continuous linear functionals on D is called strongly regular if it
satisfies the following conditions:

(a) suP.. IlJi .. 1I < +00;
(b) lim.. Ji .. (l) = 1;
(c) lim.. IlJi .. - 1':Jiall = 0 for every s E G.

LEMMA 2.4. Let G, D, E and j be as in Lemma 2.3. Let y E E.
Then the following are equivalent:

(a) for any weak neighborhood W of y, there exists a :6.nite mean ,\
on G
such that f j(ts)d'\(t) E W for every sE G;

(e) for a strongly regular net {Jia} of continuous linear functionals
on D,
f j(ts)dll",(t) converges weakly to y unifonnly in s E G.

Proof. (e)===> (a). By [3], there exists a net {,\a} of finite means on
G such that IIA.. - 7';'\"'" -+ 0 for each s E G. Then, the net {Aa} of
continuous linear functionals on D is certainly strongly regular. By (e),
for any weak neighborhood T¥ of y, there exists a o such that

Jj(st)d\.(t) E TV for every a: ~ 0'0 and s E G.

Taking a finite mean '\"0' we obtain the desired result.
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(a)====?(e). Fix x* E E* and E > 0 arbitrarily. Then, by (a) there
exists a finite mean ..\ = E~=l ai6ti on G, where al,'" ,an?: 0 with
L:~=l ai = 1 and t l , ... ,tn E G, such that

n

1< La;f(tis) - y,x* > I < E" " for every 8 E G.
i=l suP.. p...

Note that, for each h E G,

JJj(tsh)d)..(t)dp... (s) = / t a;j(tish)dp. .. (s)
1=1

is well-defined. Then, we have

< f f j(tsh)d..\(t)dp... (s) - y,x* >

= f < Jj(tsh)d)..(t),x* > dpoo(s)- < y,x* >

= J< y,x* > dp .. (s) + J< Jj(tsh)d..\(t) - y,x* > dp.. (s)- < y,x* >

Since {P .. } is strongly regular, there exists 00 such that

11- Poo(1)/ < El max{1, llyll'lIx*ll}

and

(2.3) Ilft oo - 7·;)l..l1 < El max{1, 1\1" • Ilx*II}, i = 1,2,,,, ,n,

where 1\1" = sup 1I1(s)lI. Then we have
sEG

1< y,x* > - J< y,:r* > dft,,(s)1 ~ I < y,x* > 1·11- /loo(1)1 < E
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IJ< Jf(tsh)d>.(t) - y,x* > dp.. (s)1

n

:s;lIp",1I ·1< L ad(tish ) - y, x* >1 <E

i=1

for every h E G and Cl!. Thus, we obtain

1< J J f(tsh)d>.(t)dp", Cs) - y,x· > I < 2e

for every h E G and Cl! ~ 0 0 , On the other hand, it follows from (2.3)
that

1< Jf(sh)dp..{s),x* > - < JJf(tsh)d>.(t)dp..{s),x* > I

=1 J < f(sh) - tad(tish),X* > dp",(s)1
i=1

~ tail! < f(sh) - f(tiSh),X* > dJ-L",(s)1
1=1

= tailJ < f(sh),x* > d(p", - r;,p",)(s)!
1=1

n

:s; L (lillpo. - r~Jl",1I . lY/ 'lIx*1I < E

i=l

for every hE G and Cl! too . Therefore, 'we have

1< Jf(sh)dJ.l",(s) - y,x* >1 < 3f

for every h E G and Cl! ~ Cl! o' This completes the proof.
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3. Nonlinear Ergodic Theorems

Let G be a commutative semigroup and let C be a closed convex
subset of a Banach space E. Then a family ~ = {Set) : t E G} is
called a representation of Gas nonexpansive mappings on C into itself
if S(st) = S(s)5(t) for all s,t E G. Let D be a subspace of m(G)
containing constants and invariant under every r s, s E G. Assume that,
for each x E C and x* E E*, a function t ~< S(t)x,x* > is in D and
the weak closw·e of {S( t)x : t E G} is weakly compact. Then for any
pE D*, we can consider a mapping ~~ of G into E such that

< ~I'x, x* >= J< S(t)x, x* > dp(t)

for every x E C and x* E E*; see section 2. Particularly, if p. is a mean
on D, then ~p is a nonexpansive mapping of G into itself. Futhermore, if

n n

p is finite, say J1. = E aibsi (Si E G, ai ~ 0, i = 1,2,· .. ,n, E ai = 1),
i=l i=l

n

then SSpx = E aiS(si)X. Let F(~) denote the set of all fixed points of
i=l

~ = {Set) : t E G}. Then, we have the following;

THEOREM 3.1. Let G be a commutative semigroup and let D be a
subspace of m(G) containing constants and invariant under every r8' S E
G. Let C be a closed convex subset ofa unifonnly convex Banach space
E and let ~ = {Set) : t E G} be a representation of G as nonexpansive
mappings of C into itself such tha,t a function t ~< S(t)x, x* > is in D
for each x E C and x* E E* and F(SS) =I 0. Then, for every invariant
mean J1. on D, ~p is a nonexpansive.retraction oiG onto F(~) such that
~pS(t) = S(t)~p = ~p for each t E G and ~px E co{S(t)x : t E G} for
each x E C.

Proof. Let x E C. Then, we know from [4;Lemma 3] that for each
fin.i te mean Aon G.

lim IIS(s)~>.S(t)x - ~>.S(st)xll = 0
t

uniformly in s E G. Let {A O'} be a net of finite means on G such that
PO' - r;AO'II -+ 0 for every s E G; see [3]. Then, for € > 0 and s E G,
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consider a such that IIAo- r;AolI < M' where M = sup IIS(t)xll. For
tEG

such an a, there exists to such that

IIS(s)~>... S(tot)x - ~r:>'aS(tot)x" < f

for every t E G. Hence

IIS(s)~r· A S(t)x - ~~ >. S(t)xll
to a: to er

~IIS(s)~r;.>'<;lIS(t)x - ~r;>... S(tot)a:llt 11~r;>... S(tot)x - ~r:.. ,.\.. S(t)xU
f

<€ + M· AI = 2f

for every t E G. On the other hand, we know from [2;Lemma 1.4] that
for each weak neighborhood VV of co{S(t)x : t E G} n F(S(s»), there is
f> 0 such that IIx - S(s)xll < f =:} x E W. Then from the above there
is a finite mean A.. on G such that ~r;o>'aS(t)x E W for every t E G.
So, for an invariant mean ~t on D, by using Lenuna 2.3 we have

~px E co{S(t)x: t E G} n F(S(s») c F(S(s»).

Since s is arbitrary, we have ~,.x E F(~) = n F(S(s»). Thus ~,. is a
_EG

nonexpansive retraction of C onto F(~). From

< ~pS(s)x,x* > = J< S(ts)x,x* > dJ.l(t)

=J< S(t)x,x* > dJ.l(t)

=< ~px,x* >

for every s E G,J.: E C and :r* E E*, we have ~pS(s) = ~,. for every
s E G. Since J.l is a mean on D, by Lemma 2.2, ~,.x is contained in
co{S(t):L: : t E G} for each x E C. This completes the proof.

THEOREM 3.2. Let G, D, C, E and ~ = {Set) : t E G} be as in
Theorem 3.1. Additionally, assume that E has a Frechet differentiable
norm. Then there is a unique nonexpansive retraction P olC onto F(~)

such that PS(t) = S(t)P = P for each t E G and Px E co{S(t)x : t E G}
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for each x E C. Further, if {P.,.} is a strongly regular net of continuous
linear functionals on D, then for each x E C, ~p... S( t)x converges weakly
to Px uniformly in t E G,

Proof. By Theorem 3.1, there is a nonexpansive retraction P of C
onto F(~) such that PS(t) = S(t)P = P for each t E G and Px E
co{S(t)x : t E G} for each x E C. Fix x E C and s E G. Then we have

Px = PS(s)x E co{S(ts)x: t E G}

=co{S(t)x : t t: s, t E G}.

Hence, Px E n co{ S( t)x : t t s}. By [6jTheorem 1], we also know
sEGn co{S(t)x: t t s} n F(Q') consists of at most one point. Therefore we

sEG
know

{Px} = nco{S(t)x: t t s} n F(~)
sEG

for every x E C. This implies that such a retraction P is unique. Let
x E C. Then, for any invariant mean JL on D, it follows from Theorem
3,1 and the above that

JS(s)x dJL(s) = Q'p.x = Px.

So, (d) of Lemma 2.3 is satisfied with J( = {Px}. Therefore, by (e)
of Lemma 2.4, for any strongly regular net {JL",} of continuous linear
functionals on D,

JS(s)S(t)x dJL",(s) = ~,. .. S(t)x

converges weakly to Px uniformly in t E G, which completes the proof.

4. Some Applications.

In this section, by using Theorem 3.2, we prove some nonlinear ergodic
theorems for nonexpansive mappings and nonexpansive semigroups in
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Banach spaces. In what follows let C, E be as in Theorem 3.2. We start
with the following;

THEOREM 4.1. Let T be a nonexpansive mapping of C into itself
with F(T) =1= <p. Then, for each x E C, ~ L:~ol Ti+/ex converges weakly
to some y E F(T), as n ~ 00, uniformly in k = 0, 1,2, ....

Proof. Let G = {0,1,2, .. ·},G' = {Ti : i E G},D = m(G), and
ft-I

I-ln(f) = *L: f(i) for n = 1,2,·.· and fED. Then, since
i=O

111-l1l - 1'il-lnl/ = sup I(I-ln - ril-ln)(f)1
11111$1

1 2
= - sup If(o) - f(n)1 ~ - ~ 0,

n 11/119 n

as n ~ 00, we obtain Theorem 4.1 by using Theorem 3.2.

Let G' = {S( t) : 0 ~ t < +oo} be a family of nonexpansive mappings
of C into itself such that S(O) = I, S( t+s) = S(t)S(s) for all t, s E [0,00)
and S(t)x is continuous in t E [0,00) for each x E C. Then, 8' = {S(t):
o~ t < +oo} is said to be a nonexpansive semigroup on C. Then, as a
direct consequence of Theorem 3.2, we have the following ;

THEOREM 4.2. Let ~ = {Set) : 0 ~ t < +oo} be a nonexpansive
semigroup on C witll F(~) =1= 0. Then for each x E C, ~ J: Set + k)x dt
converges weakly to some y E F(~), as n ~ 00, uniformly in k ?: O.

Proof. Let G = [0,00),G' = {S(t);O :::; t < oo}, and let D be the
Banach space C (G) of bounded continuous functions on G. Define
I-la(!) = ~ J: f(t) dt for every s > 0 and fED. Then we obtain
that
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11s 118

lIJ.Ls - 1'Z{t" 11 = sup 1- j(t)dt - - jCt + k)dtl
11111$1 SoS 0

1 1" l"+k= - sup I j(t)dt - jCt)dtl
s 11111$1 0 k

1 l k l"+k= -: sup I f(t)dt - jCt)dtl
::; 11/11$1 0 "

1 l k 18

+
k

~ -: sup ( If(t)ldt + If(t)ldtl
::; 11/11$1 0 "

2k
= - -+ 0,

oS

as oS -+ 00. Therefore by using Theorem 3.2, we have Theorem 4.2.

Let G = {O, 1,2,'} and let Q = {qn,m}n,mEN be a matrix satisfying
the following conditions:

00

(a) sup L Iqn,m I < +00 ;
11;:::0111=0

00

(b) lim L: qn,m = 1 ;
n-oo 111.=0

00

(c) l~.:n L.: Iqn, m+I - qn,m I= O.
n 00 111=0

Then, Q is called a strongly regular matrix ; see [7]. If Q is a strongly
regular matrix, then for each m E G, we have Iqn,ml -+ 0, as n -+ 00.

Indeed, assume that there is moE G such that Iqn,m" I f+ 0, as n -+ 00.

Then there are € > 0 and a subsequence {Iqn; ,m" \} of {Iqn,m" \} with
\qni,m" I > E. On the other hand, since Q is a strongly regular matrix,
there exists no E G such that

00

L \qn,m+l - qn.ml < i
m=o

for every 71. 2: no. So, we have Iqn.l - qn,ml < ~ for every 71. 2: no and
1,111, E G. Fix nj with nj 2: no. Then we have



268 Tae Hwa Kim and Man Dong Hur

f
Iqui,ml;::: Iqni,mol-Iqni,mo - qni,ml > 2'

for every mEN. Therefore we obtain

contradiction to (a).

00

'" Iq I 00, which is aL...J ni,m -
m=o

:rH£QR~¥ .4.3•• Let T ~ a.~paosive mappiDgol'C in,o itsel£
with F(T) =J:: 0. If Q is a strongly regular matrix, then for each x E

00

C, L: qn,mTm+kx converges weakly to some y E F(T), as n -+ 00,
m=o

uniformly in k = 0,1,2,···.

Proof. Let G = to, 1,2,···}, ~ = {Tn : n E G}, D = m(G), and
00

J.tn(f) = L: qn,m!( 11"/,) for each n = 1,2, ... and! E m(G). Then, since
m=o

Q is a strongly regular matrix, we have that

sup lIJ.tnll = sup sup lJ.tn(f)/
n2:o n2:o 11111:9

00

~ sup sup (L Iqn,ml·I!(m)1)
n2:o 11/11:9 m=o

00

~ sup L Iqn,m I< +00
n2:° m =o

and by (b),

00

Hm l£n(l) = lim '"' qn,m = 1.
71-ioCICJ n-(X) L.;

m=o

We also have IIlln - TZllnll -+ °for every k = 0,1,2,···. Indeed, we have
lim IIrZJ.tn - Tk+1J.tnll -7 °for every k = 0,1,2" ", since

n-oo
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co

= sup IL qn,m{f(m + k) - f(m + k +1nl
11/119 m=o

co

= sup Iqn,of(k) + L (qn,m+I - qn,m)f(m + k + 1)1
11/119 m=o

co

:5 L Iqn,m+1 - qn,m! + Iqn,ol·
m=o

Further for k ~ 2, we have

k

Ilfln - rZflnll ~ L II r i fln - ri-1flnll - 0,
i=1

as 71. - 00. Therefore by applying Theorem 3.2, we have Theorem 4.3.

THEOREM 4.4 .. Let 5 and T be nonexpansive mappings of e into
itself with ST = TS and F(T) n F(S) =f=. 0. Then, for each x E e,

n-l

~L Si+jTj+h x converges weakly to some'y E F(T) n F(S), as n-
i,j=o

00, uniformly ill A:, h = 0,1,2, ....

Proof. Let G = {0,1,2,· .. } x {0,1,2,···},~ - {SiTi : (i,j) E
n-l

G},D = m(G) and I/'n(/) = ~ L: f(i,j) for each n = 1,2"" and
i,j=o

f E m(G). Then, for each (f, 111,) E G, we have

II//'n - 1'(£ m)flnll = sup I(fln - re£ m)fln)(J)1
, 11/119 '
n-l n-l

= sup 1-; L f(i,j) - -; L f(i + f,j +n)1
11/119 71. i,j=o n i,j=o
1

:5 -;;{Cx 71. + m( n - f) + f x 71. + m( 71. - en
71.-

1
=-;{2n(C + rn) - 2me} - 0,

71.-
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as n - 00. Therefore by using Theorem 3.2, we have Theorem 4.4.

THEOREM 4.5. Let ~ = {S(t) : t ~ O} be a nonexpansive semigroup
on C with F(~) -I- 0. Then, for each x E C, A!ooo e->.tS(t + k)x dt
converges weakly to y E F(~), as A 10, uniformly in k ~ O.

Proof. Let G = [o,oo),~ = {S(t): t ~ O},D =C(G) and
11->.(/) = AJo

oo e->.tf(t)dt for each A > 0 and f E C(G).
Then, for each s E [0,(0), we have

1111->' - r;II->.1I = sup lA f~ e->.tf(t)dt - A fooe->.tf(s + t)dtl
"I"S1 lo lo

= sup lA18

e->.tf(t)dt +A(l- e>'8) fOO e->.tf(t)dtl
"1"$1 0 ls

::; AS + 11 - e->,sl - 0,

as A1 O. Therefore by using Theorem 3.2, we have Theorem 4.5.
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