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M-HOMOTOPY EXTENSION PROPERTY
AND M-HOMOTOPY GROUPS

KEE YOUNG LEE

1. Introduction

In [4], R. Jerrad introduced m-functions as generalization of contin-
uous function between topological spaces. m-functions are weighted,
finitely valued functions with a property corresponding that of usual
continuity. In [6], R. Jerrad and M.D.Meyerson defined the m-homotopy
and m-homotopy groups and showed that the n-th m-homotopy group
has a natural definition as m(7,(Y)) = hom (S",Y) in a cetrain cat-
egory of m-functions, which is an R-module under the addition of m-
functions for a ring R with identity without zero divisors. They also
showed that m-homotopy theory is a homology theory by proving it
satisfies the Eilenberg-steenrod axioms.

In this paper we generalize the pasting lemma on continuous functions
to that on m-functions and show that for a triangulable pair (X, A), A
has certain extension property in X for m-functions similar to absolute
homotopy extension property. By using those facts, we prove that the
m-fundamental group acts on n-th m-homotopy group as a group auto-
morphism for n > 1.

2. m-function and m-homotopy group

We introduce some definitions and m-homotopy groups in [4], [5].
Suppose that f: X x Y — R is a (standard) function, where X and ¥’
are Ty-spaces and R is a ring with identity and without zero divisors.
Then we define a multiple-valued function over the ring R f' : X —» Y
by its graph f' = cl{(z,y)|f(z,y) # 0}, which satisfies the following

condition ;
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(1) forall z € X, f'(z) = {y € Y|(z,y) € f'} is a finite or empty subset
of Y.

(2) if f'(z') = {y1,-- - ,yn}, there exist disjoint neighborhoods V;(y;) such
that for any neighborhood V;(y;) C V; there is a neighborhood U(z')
satisfying ;

(a) Z f(x7y) = f(zlvyi)for RS U,'L = 17"' s T

yEV:
(b) f(z,y) =0forzeUandye[Y - | Vi
(3) if f'(z') = ¢, there exists a neighborhood U(z') such that f(z,y) =0
forallz €U, yeY

DEFINITION 2.1. Under the condition above, we define the multiple
valued function f : X — Y x R given by

f=A{{z,(y,m))y,€ f(z) and f(z,y) =7}

At this time, f is called an m-function from X to Y defined by the
defining function f(the ring R is usually fixed and dropped from the
notation) and R is called weighting factor of f determined by the defining
function f.

The multiplicity of f is m(f) = Z f(z,y) ; it is indendpent of z
€Y
if X is connected. The empty fun:tion, denoted by ¢ is defined by
$: X xY — 0. Any continuous function can be regarded as an m-
functions by assigning it multipicity one.
The composition of two m-functions f : X - Y andg:Y — Z is
defined by g o f(z,y) = Z f(z,y)d(z,y), so Hausdorff spaces and m-
(24
functions over R form a c!;tegroy R T, with T, as a subcategory. Any
two m-functions may be added : f+g defined f + g = f+§. Also,ifa €
R we define the ¢-f by a - f = a-f. Then hom(X,Y) is an R-module and
there are functors hom(—, Z) and hom(Z, —) : R — T, — (R — modules).
The restriction of f : X — Y to a subset 4 C X is defined by f|4 = foi
when ¢ is the inclusion ¢ : A — X. An m-function on pairs of Hausdorff
spaces is defined as follows : h : (X, A) — (Y, B) is an m-function on
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pairs if R'(A) C B. We say that f is m-homotopic to g relative to
X'(f ~m g rel X') if there exists an m-function F: (X, A) x I — (Y, B)
with F(z,0) = f(z), F(z,1) = g(z) and Flyiugy = flx = gl for
t € [0,1). An m-function on pointed pairs f : (X, A,z0) — (Y, B,yo0)
must satisfiy fla: A — B and f|,, : zo — Yo-

LEMMA 2.2. In the catgory Ry — phT> of pointed pairs of Hausdorff
spaces and m-homotopy classes of m-functions over R of multiplicity
zero, the condition for an m-function to be pointed is equivalent to f|,, =
¢:also,forf : X =Y, f:(X,A,z0) — (Y,y0,y0) ifand only if f|4 = ¢.
[6].

For any pair (X, A) = (X, A,¢) and integer n > 1, the n-th m-
homotopy group mn,(X, A) is defined to have as underlying set, the set
of m-homotopy classes of m-functions(of multiplicity zero) f : (I™, 31", 0)
— (X, A) where I" is n-cube, 9I" is its boundary and 0 is {(0,---,0)}.
For n > 1 the product of f and g in Ry — phTy, f-g : I" — X is defined
by

i { f(b,2t+1,2), 0
7

1
. b’t’ = 2

where (b,t,z) € I"™' x I x X. Especially, mm;(X) is called the m-
fundamental group of X.

THEOREM 2.3. fg ~m f + g (where f and g represent elements of
mma(X,A) forn > 1) [6].

THEOREM 2.4. For n > 1, the homotopy group mr,(X, A) is the R-

module hom((I",81",0),(X, 4)), Litting A = ¢, mn,(X) = hom|[(I",0I",
0), (X)] [6].

3. A generalization of the pasting lemma

In this section, we prove the following theorem as a generalization of
the pasting lemma on continuous functions. Here we let X be a Hausdorff
space and R a ring with identity without zero divisors.

THEOREM 3.1. Let X; and X, be closed subspaces of X such that
X =X,UXy, f:X, =Y and g : X3 — Y m-functions with their
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defining functions f, § respectively such that f(z,y) = §(z,y) for every
z€X\NX, Ifh: X XY — R is defined by

I f(zvy)a fOI‘(.'L‘,y)EXl XY,
h(z,y) =14 ~

g(z,y), for(z,y) € X3 XY,
then h: X — Y defined by h is an m-function.

All we have to do to prove the Theorem 3.1 is to show that h satisfies
the conditions (1), (2) and (3) mentioned in the Definition 2.1. Let’s
show those facts at following lemmas :

LEMMA 3.2. Under the same hypothesis as the Theorem 3.1, h'(z) is
finite, for all z € X.

Proof. Since f'(z) and ¢'(z) are finite and if 2’ = f' Ug’, k'(z) =
fi(z) U g'(z), it is sufficient to show that ' = f'U ¢
K = alf(z,y)lh(z,y) # 0)
= c{(z,y)|h(z,y) # 0} N(X; x Y UX, x Y)
= [({(z, 9)lh(z,y) # 0} N X1 x V) U ({(=, 9)lh(z, y) # 0} N X2 x V)]
= [({(z,)If(z,y) # 0} 0 X1 x Y)U ({(,y)lg(z,y) # 0} 0 X2 x ¥)]
C ({(z, Y f(z,y) # 0} N Xy x VYU (el{(z,y)|§(z,y) # 0} N X2 x ¥)
= clx, xy {(z, )| f(z,y) # 0} U clx, xy {(=, y)lg(2, y) # O}
= f'ug’
On the other hand,
f'=cly,xv{(z,y) € X1 x Y|f(z,y) # 0}
=cl{(z,y) € Xi xY|f(z,y) #0} N X; xY
=cl{(z,y) € X1 xY|h(z,y) #0}NX; xY
C d{(z,y) € X x Y[z, y) 20} N X1 x Y
=h'NX;, xY Ch

Similarly, ¢’ C &'. Thus f'Ug' C h'. Consequently, ' = f'Ug’.
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LEMMA 3.3. Under the same condition as the Theorem 3.1, if h'(z') =
{y1,¥2,-** ,yn}, then there exist disjoint neighborhoods Vi(yi) such that
for any neighborhood Vi(y;) C V; there is a neighborhood U(z') satisfy-
ing ;

(a) Z h(z,y) = h(z',y;) forz €U, i =1,2,-.. ,n.

yevV;

(b) h(z,y) =0 forz € Uandy € [Y — U Vil

=1

Proof. In order to prove the lemma, we consider three cases ; (1)
(E’EX] ~ X, (2) z' e X, - X, (3) z! cX:nNX,
The case (1) ; ' € X; — X;. Then ¢'(z') = ¢, h'(z') = f'(2') =
{v1,y2,- - ,yn}. But f is an m-function with defining function f. Thus
by definition, there exist disjoint neighborhoods V;(y;) such that for any
neighborhoods Vi(y;) C Vi(y;), there is a neighborhood U'(z') in X,
satisfying ;

(a) Z flz,y) = f(z',yi) forz € U', i =1,2,--- ,n.

yeV;

(b) f(z,y)=0for 2’ € U'and y € {Y — U Vi]
i=1
Since U’ is open in X, there is an open U"(z') in X such that U' =
U'NX;. Let U =U"—X,. Then U is open in X and contains z’. But

UcCU'CXy. Thus »_ h(z,y)= Y f(z,9) = f(z',y:) = h(a', y:) for
yeV: yeV;
z €U and h(z,y) = flz,y)=0forz e U CU' and y € (Y — UV,)

1=1

The proof of the case (2) is similar to that of the case (1).

The case (3) ; Let 2’ € X; N X, and we note h'(z") = f'(z') U ¢'(z').
First, assume f'(2') or ¢'(z') is empty. Without loss of generality we
may assume f'(z') = ¢. So we can let h'(z') = ¢'(z') = {y1, " ,¥n}-
Since ¢ is an m-function, there exist neighborhoods V;(y;) such that for
every neighborhoods V;(y;) C Vi(y;) there is a neighborhood Ux,(z') of
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z' which is open in X, satisfying ;

> dz,y) =g(z',y) for z € U'(z'), i = 1,2, ,n.
yev;

and

g(z,y)=0forz' € U'(a"), ye [Y - U Vil.

i=1

But since f'(z') = ¢, there exist a neighborhood U, (z') of =’ which
is open in X; such that f(z,y) = 0 for = € Uk, (z'). Let U(z') =
U'(2")NU"(z"), where U’ and U" are open in X such that Uy = U'NX;

and Uy, = U" N X, respectively. Then Z h(z,y) = Z g(z,y) =

yeV; yEV;
g(z',y;) = h(z',y;) for z € U N X; and Z h(z,y) = Z flz,y) =
yeV: yeV;

f(z',y;) = Rh(2',y;) for z € U N X,. Furthermore, if for 2 € U and

ye[Y“U‘/i]’

=1

glz,y) =0 forzeUNX,

h(z,y) = { —
flz,y)=0 forzeUNX,

On the other hand, let’s assume that f'(z') and ¢'(2') are not empty.
Let f'(z') = {y{, oo ,yfYand ¢'(2') = {y], - ,y%} forn, m > 1. Since
f(and ¢) is a m-function, there are disjoint neighborhoods V,(y{ )(and
Vi(y?)) such that for any neighborhoods Vi(y{) € Vi(y/)(and Vi(y?) C
Vi(y?)) there is a neighborhood Uk, (z') in X;(and Uk, (') in X3) sat-
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isfying ;
(a) Z Flz,y) = f&' y]) forz e Uy, i=1,---,n
yeEV
(and Z g(z,y) =g(z',y!) for z€ Uk, i=1,---,m)

yeV;

(b)f(z,y) =0 for 2’ € U, and ye[¥ - |V

i=1

((and g(z,y) =0 for z' € U, and y € [¥ — | J Vi]).

i=1
Without loss of generality, we can take
yif = yga ,yl{ = yza 0 S k S min {man}1
where we mean f'(z') N g¢'(z') = ¢ by k = 0. Let's take V; = Vz(y.f) N

Vi(w?), Vits = View;(v]) and Vi = hatVig(yf) fori=1,--- ,k, j =
1,...,n—-kIl=1,-.. ,m—k. Let

y,-fzy,-g, fori=1,.-.-,k

Yi = § Yrqj fori=k+1,---,n, j=1,---,n—~k
Yo fori=n+1,--- ,n+m-k, Il=1,--- , m—k

Then h'(z') = f'(z')Ug'(z") = {y1,--- , Ymsn—k} and V;’s are disjoint.
If Vj(y:) C V;(y;), there exists a neighborhood U, (z') (open in X;)

and Uy, (z') (open in X,) satisfying ; z flz,y) = f(z',y;) for z €
yeY;

Uk, ¢ = 1,---,n and f(z,y) = 0 for z € Ukx,» v € [Y — UV,]
J=1
Z g(lay) =§(xlyy]) forz € Ué{p J=1,--- ey, n+1,--- n+m+k
yeVY;
k n+m—k
and g(z,y) =0for z € Ux, andy € Y — [(| JV))U( | Vj)] Take

j=1 j=n+1l
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U =Ux,NUx,, where Ux, and Ux, are open in X such that Ux, NX; =
Ux,, Ux, N Xy = U, respectively. Then if I <i <k,

Y hzy) =) fle,y) = f(=',y:) = h(z',ys) for z € U N X,

yeV; yeV:
D k) =) d(z,y) = (', ui) = h(z',yi) for s € U N X,
yevi vev:

andifk+1<i<n,
Y hz,y) = §(z,y) =0=g(z',5:) = h(z',ys) for 2 € UN X,
yev: yev;
Z B(.’L’, y) = Z g(t’y) =0= g(x,1yi) = E(l",yi) forzeUnN X2)

yeV; yeV;

n+m-—k
because y € Y — U Viyu( U Vi)). Similarly, fori = n+1,.--- ,m+
1=1 Jj=n+1
n4+m—k
n—k, > h(z,y)=h(z',y;)). Kz €Vandye[Y~ |J Vi k(z,y) =
yeV; i=1
nt+m—k

0. In fact, sincey € [Y — | Vi]c[¥ - UV],h(z y) = f(z,y) =
i=1 g=1
n4m—k

Oforc € UNX, and since y € [Y = |J Vi, C [Y——(UVU

=1 f=1
n+m—k

U Vil A(z,y) = glz,y) =0for z € UNX>.
i=n+1

LEMMA 3.4. Under the same hypothesis as the Theorem 3.1, if h'(z') =
¢ then there exists a neighborhood U(z') such that h(z,y) = 0 for all
zelU,yeY.

Proof. Assume z' € X; — X,. Then h'(z') = f'(z') = ¢. So there
exists a neighborhood Uk (z') in X, such that f(z,y) =0 forall z €
Ux,, y €Y. Take U = Ux, — X2, where Uy, is open in X such that
Ux, = Ux, N X;. Then h(z,y) = f(z,y) =0forz €U, y€Y.
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We can prove in case z' € X, — X; similarly. Assume z’' € X; N
X3. Then since h'(z') O f'(z') and h'(z') D ¢'(z') and A'(z') = ¢ by
hypothesis, f'(z') = ¢ and ¢'(z') = ¢. So there exist Uk, and U, such
that f(z,y) = 0for z € Ux,, y € Y and §(z,y) = 0 for z € Uk, and
y€Y. Let U =Ux, NUyx,, where Ux, and Ux, are open in X such that
Uk, = Ux, N X, and Uy, = Ux, N X, respectively. Then h(z,y) =0
forrelUandyec?.

After all, we have completed the proof of Theorem 3.1 by Lemma 3.2,
Lemma 3.3 and Lemma 3.4.

COROLLARY 3.5. Under the same hypothesis as the Theorem 3.1 if
f and g are continuous function, then m-function h is continuous

Proof. We recall that any continuous function f from X to Y has the
defining function f: X x Y — R defined by

5 0 ify+# f(z),
Faw={] |

if y = f(z).
Since h' = f'Ug' and f’ and g’ are single valued and f'(z) = ¢'(z) for
z € X; N X,, ' is single valued. Thus m-function h : X — Y defined
by h(z) = h'(2). Let h(z') = y € Y and V(y) be an neighborhood of
Y. By the definition of m-function, there is a neighborhood V(y) such
that for any neighborhood V C V(y) there exists a nbd U(z') satisfying;
Z h(z,y) = h(z',y) = 1 for z € U(z'). Let V = V(y) N V(y). Then
yeEV
h(z,y') # O for some y' € V. So (z,y') € A'. But since h' is single
valued, h(z) = R'(z) = y' € V C V(y). Thus h(U(z")) C V(y). We

conclude that A is a continuous function.
4. Proof of the main theorem
In this section, we prove the main theorem that the m-fundamental

group acts on m-homotopy group as a group automorphism. In order to
do that we introudce some definitons, and lemmas.
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DEFINITION 4.1. A subspace A of a space X is said to have the abso-
lute m-homotopy extension property (AMHEP) if for every m-homotopy
h: Ax I —Y of an arbitrary m-function f : X — Y, there exists an
m-homotopy ¢ : X x I — Y such that ¢g|x xe = f and glel = h.

REMARK. A has the AMHEP in X if and only if for every defining
function h: AXIxY — Rand f : X xY — R such that k(a,0,y) =
fla,y) for (a,y) € A x Y, there exists a defining function § : A x I x
Y—+Rsuchthatg(aty)—haty)for(aty)EAxIxYand
3(z,0,¥) = f(z,p). ‘ ‘ ‘

LEMMA 4.2, If (X A)isa (ﬁmte]y) triangulable pair, then A has the
AMHEP in X.

Proof. Let f be a given m-function with its defining function f :
XxY - Rand h: A xI — Y a given m-homotopy of f with its
defining function 2 : A x I x Y — R, that is, k(a,0,y) = f(a,y) for
a € A,y € Y. Consider the product space M = X x I and its closed
subspace L = X x 0 U A x I Define a m-function H : L — Y by its
defining function defined by

H(z,0,y) = { fla,y)  for (z,0,y) €X xOxY
LY ﬁ(a,t,y) for (‘%t,y)EAxIxY

We define F : X x I x Y — R by F(z,t,y) = H(r(z,t),y), where
r: X xI — XxQUAxIisaretraction. Then F(z,0,y) = H(r(z,0),y) =
f(z,y) and F(a,t,y) = H(r(a,t),y) = h(a,t,y). Hence m-function F :
X x I — Y defined by F is an extension of k such that F|xxoe = f.
THEOREM 4.3. Let p : (I,0I) — (X,z0) be an m-function with

multiplicity 0. Then p induces a transformation p, : mna(X,z9) —
mn,(X,zo) which depends only on the m-homotopy of the m-function
P

Proof.. Let f : (I",8I") — (X, z0) be an m-function with multi-
plicity zero. Define @, : 0I" x I x X — R by @,(u,t,z) = p(1 — t,z),
where p is the defining function of p. Then @, defines an m-function
p: OI" x I — X. Define F' : [(I" x 0) U(BI" x I)) x X — R by

FI(Ut;l')z{f(u’x) if(uat$x)€InXOXX
o @P(uvtvx) if(u,t,x)eaInXIxX.
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Then F' is a defining function by Theorem 3.1. So F' defines an m-
function F' : I" x0UAI" x I — X such that F'|jn o = fand F'lamxs =
p. By the Lemma 4.2, OI" has the AMHEP in I". Thus there exists an
m-function F': I" x I — X sucht that F|;xo = f and Flar=x1 = ¢p.

From now on, we shall call such F' m-funtion of f along p.

Let Flinx1 = fi- Then m(f1) = m(f) =0 and f(v,z) = F(v,1,2) =
p(1 —1,z) = 0 for v € OI™, where F is a defining function of F. Define
Pn : mrn(X,z0) — mma(X,z0) by pa[f] = [f1]. Let's show that p,
is well-defined. Let f ~,, g(reldI™) and p ~,, g(reldI) and H and G
m-homotopies of f along p and g along ¢ respectively. It is sufficient to
show that f1 ~m gl(rel(ﬂ"). Since Fl]u x0 = f., Gl[n x0 = @G, and f ~m
g(reldI™), there exists an m-homotopy H; : ™ x 0 x I — X such that
Hylinxoxo = Flrxo, and Hy|rnxox1 = Gli» <o, and Hilarm xoxt = .
Furthermore, since p ~,, ¢(rel0I), there is an m-function h: I x I — X
with its defining function h : I x I x X — R such that h(¢,0,z) =
p(t,z), h(t,1,z) = g(t,z), and h({0,1} xs xz) = 0, where pand § are the
defining functions of p and ¢ respectively. Define Hy : OI"xIxIxX — R
by Ha(v,t,s,z) = k(1 — t,s, ), then

Hy(v,t,0,2) = h(1 —,0,z) = p(1 — t,2) = @y(v,t, ),
Hs(v,t,1,z) = h(1 —t,1,z) = g(1 — t,z) = @,(v,t,z),

and

Hy(v x {0,1} x s x ) = 0.

Thus H, defines an m-homotopy Hy : 8I" x I x I — X between
Flamm x1(= @p) and Glox1(= ¢4) relartive to 9I™ x 0UOI™ x 1. Let
A=I"x0UQI" xI. Define H: Ax I — X by

Hipxoxr = Hy and H|gmm xixr = Ho.

Then H is well-defined m-function, because Hy|arm xoxt = ¢ = Ha|orm xoxt-
Since H|axo = Fla, H|ax1 = Gl4, and H|amxoxtvamxixe = ¢, H is
an m-homotopy between F|4 and G| 4 relative to 91" x 0 xtUGI™ x 1 x ¢.
Thus by the AMHEP, there is an m-homotopy H' : I" x I x I — X such
that H'IAxI = H, Hlllﬂxlxo = F, Hllel = GlA, and Hllal"xlxt = d’
forallt € I. Let T = H'|jnxix1 : I" x I — X. Then T|mxo = g,



252 Kee Young Lee

T|armx1r = @¢q- So T is an m-homotopy of g along g. Let T|fx; =
hy. Then f, is homotopic to h; relative to OI™ by the m-homotopy
H'|inx1x1-

Now, Let’s prove that ¢g; and h; are m-homotopic relative to OI".
Define an m-function M : I™ x I — X by its defining function M :
I" x I x X — R defined by

_ G(u,1 -2, eI"0<s<}

M(u, s,7) = { _(" z) (u 1—-3— 2)
T(u,2s~1,2) (uel”3<s<1)

"Then for each v € OI", we have M(v,s,z) = M(v,1 — s,z). Therefore

we may define a m-homotopy N : (8I" x ITUI"™ x I) x I —+ X by the

defining function N : (81" x TUI" x 8I) x I x X — R defined by

M(u,s,z) (ue I sedl)
N(u,s,t,2) = { M(u,s~—ts,z) (ueaI",OS.s}(_%)
M(u,(1-s)1-1),2) (u€dl™,3<s<1)

Since 8I™ x JUI™ x OI has the AMHEP in I™ x I, the m-homotopy N has
an extension m-homotopy L : I" x I x I — X such that L] x1x0 = M.
Let O = LlI" xIx1. Then OlI" x0 = Ll]“ x0x1 = NII" x0x1 = M|I" x0 =
GII" x1 = gl,OIInxl = T|1n,<1 = h), and OIaI" xs = ¢ for every s € I.
This implies that g; and h; are m-homotopic relative to I™.

So we have constructed a transformation p, : mm,(X) — mn,(X)
which depends only on the m-homotopy of the m-function p: (I,0I) —
(X s .’L‘o).

THEOREM 4.4. mn;(X) acts on mm,(X) as a group automorphism,
n2>1

Proof. 1t is sufficient to show that p, constructed at the Theorem 4.3
is isomorphism.

Let a, 8 be arbitrary elememts of mm,(X) represented by the m-
functions with multiplicity zero f,g : (I",0I") — (X,zq). Let F,G :
I" x I — X be m-homotopies along p of f,g respectively. Then f; =
F|1n <1 represents pn(a) and g; = G|mx; represents po(B). Let F -G
I™ x I x I x X — R be the defining function defined by

F(u,2s,t, 0<s<i
‘F_._ﬁ(u,s,t,z)::{ -(u $t,2) 1"8“ 2
G(u,2s—1,t,z) 3<s<1
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Then F - G defines an m-function F- G : I" x I — X. But

R F(u,2s,0, 0<s<i
F-G(u,s,O,x):{ F(u,25,0,2) 1 =9=7
G(u,25-1,0,z)5 <s<1
_{f(u,2s,a:) 0<s<}
| §(u, 25 -1, 2) 3 <s<1,

where f, § are defining functions of f, g respectively. So F-G|mxo = f+g .
On the other hand, for (u,s) € d(I™"! x I) = 8"~ x TUI™? x {0,1},
F.G(u,s,t,z) = p(1 — t,z), where p is a defining function of p. So
palf-g] = [F-Glmxa] = [fi-¢1]. Since fg ~m f+g(relOI™) by Theorem
2.2

pPalf + gl =palf - gl = {f1- 1] = [f1 + g1] = [fi] + [91] = pn[f] + pnlg]-

Consequently, p, is a homomorphism.

Finally, let us prove that the homomorphism p, is an isomorphism.
First we show that the composition of p, 0 ¢, = (p + ¢q)a, where p,q :
(I1,8I) — (X, 2) are m-functions with multiplicity zero. Let ¢,[f] = [fi]
and pn[f1] = [f2]. Then there are m-homotopies Fy, Fy of f, f1 along
p,q respectively. This means that there are defining functions Fy, Fj :
I" x I x X - R such that Fy(u,0,z) = f(u,z), Fy(v,t,z) = ¢(1 — t,z)
for v € OI™, and Fy(u,1,z) = fi(u,z), and Fy(v,t,z) = p(1 — ¢, z) for
v € OI™, Fy(u,0,z) = fi(u,z), Fa(u,1,2) = fo(u, z). Define the defining
function F : I x I x X — R by taking

Fi(u,2t,z)

Flut,z) = { Fy(u,2t - 1,z)

Gg(1-2t,z) 0<t<3

) p2-2t,z) ;<t<1
Furthermore, F(u,1,z) = f3(u,2). So F defines a m-homotopy F :

I" x I — X such that Finyg = f,F|mx1 = fa, and Flomxr = Ppg-

This means (p - ¢)a[f] = [f2]). Since p- g ~m p + q(reldI) by Theorem

22,(p-q)n = (p+ ¢q)n by Theorem 4.3. Thus

Pa{galf]) = palfi] = [fo] = (p- O)nlf] = (P + g)nlf].

Then F(u,0,z) = f(u,z), F(v,t,z) = {
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Let O € mm(X) be the 0-element. Then On[f] = [f] for every [f] €
m7o(X). In fact, if F: I™ x I — X is a m-homotopy of f along O, then
Flinxo = f, Flrx1 = f1, a0d Flaimxr = o = ¢. So f ~n fr(rel0I™).

Since
pn("Pn)[f] =(p "‘p)n[f] = on[f] = [f]a

P» is an epimophism. Moreover, since (—p,)(Palf]) = (-2 + P)n =
Ognlf] = [f), pr is a monomorphism. We conclude p,, is an isomorphism.
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