M-HOMOTOPY EXTENSION PROPERTY AND M-HOMOTOPY GROUPS

Kee Young Lee

1. Introduction

In [4], R. Jerrad introduced m-functions as generalization of continuous function between topological spaces. m-functions are weighted, finitely valued functions with a property corresponding that of usual continuity. In [6], R. Jerrad and M.D.Meyerson defined the m-homotopy and m-homotopy groups and showed that the n-th m-homotopy group has a natural definition as $m\left(\pi_{n}(Y)\right)=$ hom $\left(S^{n}, Y\right)$ in a cetrain category of m-functions, which is an R-module under the addition of m functions for a ring R with identity without zero divisors. They also showed that m-homotopy theory is a homology theory by proving it satisfies the Eilenberg-steenrod axioms.

In this paper we generalize the pasting lemma on continuous functions to that on m-functions and show that for a triangulable pair (X, A), A has certain extension property in X for m-functions similar to absolute homotopy extension property. By using those facts, we prove that the m-fundamental group acts on n-th m-homotopy group as a group automorphism for $n \geq 1$.

2. m-function and m-homotopy group

We introduce some definitions and m-homotopy groups in [4], [5]. Suppose that $\bar{f}: X \times Y \rightarrow R$ is a (standard) function, where X and Y are T_{2}-spaces and R is a ring with identity and without zero divisors. Then we define a multiple-valued function over the ring $R f^{\prime}: X \rightarrow Y$ by its graph $f^{\prime}=\operatorname{cl}\{(x, y) \mid \bar{f}(x, y) \neq 0\}$, which satisfies the following condition ;

[^0](1) for all $x \in X, f^{\prime}(x)=\left\{y \in Y \mid(x, y) \in f^{\prime}\right\}$ is a finite or empty subset of Y.
(2) if $f^{\prime}\left(x^{\prime}\right)=\left\{y_{1}, \cdots, y_{n}\right\}$, there exist disjoint neighborhoods $\hat{V}_{i}\left(y_{i}\right)$ such that for any neighborhood $V_{i}\left(y_{i}\right) \subset \hat{V}_{i}$ there is a neighborhood $U\left(x^{\prime}\right)$ satisfying ;
(a) $\sum_{y \in V_{i}} \bar{f}(x, y)=\bar{f}\left(x^{\prime}, y_{i}\right)$ for $x \in U, i=1, \cdots, n$
(b) $\bar{f}(x, y)=0$ for $x \in U$ and $y \in\left[Y-\bigcup_{i=1}^{n} V_{i}\right]$
(3) if $f^{\prime}\left(x^{\prime}\right)=\phi$, there exists a neighborhood $U\left(x^{\prime}\right)$ such that $\bar{f}(x, y)=0$ for all $x \in U, y \in Y$

DEFINITION 2.1. Under the condition above, we define the multiple valued function $f: X \rightarrow Y \times R$ given by

$$
f=\left\{(x,(y, r)) y, \in f^{\prime}(x) \text { and } \bar{f}(x, y)=r\right\}
$$

At this time, f is called an m-function from X to Y defined by the defining function \bar{f} (the ring R is usually fixed and dropped from the notation) and R is called weighting factor of f determined by the defining function \bar{f}.

The multiplicity of f is $m(f)=\sum_{y \in Y} \bar{f}(x, y)$; it is indendpent of x if X is connected. The empty function, denoted by ϕ is defined by $\bar{\phi}: X \times Y \rightarrow 0$. Any continuous function can be regarded as an m functions by assigning it multipicity one.

The composition of two m-functions $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ is defined by $\overline{g \circ f}(x, y)=\sum_{y \in Y} \bar{f}(x, y) \bar{g}(x, y)$, so Hausdorff spaces and m functions over R form a categroy $R-T_{2}$, with T_{2} as a subcategory. Any two m-functions may be added : $f+g$ defined $\overline{f+g}=\bar{f}+\bar{g}$. Also, if $a \in$ R we define the $a \cdot f$ by $\overline{a \cdot f}=a \cdot \bar{f}$. Then hom (X, Y) is an R-module and there are functors hom $(-, Z)$ and $\operatorname{hom}(Z,-): R-T_{2} \rightarrow(R$-modules $)$. The restriction of $f: X \rightarrow Y$ to a subset $A \subset X$ is defined by $\left.f\right|_{A}=f \circ i$ when i is the inclusion $i: A \rightarrow X$. An m-function on pairs of Hausdorff spaces is defined as follows : $h:(X, A) \rightarrow(Y, B)$ is an m-function on
pairs if $h^{\prime}(A) \subset B$. We say that f is m-homotopic to g relative to $X^{\prime}\left(f \sim_{m} g\right.$ rel $\left.X^{\prime}\right)$ if there exists an m-function $F:(X, A) \times I \rightarrow(Y, B)$ with $F(x, 0)=f(x), F(x, 1)=g(x)$ and $\left.F\right|_{X^{\prime} \times\{t\}}=\left.f\right|_{X^{\prime}}=\left.g\right|_{X^{\prime}}$ for $t \in[0,1]$. An m-function on pointed pairs $f:\left(X, A, x_{0}\right) \rightarrow\left(Y, B, y_{0}\right)$ must satisfiy $\left.f\right|_{A}: A \rightarrow B$ and $\left.f\right|_{x_{0}}: x_{0} \rightarrow y_{0}$.

Lemma 2.2. In the catgory $R_{0}-p h T_{2}$ of pointed pairs of Hausdorff spaces and m-homotopy classes of m-functions over R of multiplicity zero, the condition for an m-function to be pointed is equivalent to $\left.f\right|_{x_{0}}=$ $\phi:$ also, for $f: X \rightarrow Y, f:\left(X, A, x_{0}\right) \rightarrow\left(Y, y_{0}, y_{0}\right)$ if and only if $\left.f\right|_{A}=\phi$. [6].

For any pair $(X, A)=(X, A, \phi)$ and integer $n \geq 1$, the n-th m homotopy group $m \pi_{n}(X, A)$ is defined to have as underlying set, the set of m-homotopy classes of m-functions(of multiplicity zero) $f:\left(I^{n}, \partial I^{n}, 0\right)$ $\rightarrow(X, A)$ where I^{n} is n-cube, ∂I^{n} is its boundary and 0 is $\{(0, \cdots, 0)\}$. For $n \geq 1$ the product of f and g in $R_{0}-p h T_{2}, f \cdot g: I^{n} \rightarrow X$ is defined by

$$
\bar{f} \cdot g(b, t, x)= \begin{cases}\bar{f}(b, 2 t+1, x), & 0 \leq t \leq \frac{1}{2} \\ \bar{g}(b, 2 t-1, x) & \frac{1}{2} \leq t \leq 1,\end{cases}
$$

where $(b, t, x) \in I^{n-1} \times I \times X$. Especially, $m \pi_{1}(X)$ is called the m fundamental group of X.

Theorem 2.3. $f g \sim_{m} f+g$ (where f and g represent elements of $m \pi_{n}(X, A)$ for $n \geq 1$ [6$]$.

Theorem 2.4. For $n \geq 1$, the homotopy group $m \pi_{n}(X, A)$ is the R module hom $\left(\left(I^{n}, \partial I^{n}, 0\right),(X, A)\right)$, Litting $A=\phi, m \pi_{n}(X)=\operatorname{hom}\left[\left(I^{n}, \partial I^{n}\right.\right.$, $0),(X)][6]$.

3. A generalization of the pasting lemma

In this section, we prove the following theorem as a generalization of the pasting lemma on continuous functions. Here we let X be a Hausdorff space and R a ring with identity without zero divisors.

Theorem 3.1. Let X_{1} and X_{2} be closed subspaces of X such that $X=X_{1} \cup X_{2}, f: X_{1} \rightarrow Y$ and $g: X_{2} \rightarrow Y m$-functions with their
defining functions \bar{f}, \bar{g} respectively such that $\bar{f}(x, y)=\bar{g}(x, y)$ for every $x \in X_{1} \cap X_{2}$. If $\bar{h}: X \times Y \rightarrow R$ is defined by

$$
\bar{h}(x, y)= \begin{cases}\vec{f}(x, y), & \text { for }(x, y) \in X_{1} \times Y, \\ \bar{g}(x, y), & \text { for }(x, y) \in X_{2} \times Y,\end{cases}
$$

then $h: X \rightarrow Y$ defined by \bar{h} is an m-function.
All we have to do to prove the Theorem 3.1 is to show that \bar{h} satisfies the conditions (1), (2) and (3) mentioned in the Definition 2.1. Let's show those facts at following lemmas

Lemma 3.2. Under the same hypothesis as the Theorem 3.1, $h^{\prime}(x)$ is finite, for all $x \in X$.

Proof. Since $f^{\prime}(x)$ and $g^{\prime}(x)$ are finite and if $h^{\prime}=f^{\prime} \cup g^{\prime}, h^{\prime}(x)=$ $f^{\prime}(x) \cup g^{\prime}(x)$, it is sufficient to show that $h^{\prime}=f^{\prime} \cup g^{\prime}$.

$$
\begin{aligned}
h^{\prime} & =\operatorname{cl}\{(x, y) \mid \bar{h}(x, y) \neq 0\} \\
& =\operatorname{cl}\{(x, y) \mid \bar{h}(x, y) \neq 0\} \cap\left(X_{1} \times Y \cup X_{2} \times Y\right) \\
& =\left[\left(\{(x, y) \mid \bar{h}(x, y) \neq 0\} \cap X_{1} \times Y\right) \cup\left(\{(x, y) \mid \bar{h}(x, y) \neq 0\} \cap X_{2} \times Y\right)\right] \\
& =\left[\left(\{(x, y) \mid \bar{f}(x, y) \neq 0\} \cap X_{1} \times Y\right) \cup\left(\{(x, y) \mid \bar{g}(x, y) \neq 0\} \cap X_{2} \times Y\right)\right] \\
& \subset\left(\operatorname{cl}\{(x, y) \mid \bar{f}(x, y) \neq 0\} \cap X_{1} \times Y\right) \cup\left(\operatorname{cl}\{(x, y) \mid \bar{g}(x, y) \neq 0\} \cap X_{2} \times Y\right) \\
& =\operatorname{cl}_{X_{1} \times Y}\{(x, y) \mid \bar{f}(x, y) \neq 0\} \cup \operatorname{cl}_{X_{2} \times Y}\{(x, y) \mid \bar{g}(x, y) \neq 0\} \\
& =f^{\prime} \cup g^{\prime}
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
f^{\prime} & =\operatorname{cl}_{X_{1} \times Y}\left\{(x, y) \in X_{1} \times Y \mid \bar{f}(x, y) \neq 0\right\} \\
& =\operatorname{cl}\left\{(x, y) \in X_{1} \times Y \mid \bar{f}(x, y) \neq 0\right\} \cap X_{1} \times Y \\
& =\operatorname{cl}\left\{(x, y) \in X_{1} \times Y \mid \bar{h}(x, y) \neq 0\right\} \cap X_{1} \times Y \\
& \subset \operatorname{cl}\{(x, y) \in X \times Y \mid \bar{h}(x, y) \neq 0\} \cap X_{1} \times Y \\
& =h^{\prime} \cap X_{1} \times Y \subset h^{\prime}
\end{aligned}
$$

Similarly, $g^{\prime} \subset h^{\prime}$. Thus $f^{\prime} \cup g^{\prime} \subset h^{\prime}$. Consequently, $h^{\prime}=f^{\prime} \cup g^{\prime}$.

Lemma 3.3. Under the same condition as the Theorem 3.1, if $h^{\prime}\left(x^{\prime}\right)=$ $\left\{y_{1}, y_{2}, \cdots, y_{n}\right\}$, then there exist disjoint neighborhoods $\hat{V}_{i}\left(y_{i}\right)$ such that for any neighborhood $V_{i}\left(y_{i}\right) \subset \hat{V}_{i}$ there is a neighborhood $U\left(x^{\prime}\right)$ satisfying ;
(a) $\sum_{y \in V_{i}} \bar{h}(x, y)=\bar{h}\left(x^{\prime}, y_{i}\right)$ for $x \in U, i=1,2, \cdots, n$.
(b) $\bar{h}(x, y)=0$ for $x \in U$ and $y \in\left[Y-\bigcup_{i=1}^{n} V_{i}\right]$.

Proof. In order to prove the lemma, we consider three cases ; (1) $x^{\prime} \in X_{1}-X_{2}(2) x^{\prime} \in X_{2}-X_{1}(3) x^{\prime} \in X_{1} \cap X_{2}$
The case (1) ; $x^{\prime} \in X_{1}-X_{2}$. Then $g^{\prime}\left(x^{\prime}\right)=\phi, h^{\prime}\left(x^{\prime}\right)=f^{\prime}\left(x^{\prime}\right)=$ $\left\{y_{1}, y_{2}, \cdots, y_{n}\right\}$. But f is an m-function with defining function \bar{f}. Thus by definition, there exist disjoint neighborhoods $\hat{V}_{i}\left(y_{i}\right)$ such that for any neighborhoods $V_{i}\left(y_{i}\right) \subset \hat{V}_{i}\left(y_{i}\right)$, there is a neighborhood $U^{\prime}\left(x^{\prime}\right)$ in X_{1} satisfying ;
(a) $\sum_{y \in V_{i}} \bar{f}(x, y)=\bar{f}\left(x^{i}, y_{i}\right)$ for $x \in U^{\prime}, i=1,2, \cdots, n$.
(b) $\bar{f}(x, y)=0$ for $x^{\prime} \in U^{\prime}$ and $y \in\left[Y-\bigcup_{i=1}^{n} V_{i}\right]$

Since U^{\prime} is open in X_{1}, there is an open $U^{\prime \prime}\left(x^{\prime}\right)$ in X such that $U^{\prime}=$ $U^{\prime \prime} \cap X_{1}$. Let $U=U^{\prime \prime}-X_{2}$. Then U is open in X and contains x^{\prime}. But $U \subset U^{\prime} \subset X_{1}$. Thus $\sum_{y \in V_{i}} \bar{h}(x, y)=\sum_{y \in V_{i}} \bar{f}(x, y)=\bar{f}\left(x^{\prime}, y_{i}\right)=\bar{h}\left(x^{\prime}, y_{i}\right)$ for $x \in U$ and $\bar{h}(x, y)=\bar{f}(x, y)=0$ for $x \in U \subset U^{\prime}$ and $y \in\left(Y-\bigcup_{i=1}^{n} V_{i}\right)$.

The proof of the case (2) is similar to that of the case (1).
The case (3) ; Let $x^{\prime} \in X_{1} \cap X_{2}$ and we note $h^{\prime}\left(x^{\prime}\right)=f^{\prime}\left(x^{\prime}\right) \cup g^{\prime}\left(x^{\prime}\right)$. First, assume $f^{\prime}\left(x^{\prime}\right)$ or $g^{\prime}\left(x^{\prime}\right)$ is empty. Without loss of generality we may assume $f^{\prime}\left(x^{\prime}\right)=\phi$. So we can let $h^{\prime}\left(x^{\prime}\right)=g^{\prime}\left(x^{\prime}\right)=\left\{y_{1}, \cdots, y_{n}\right\}$. Since g is an m-function, there exist neighborhoods $\hat{V}_{i}\left(y_{i}\right)$ such that for every neighborhoods $V_{i}\left(y_{i}\right) \subset \hat{V}_{i}\left(y_{i}\right)$ there is a neighborhood $U_{X_{2}}^{\prime}\left(x^{\prime}\right)$ of
x^{\prime} which is open in X_{2} satisfying;

$$
\sum_{y \in V_{i}} \bar{g}(x, y)=\bar{g}\left(x^{\prime}, y_{i}\right) \text { for } x \in U^{\prime}\left(x^{\prime}\right), i=1,2, \cdots, n .
$$

and

$$
\bar{g}(x, y)=0 \text { for } x^{\prime} \in U^{\prime}\left(x^{\prime}\right), y \in\left[Y-\bigcup_{i=1}^{n} V_{i}\right] .
$$

But since $f^{\prime}\left(x^{\prime}\right)=\phi$, there exist a neighborhood $U_{X_{1}}^{\prime \prime}\left(x^{\prime}\right)$ of x^{\prime} which is open in X_{1} such that $\bar{f}(x, y)=0$ for $x \in U_{X_{1}}^{\prime \prime}\left(x^{\prime}\right)$. Let $U\left(x^{\prime}\right)=$ $U^{\prime}\left(x^{\prime}\right) \cap U^{\prime \prime}\left(x^{\prime}\right)$, where U^{\prime} and $U^{\prime \prime}$ are open in X such that $U_{X_{1}}^{\prime}=U^{\prime} \cap X_{1}$ and $U_{X_{2}}^{\prime \prime}=U^{\prime \prime} \cap X_{2}$ respectively. Then $\sum_{y \in V_{i}} \bar{h}(x, y)=\sum_{y \in V_{i}}^{X_{1}} \bar{g}(x, y)=$ $\bar{g}\left(x^{\prime}, y_{i}\right)=\bar{h}\left(x^{\prime}, y_{i}\right)$ for $x \in U \cap X_{2}$ and $\sum_{y \in V_{i}} \bar{h}(x, y)=\sum_{y \in V_{i}} \bar{f}(x, y)=$ $\bar{f}\left(x^{\prime}, y_{i}\right)=\bar{h}\left(x^{\prime}, y_{i}\right)$ for $x \in U \cap X_{1}$. Furthermore, if for $x \in U$ and $y \in\left[Y-\bigcup_{i=1}^{n} V_{i}\right]$,

$$
\bar{h}(x, y)= \begin{cases}\bar{g}(x, y)=0 & \text { for } x \in U \cap X_{2} \\ \bar{f}(x, y)=0 & \text { for } x \in U \cap X_{1}\end{cases}
$$

On the other hand, let's assume that $f^{\prime}\left(x^{\prime}\right)$ and $g^{\prime}\left(x^{\prime}\right)$ are not empty. Let $f^{\prime}\left(x^{\prime}\right)=\left\{y_{1}^{f}, \cdots, y_{n}^{f}\right\}$ and $g^{\prime}\left(x^{\prime}\right)=\left\{y_{1}^{g}, \cdots, y_{m}^{g}\right\}$ for $n, m \geq 1$. Since $f($ and $g)$ is a m-function, there are disjoint neighborhoods $\hat{V}_{i}\left(y_{i}^{f}\right)$ (and $\hat{V}_{i}\left(y_{i}^{g}\right)$) such that for any neighborhoods $\hat{V}_{i}\left(y_{i}^{f}\right) \subset \hat{V}_{i}\left(y_{i}^{f}\right)\left(\right.$ and $\hat{V}_{i}\left(y_{i}^{g}\right) \subset$ $\hat{V}_{i}\left(y_{i}^{g}\right)$) there is a neighborhood $U_{X_{1}}^{\prime}\left(x^{\prime}\right)$ in $X_{1}\left(\right.$ and $U_{X_{2}}^{\prime}\left(x^{\prime}\right)$ in $\left.X_{2}\right)$ sat-
isfying ;

$$
\begin{aligned}
& \text { (a) } \sum_{y \in V_{i}} \bar{f}(x, y)=\bar{f}\left(x^{\prime}, y_{i}^{f}\right) \text { for } x \in U_{X_{1}}^{\prime}, i=1, \cdots, n \\
& \text { (and } \left.\sum_{y \in V_{i}} \bar{g}(x, y)=\bar{g}\left(x^{\prime}, y_{i}^{g}\right) \text { for } x \in U_{X_{2}}^{\prime}, i=1, \cdots, m\right) \\
& \text { (b) } \bar{f}(x, y)=0 \text { for } x^{\prime} \in U_{X_{1}}^{\prime} \text { and } y \in\left[Y-\bigcup_{i=1}^{n} V_{i}\right] \\
& \text { ((and } \left.\bar{g}(x, y)=0 \text { for } x^{\prime} \in U_{X_{2}}^{\prime} \text { and } y \in\left[Y-\bigcup_{i=1}^{m} V_{i}\right]\right) \text {. }
\end{aligned}
$$

Without loss of generality, we can take

$$
y_{1}^{f}=y_{2}^{g}, \cdots, y_{k}^{f}=y_{k}^{g}, 0 \leq k \leq \min \{m, n\}
$$

where we mean $f^{\prime}\left(x^{\prime}\right) \cap g^{\prime}\left(x^{\prime}\right)=\phi$ by $k=0$. Let's take $\hat{V}_{i}=\hat{V}_{i}\left(y_{i}^{f}\right) \cap$ $\hat{V}_{i}\left(y_{i}^{g}\right), \hat{V}_{k+j}=\hat{V}_{k+j}\left(y_{i}^{f}\right)$ and $\hat{V}_{k+l}=\operatorname{hat} V_{k+l}\left(y_{i}^{g}\right)$ for $i=1, \cdots, k, j=$ $1, \cdots, n-k, l=1, \cdots, m-k$. Let

$$
y_{i}= \begin{cases}y_{i}^{f}=y_{i}^{g}, & \text { for } i=1, \cdots, k \\ y_{k+j}^{f}, & \text { for } i=k+1, \cdots, n, j=1, \cdots, n-k \\ y_{k+l}^{g}, & \text { for } i=n+1, \cdots, n+m-k, l=1, \cdots, m-k\end{cases}
$$

Then $h^{\prime}\left(x^{\prime}\right)=f^{\prime}\left(x^{\prime}\right) \cup g^{\prime}\left(x^{\prime}\right)=\left\{y_{1}, \cdots, y_{m+n-k}\right\}$ and \hat{V}_{j} 's are disjoint. If $V_{j}\left(y_{i}\right) \subset \hat{V}_{j}\left(y_{j}\right)$, there exists a neighborhood $U_{X_{1}}^{\prime}\left(x^{\prime}\right)$ (open in X_{1}) and $U_{X_{2}}^{\prime}\left(x^{\prime}\right)$ (open in X_{2}) satisfying ; $\sum_{y \in V_{j}} \bar{f}(x, y)=\bar{f}\left(x^{\prime}, y_{j}\right)$ for $x \in$ $U_{X_{1}}^{\prime}, i=1, \cdots, n$ and $\bar{f}(x, y)=0$ for $x \in U_{X_{1}}^{\prime}, y \in\left[Y-\bigcup_{j=1}^{n} V_{j}\right]$. $\sum_{y \in V_{j}} \bar{g}(x, y)=\bar{g}\left(x^{\prime}, y_{j}\right)$ for $x \in U_{X_{2}}^{\prime}, j=1, \cdots, k, n+1, \cdots, n+m+k$ and $\bar{g}(x, y)=0$ for $x \in U_{X_{2}}^{\prime}$ and $y \in Y-\left[\left(\bigcup_{j=1}^{k} V_{j}\right) \cup\left(\bigcup_{j=n+1}^{n+m-k} V_{j}\right)\right]$. Take
$U=U_{X_{1}} \cap U_{X_{2}}$, where $U_{X_{1}}$ and $U_{X_{2}}$ are open in X such that $U_{X_{1}} \cap X_{1}=$ $U_{X_{1}}, U_{X_{2}}^{\prime} \cap X_{2}=U_{X_{2}}^{\prime}$ respectively. Then if $l \leq i \leq k$,

$$
\begin{aligned}
& \sum_{y \in V_{i}} \bar{h}(x, y)=\sum_{y \in V_{i}} \bar{f}(x, y)=\bar{f}\left(x^{\prime}, y_{i}\right)=\bar{h}\left(x^{\prime}, y_{i}\right) \text { for } x \in U \cap X_{1}, \\
& \sum_{y \in V_{i}} \bar{h}(x, y)=\sum_{y \in V_{i}} \bar{g}(x, y)=\bar{g}\left(x^{\prime}, y_{i}\right)=\bar{h}\left(x^{\prime}, y_{i}\right) \text { for } x \in U \cap X_{2}
\end{aligned}
$$

and if $k+1 \leq i \leq n$,

$$
\begin{aligned}
& \sum_{y \in V_{i}} \bar{h}(x, y)=\sum_{y \in V_{i}} \bar{g}(x, y)=0=\bar{g}\left(x^{\prime}, y_{i}\right)=\bar{h}\left(x^{\prime}, y_{i}\right) \text { for } x \in U \cap X_{2}, \\
& \sum_{y \in V_{i}} \bar{h}(x, y)=\sum_{y \in V_{i}} \bar{g}(x, y)=0=\bar{g}\left(x^{\prime}, y_{i}\right)=\bar{h}\left(x^{\prime}, y_{i}\right) \text { for } x \in U \cap X_{2},
\end{aligned}
$$

because $y \in Y-\left[\left(\bigcup_{j=1}^{k} V_{j}\right) \cup\left(\bigcup_{j=n+1}^{n+m-k} V_{j}\right)\right]$. Similarly, for $i=n+1, \cdots, m+$ $\left.n-k, \sum_{y \in V_{i}} \bar{h}(x, y)=\bar{h}\left(x^{\prime}, y_{i}\right)\right)$. If $x \in U$ and $y \in\left[Y-\bigcup_{i=1}^{n+m-k} V_{i}\right], \bar{h}(x, y)=$ 0. In fact, since $y \in\left[Y-\bigcup_{i=1}^{n+m-k} V_{i}\right] \subset\left[Y-\bigcup_{i=1}^{n} V_{i}\right], \bar{h}(x, y)=\bar{f}(x, y)=$ 0 for $x \in U \cap X_{1}$ and since $y \in\left[Y-\bigcup_{i=1}^{n+m-k} V_{i}\right], \subset\left[Y-\left(\bigcup_{i=1}^{k} V_{i} U\right.\right.$

$$
\left.\left.\bigcup_{i=n+1}^{n+m-k} V_{i}\right)\right], \bar{h}(x, y)=\bar{g}(x, y)=0 \text { for } x \in U \cap X_{2} .
$$

Lemma 3.4. Under the same hypothesis as the Theorem 3.1, if $h^{\prime}\left(x^{\prime}\right)=$ ϕ then there exists a neighborhood $U\left(x^{\prime}\right)$ such that $\bar{h}(x, y)=0$ for all $x \in U, y \in Y$.

Proof. Assume $x^{\prime} \in X_{1}-X_{2}$. Then $h^{\prime}\left(x^{\prime}\right)=f^{\prime}\left(x^{\prime}\right)=\phi$. So there exists a neighborhood $U_{X_{1}}^{\prime}\left(x^{\prime}\right)$ in X_{1} such that $\bar{f}(x, y)=0$ for all $x \in$ $U_{X_{1}}, y \in Y$. Take $U=U_{X_{1}}-X_{2}$, where $U_{X_{1}}$ is open in X such that $U_{X_{1}}^{\prime}=U_{X_{1}} \cap X_{1}$. Then $\bar{h}(x, y)=\bar{f}(x, y)=0$ for $x \in U, y \in Y$.

We can prove in case $x^{\prime} \in X_{2}-X_{1}$ similarly. Assume $x^{\prime} \in X_{1} \cap$ X_{2}. Then since $h^{\prime}\left(x^{\prime}\right) \supset f^{\prime}\left(x^{\prime}\right)$ and $h^{\prime}\left(x^{\prime}\right) \supset g^{\prime}\left(x^{\prime}\right)$ and $h^{\prime}\left(x^{\prime}\right)=\phi$ by hypothesis, $f^{\prime}\left(x^{\prime}\right)=\phi$ and $g^{\prime}\left(x^{\prime}\right)=\phi$. So there exist $U_{X_{1}}^{\prime}$ and $U_{X_{2}}^{\prime}$ such that $\bar{f}(x, y)=0$ for $x \in U_{X_{1}}^{\prime}, y \in Y$ and $\bar{g}(x, y)=0$ for $x \in U_{X_{2}}^{\prime}$ and $y \in Y$. Let $U=U_{X_{1}} \cap U_{X_{2}}$, where $U_{X_{1}}$ and $U_{X_{2}}$ are open in X such that $U_{X_{1}}^{\prime}=U_{X_{1}} \cap X_{1}$ and $U_{X_{2}}^{\prime}=U_{X_{2}} \cap X_{2}$ respectively. Then $\bar{h}(x, y)=0$ for $x \in U$ and $y \in Y$.

After all, we have completed the proof of Theorem 3.1 by Lemma 3.2, Lemma 3.3 and Lemma 3.4.

Corollary 3.5. Under the same hypothesis as the Theorem 3.1 if f and g are continuous function, then m-function h is continuous

Proof. We recall that any continuous function f from X to Y has the defining function $\bar{f}: X \times Y \rightarrow R$ defined by

$$
\bar{f}(x, y)= \begin{cases}0 & \text { if } y \neq f(x) \\ 1 & \text { if } y=f(x)\end{cases}
$$

Since $h^{\prime}=f^{\prime} \cup g^{\prime}$ and f^{\prime} and g^{\prime} are single valued and $f^{\prime}(x)=g^{\prime}(x)$ for $x \in X_{1} \cap X_{2}, h^{\prime}$ is single valued. Thus m-function $h: X \rightarrow Y$ defined by $h(x)=h^{\prime}(x)$. Let $h\left(x^{\prime}\right)=y \in Y$ and $V(y)$ be an neighborhood of Y. By the definition of m-function, there is a neighborhood $\hat{V}(y)$ such that for any neighborhood $V \subset \hat{V}(y)$ there exists a nbd $U\left(x^{\prime}\right)$ satisfying; $\sum_{y \in V} \bar{h}(x, y)=\bar{h}\left(x^{\prime}, y\right)=1$ for $x \in U\left(x^{\prime}\right)$. Let $V=V(y) \cap \hat{V}(y)$. Then $\sum_{y \in V}$
$\bar{h}\left(x, y^{\prime}\right) \neq 0$ for some $y^{\prime} \in V$. So $\left(x, y^{\prime}\right) \in h^{\prime}$. But since h^{\prime} is single valued, $h(x)=h^{\prime}(x)=y^{\prime} \in V \subset V(y)$. Thus $h\left(U\left(x^{\prime}\right)\right) \subset V(y)$. We conclude that h is a continuous function.

4. Proof of the main theorem

In this section, we prove the main theorem that the m-fundamental group acts on m-homotopy group as a group automorphism. In order to do that we introudce some definitons, and lemmas.

Definition 4.1. A subspace A of a space X is said to have the absolute m-homotopy extension property (AMHEP) if for every m-homotopy $h: A \times I \rightarrow Y$ of an arbitrary m-function $f: X \rightarrow Y$, there exists an m-homotopy $g: X \times I \rightarrow Y$ such that $\left.g\right|_{X \times 0}=f$ and $\left.g\right|_{A \times I}=h$.
remark. A has the AMHEP in X if and only if for every defining function $\bar{h}: A \times I \times Y \rightarrow R$ and $\bar{f}: X \times Y \rightarrow R$ such that $\bar{h}(a, 0, y)=$ $\bar{f}(a, y)$ for $(a, y) \in A \times Y$, there exists a defining function $\bar{g}: A \times I \times$ $Y \rightarrow R$ such that $\bar{g}(a, t, y)=\bar{h}(a, t, y)$ for $(a, t, y) \in A \times I \times Y$ and $\bar{g}(x, 0, y)=\bar{f}(x, y)$.

Lemma 4.2. If (X, A) is a (finitely) triangulable pair, then A has the AMHEP in X.

Proof. Let f be a given m-function with its defining function \bar{f} : $X \times Y \rightarrow R$ and $h: A \times I \rightarrow Y$ a given m-homotopy of f with its defining function $\bar{h}: A \times I \times Y \rightarrow R$, that is, $\bar{h}(a, 0, y)=\bar{f}(a, y)$ for $a \in A, y \in Y$. Consider the product space $M=X \times I$ and its closed subspace $L=X \times 0 \cup A \times I$ Define a m-function $H: L \rightarrow Y$ by its defining function defined by

$$
\bar{H}(x, 0, y)= \begin{cases}\bar{f}(x, y) & \text { for }(x, 0, y) \in X \times 0 \times Y \\ \bar{h}(a, t, y) & \text { for }(a, t, y) \in A \times I \times Y\end{cases}
$$

We define $\bar{F}: X \times I \times Y \rightarrow R$ by $\bar{F}(x, t, y)=\bar{H}(r(x, t), y)$, where $r: X \times I \rightarrow X \times 0 \cup A \times I$ is a retraction. Then $\bar{F}(x, 0, y)=\bar{H}(r(x, 0), y)=$ $\bar{f}(x, y)$ and $\bar{F}(a, t, y)=\bar{H}(r(a, t), y)=\bar{h}(a, t, y)$. Hence m-function F : $X \times I \rightarrow Y$ defined by \bar{F} is an extension of h such that $\left.F\right|_{X \times 0}=f$.

Theorem 4.3. Let $p:(I, \partial I) \rightarrow\left(X, x_{0}\right)$ be an m-function with multiplicity 0 . Then p induces a transformation $p_{n}: m \pi_{n}\left(X, x_{0}\right) \longrightarrow$ $m \pi_{n}\left(X, x_{0}\right)$ which depends only on the m-homotopy of the m-function p.

Proof.. Let $f:\left(I^{n}, \partial I^{n}\right) \longrightarrow\left(X, x_{0}\right)$ be an m-function with multiplicity zero. Define $\bar{\varphi}_{p}: \partial I^{n} \times I \times X \rightarrow R$ by $\bar{\varphi}_{p}(u, t, x)=\bar{p}(1-t, x)$, where \bar{p} is the defining function of p. Then $\bar{\varphi}_{p}$ defines an m-function $\varphi_{p}: \partial I^{n} \times I \rightarrow X$. Define $\bar{F}^{\prime}:\left[\left(I^{n} \times 0\right) \cup\left(\partial I^{n} \times I\right)\right] \times X \rightarrow R$ by

$$
\bar{F}^{\prime}(u, t, x)= \begin{cases}\bar{f}(u, x) & \text { if }(u, t, x) \in I^{n} \times 0 \times X \\ \bar{\varphi}_{p}(u, t, x) & \text { if }(u, t, x) \in \partial I^{n} \times I \times X\end{cases}
$$

Then \bar{F}^{\prime} is a defining function by Theorem 3.1. So \bar{F}^{\prime} defines an m function $F^{\prime}: I^{n} \times 0 \cup \partial I^{n} \times I \rightarrow X$ such that $\left.F^{\prime}\right|_{I^{n} \times 0}=f$ and $\left.F^{\prime}\right|_{\partial I^{n} \times I}=$ φ_{p}. By the Lemma 4.2, ∂I^{n} has the AMHEP in I^{n}. Thus there exists an m-function $F: I^{n} \times I \rightarrow X$ sucht that $\left.F\right|_{I^{n} \times 0}=f$ and $\left.F\right|_{\partial I^{n} \times I}=\varphi_{p}$.

From now on, we shall call such $F m$-funtion of f along p.
Let $\left.F\right|_{I^{n} \times 1}=f_{1}$. Then $m\left(f_{1}\right)=m(f)=0$ and $\bar{f}(v, x)=\bar{F}(v, 1, x)=$ $\bar{p}(1-1, x)=0$ for $v \in \partial I^{n}$, where \bar{F} is a defining function of F. Define $p_{n}: m \pi_{n}\left(X, x_{0}\right) \rightarrow m \pi_{n}\left(X, x_{0}\right)$ by $p_{n}[f]=\left[f_{1}\right]$. Let's show that p_{n} is well-defined. Let $f \sim_{m} g\left(\mathrm{rel} \partial I^{n}\right)$ and $p \sim_{m} q(\mathrm{rel} \partial I)$ and H and G m-homotopies of f along p and g along q respectively. It is sufficient to show that $f_{1} \sim_{m} g_{1}\left(\operatorname{rel} \partial I^{n}\right)$. Since $\left.F\right|_{I^{n} \times 0}=f,\left.G\right|_{I^{n} \times 0}=g$, and $f \sim_{m}$ $g\left(\right.$ rel $\left.\partial I^{n}\right)$, there exists an m-homotopy $H_{1}: I^{n} \times 0 \times I \rightarrow X$ such that $\left.H_{1}\right|_{I^{n} \times 0 \times 0}=\left.F\right|_{I^{n} \times 0}$, and $\left.H_{I}\right|_{I^{n} \times 0 \times 1}=\left.G\right|_{I^{n} \times 0}$, and $\left.H_{1}\right|_{\partial I^{n} \times 0 \times t}=\phi$. Furthermore, since $p \sim_{m} q($ rel $\partial I)$, there is an m-function $h: I \times I \rightarrow X$ with its defining function $\bar{h}: I \times I \times X \rightarrow R$ such that $\bar{h}(t, 0, x)=$ $\bar{p}(t, x), \bar{h}(t, 1, x)=\bar{q}(t, x)$, and $\bar{h}(\{0,1\} \times s \times x)=0$, where \bar{p} and \bar{q} are the defining functions of p and q respectively. Define $\bar{H}_{2}: \partial I^{n} \times I \times I \times X \rightarrow R$ by $\bar{H}_{2}(v, t, s, x)=\bar{h}(1-t, s, x)$, then

$$
\begin{aligned}
& \bar{H}_{2}(v, t, 0, x)=\bar{h}(1-t, 0, x) \\
& \bar{H}_{2}(v, t, 1, x)=\bar{h}(1-t, x)=\bar{\varphi}_{p}(v, t, x) \\
&
\end{aligned}
$$

and

$$
\bar{H}_{2}(v \times\{0,1\} \times s \times x)=0
$$

Thus \bar{H}_{2} defines an m-homotopy $H_{2}: \partial I^{n} \times I \times I \rightarrow X$ between $\left.F\right|_{\partial I^{n} \times I}\left(=\varphi_{p}\right)$ and $\left.G\right|_{\partial I^{n} \times I}\left(=\varphi_{q}\right)$ relartive to $\partial I^{n} \times 0 \cup \partial I^{n} \times 1$. Let $A=I^{n} \times 0 \cup \partial I^{n} \times I$. Define $H: A \times I \rightarrow X$ by

$$
\left.H\right|_{I^{n} \times 0 \times I}=H_{1} \text { and }\left.H\right|_{\partial I^{n} \times I \times I}=H_{2} .
$$

Then H is well-defined m-function, because $\left.H_{1}\right|_{\partial I^{n} \times 0 \times t}=\phi=\left.H_{2}\right|_{\partial I^{n} \times 0 \times t}$. Since $\left.H\right|_{A \times 0}=\left.F\right|_{A},\left.H\right|_{A \times 1}=\left.G\right|_{A}$, and $\left.H\right|_{\partial I^{n} \times 0 \times t \cup a I^{n} \times 1 \times t}=\phi, H$ is an m-homotopy between $\left.F\right|_{A}$ and $\left.G\right|_{A}$ relative to $\partial I^{n} \times 0 \times t \cup \partial I^{n} \times 1 \times t$. Thus by the AMHEP, there is an m-homotopy $H^{\prime}: I^{n} \times I \times I \rightarrow X$ such that $\left.H^{\prime}\right|_{A \times I}=H, H_{I^{n} \times I \times 0}=F,\left.H^{\prime}\right|_{A \times 1}=\left.G\right|_{A}$, and $\left.H^{\prime}\right|_{\partial I^{n} \times 1 \times t}=\phi$ for all $t \in I$. Let $T=\left.H^{\prime}\right|_{I^{n} \times I \times 1}: I^{n} \times I \rightarrow X$. Then $\left.T\right|_{I^{n} \times 0}=g$,
$\left.T\right|_{\partial I^{n} \times I}=\varphi_{q}$. So T is an m-homotopy of g along q. Let $\left.T\right|_{I^{n} \times 1}=$ h_{1}. Then f_{1} is homotopic to h_{1} relative to ∂I^{n} by the m-homotopy $\left.H^{\prime}\right|_{I^{n} \times 1 \times I}$.

Now, Let's prove that g_{1} and h_{1} are m-homotopic relative to ∂I^{n}. Define an m-function $M: I^{n} \times I \rightarrow X$ by its defining function \bar{M} : $I^{n} \times I \times X \rightarrow R$ defined by

$$
\bar{M}(u, s, x)= \begin{cases}\bar{G}(u, 1-2, x) & \left(u \in I^{n}, 0 \leq s \leq \frac{1}{2}\right) \\ \bar{T}(u, 2 s-1, x) & \left(u \in I^{n}, \frac{1}{2} \leq s \leq 1\right)\end{cases}
$$

Then for each $v \in \partial I^{n}$, we have $\bar{M}(v, s, x)=\bar{M}(v, 1-s, x)$. Therefore we may define a m-homotopy $N:\left(\partial I^{n} \times I \cup I^{n} \times \partial I\right) \times I \rightarrow X$ by the defining function $\bar{N}:\left(\partial I^{n} \times I \cup I^{n} \times \partial I\right) \times I \times X \rightarrow R$ defined by

$$
\bar{N}(u, s, t, x)= \begin{cases}\bar{M}(u, s, x) & \left(u \in I^{n}, s \in \partial I\right) \\ \bar{M}(u, s-t s, x) & \left(u \in \partial I^{n}, 0 \leq s \leq \frac{1}{2}\right) \\ \bar{M}(u,(1-s)(1-t), x) & \left(u \in \partial I^{n}, \frac{1}{2} \leq s \leq 1\right)\end{cases}
$$

Since $\partial I^{n} \times I \cup I^{n} \times \partial I$ has the AMHEP in $I^{n} \times I$, the m-homotopy N has an extension m-homotopy $L: I^{n} \times I \times I \rightarrow X$ such that $\left.L\right|_{I^{n} \times I \times 0}=M$. Let $O=\left.L\right|_{I^{n} \times I \times 1}$. Then $\left.O\right|_{I^{n} \times 0}=\left.L\right|_{I^{n} \times 0 \times 1}=\left.N\right|_{I^{n} \times 0 \times 1}=\left.M\right|_{I^{n} \times 0}=$ $\left.G\right|_{I^{n} \times 1}=g_{1},\left.O\right|_{I^{n} \times 1}=\left.T\right|_{I^{n} \times 1}=h_{1}$, and $\left.O\right|_{\partial I^{n} \times s}=\phi$ for every $s \in I$. This implies that g_{1} and h_{1} are m-homotopic relative to ∂I^{n}.

So we have constructed a transformation $p_{n}: m \pi_{n}(X) \rightarrow m \pi_{n}(X)$ which depends only on the m-homotopy of the m-function $p:(I, \partial I) \rightarrow$ (X, x_{0}).

Theorem 4.4. $m \pi_{1}(X)$ acts on $m \pi_{n}(X)$ as a group automorphism, $n \geq 1$.

Proof. It is sufficient to show that p_{n} constructed at the Theorem 4.3 is isomorphism.

Let α, β be arbitrary elememts of $m \pi_{n}(X)$ represented by the m functions with multiplicity zero $f, g:\left(I^{n}, \partial I^{n}\right) \rightarrow\left(X, x_{0}\right)$. Let F, G : $I^{n} \times I \rightarrow X$ be m-homotopies along p of f, g respectively. Then $f_{1}=$ $\left.F\right|_{I^{n} \times 1}$ represents $p_{n}(\alpha)$ and $g_{1}=\left.G\right|_{I^{n} \times 1}$ represents $p_{n}(\beta)$. Let $\overline{F \cdot G}$: $I^{n-1} \times I \times I \times X \rightarrow R$ be the defining function defined by

$$
\overline{F \cdot G}(u, s, t, x)= \begin{cases}\bar{F}(u, 2 s, t, x) & 0 \leq s \leq \frac{1}{2} \\ \bar{G}(u, 2 s-1, t, x) & \frac{1}{2} \leq s \leq 1\end{cases}
$$

Then $\overline{F \cdot G}$ defines an m-function $F \cdot G: I^{n} \times I \rightarrow X$. But

$$
\begin{aligned}
\overline{F \cdot G}(u, s, 0, x) & = \begin{cases}\bar{F}(u, 2 s, 0, x) & 0 \leq s \leq \frac{1}{2} \\
\bar{G}(u, 2 s-1,0, x) \frac{1}{2} \leq s \leq 1\end{cases} \\
& = \begin{cases}\bar{f}(u, 2 s, x) & 0 \leq s \leq \frac{1}{2} \\
\bar{g}(u, 2 s-1, x) & \frac{1}{2} \leq s \leq 1,\end{cases}
\end{aligned}
$$

where \bar{f}, \bar{g} are defining functions of f, g respectively. So $\left.F \cdot G\right|_{I^{n} \times 0}=f \cdot g$. On the other hand, for $(u, s) \in \partial\left(I^{n-1} \times I\right)=\partial I^{n-1} \times I \cup I^{n-1} \times\{0,1\}$, $\overline{F \cdot G}(u, s, t, x)=\bar{p}(1-t, x)$, where \bar{p} is a defining function of p. So $p_{n}[f \cdot g]=\left[\left.F \cdot G\right|_{I^{n} \times I}\right]=\left[f_{1} \cdot g_{1}\right]$. Since $f g \sim_{m} f+g\left(\operatorname{rel} \partial I^{n}\right)$ by Theorem 2.2
$p_{n}[f+g]=p_{n}[f \cdot g]=\left[f_{1} \cdot g_{1}\right]=\left[f_{1}+g_{1}\right]=\left[f_{1}\right]+\left[g_{1}\right]=p_{n}[f]+p_{n}[g]$.
Consequently, p_{n} is a homomorphism.
Finally, let us prove that the homomorphism p_{n} is an isomorphism. First we show that the composition of $p_{n} \circ q_{n}=(p+q)_{n}$, where p, q : $(I, \partial I) \rightarrow\left(X, x_{0}\right)$ are m-functions with multiplicity zero. Let $q_{n}[f]=\left[f_{1}\right]$ and $p_{n}\left[f_{1}\right]=\left[f_{2}\right]$. Then there are m-homotopies F_{1}, F_{2} of f, f_{1} along p, q respectively. This means that there are defining functions \bar{F}_{1}, \bar{F}_{2} : $I^{n} \times I \times X \rightarrow R$ such that $\bar{F}_{1}(u, 0, x)=\bar{f}(u, x), \bar{F}_{1}(v, t, x)=\bar{q}(1-t, x)$ for $v \in \partial I^{n}$, and $\bar{F}_{1}(u, 1, x)=\bar{f}_{1}(u, x)$, and $\bar{F}_{2}(v, t, x)=\bar{p}(1-t, x)$ for $v \in \partial I^{n}, \bar{F}_{2}(u, 0, x)=\bar{f}_{1}(u, x), \bar{F}_{2}(u, 1, x)=\bar{f}_{2}(u, x)$. Define the defining function $\bar{F}: I^{n} \times I \times X \rightarrow R$ by taking

$$
\bar{F}(u, t, x)= \begin{cases}\bar{F}_{1}(u, 2 t, x) & 0 \leq t \leq \frac{1}{2} \\ \bar{F}_{2}(u, 2 t-1, x) & \frac{1}{2} \leq t \leq 1\end{cases}
$$

Then $\bar{F}(u, 0, x)=\bar{f}(u, x), \bar{F}(v, t, x)= \begin{cases}\bar{q}(1-2 t, x) & 0 \leq t \leq \frac{1}{2} \\ \bar{p}(2-2 t, x) & \frac{1}{2} \leq t \leq 1 .\end{cases}$
Furthermore, $F(u, 1, x)=\bar{f}_{2}(u, x)$. So \bar{F} defines a m-homotopy F : $I^{n} \times I \rightarrow X$ such that $F_{I^{n} \times 0}=f,\left.F\right|_{I^{n} \times 1}=f_{2}$, and $\left.F\right|_{\partial I^{n} \times I}=\varphi_{p \cdot q}$. This means $(p \cdot q)_{n}[f]=\left[f_{2}\right]$. Since $p \cdot q \sim_{m} p+q($ rel $\partial I)$ by Theorem 2.2, $(p \cdot q)_{n}=(p+q)_{n}$ by Theorem 4.3. Thus

$$
p_{n}\left(q_{n}[f]\right)=p_{n}\left[f_{1}\right]=\left[f_{2}\right]=(p \cdot q)_{n}[f]=(p+q)_{n}[f] .
$$

Let $\mathcal{O} \in m \pi_{1}(X)$ be the 0 -element. Then $\mathcal{O} n[f]=[f]$ for every $[f] \in$ $m \pi_{n}(X)$. In fact, if $F: I^{n} \times I \rightarrow X$ is a m-homotopy of f along \mathcal{O}, then $\left.F\right|_{I^{n} \times 0}=f,\left.F\right|_{I^{n} \times 1}=f_{1}$, and $\left.F\right|_{\partial I^{n} \times I}=\varphi_{\mathcal{O}}=\phi$. So $f \sim_{m} f_{1}\left(\operatorname{rel} \partial I^{n}\right)$. Since

$$
p_{n}\left(-p_{n}\right)[f]=(p-p)_{n}[f]=\mathcal{O}_{n}[f]=[f]
$$

p_{n} is an epimophism. Moreover, since $\left(-p_{n}\right)\left(p_{n}[f]\right)=(-p+p)_{n}=$ $\mathcal{O}_{n}[f]=[f], p_{n}$ is a monomorphism. We conclude p_{n} is an isomorphism.

References

[1] J. Dugundji, Topology, Boston; Allyn and Bacon Inc, 1968.
[2] S. Eilenberg and N. Steenrod, Foundation of algebraic topology, Prinction, NewJersey Princiton University Press, 1952.
[3] S.T. Hue, Homotopy theory, Academic press, New York and London, 1959.
[4] R. Jerrad, Homology with multiple-valued functions applied to fixed points, Trans. Amer. Math. Soc. 213 (1975), 407-427.
[5] _, A stronger invariant for homology theroy, Mic. Math. J. 62 (1979), 33-46.
[6] R. Jerrad and M.D. Meyerson, Homotopy with m-functions, Pacific J. of Math. 84 (1979), 305-318.
[7] E. Spanier, Algebraic Topology, New York MacGraw-Hill, 1966.

Department of Mathematics
Taejeon National University of Technology
Taejeon 305-300, Korea

[^0]: Received December 28, 1991.
 This research was supported by KOSEF.

