NONLINEAR TANGENTIAL OBLIQUE BOUNDARY VALUE PROBLEM

June Gi Kim

1. Introduction

Let Ω be a bounded and smooth domain in \mathbb{R}^n , $n \geq 2$. It is well known that the problem of finding a function $u \in C^{\infty}(\bar{\Omega})$ satisfying the relations

$$Lu = 0 \text{ in } \Omega$$

$$\frac{\partial u}{\partial l} = f \text{ on } \partial \Omega$$

is ill-posed if l is tangential to $\partial\Omega$. In [5], B.Winzell studied this problem for the uniformly elliptic linear second order operators of the following form;

$$Lu = a^{ij}(x)D_{ij}u + b^{i}(x)D_{i}u + c(x)u.$$

In [4], P.R.Popivanov and N.D.Kutev studied this problem for the operator L of the following form;

$$Lu = a^{ij}(x)D_{ij}u + b^{i}(x,u)D_{i}u + c(x,u).$$

However the linear principal part of the above equation results from the key idea of Egorov and Knodratiev to differentiate the equation in the tangential direction l and is not required essentially by the problem.

In this paper we study the same problem for the quasilinear uniformly elliptic operator

$$Qu = a^{ij}(x, u, \nabla u)D_{ij}u + a(x, u, \nabla u).$$

Here a^{ij} and a are given functions of their arguments. The most widely studied such problem is the Dirichlet problem;

$$Qu = 0 \text{ in } \Omega$$
$$u = \varphi \text{ on } \partial\Omega.$$

Received December 28,1991.

This research was supported by the Korea Research Foundation, 1990-1991.

THEOREM A. There are various conditions under which the Dirichlet problem

(1.1)
$$\begin{cases} Qu = a^{ij}(x, u\nabla u)D_{ij}u + a(x, u, \nabla u) = 0 \text{ in } \Omega \\ u = \varphi \text{ on } \partial\Omega \end{cases}$$

is solvable for any $\varphi \in C^{\infty}(\partial\Omega)$.

For the various conditions that guarantee the solvability of the Dirichlet problem (1.1), we refer to the extensive literature (in particular [1]). A more general boundary value problem is that in which the gradient of the solution plays a role in the boundary condition

$$Nu = 0$$
 on $\partial\Omega$,

where N is given on $C^1(\bar{\Omega})$ by

$$Nu(x) = b(x, u(x), \nabla u(x)).$$

If N is assumed to satisfy a condition analogous to the ellipticity of Q, there are many existence theorems [2]. However if the boundary operator N is everywhere tangential, then the study of boundary behaviour of the solution is essentially separate from the existence problem. From now on we consider only the operators Q which satisfy one of the solvability conditions of Theorem A.

2. Main Result

In this section, we consider the following oblique derivative problem

(2.1)
$$\begin{cases} Qu = a^{ij}(x, u\nabla u)D_{ij}u + a(x, u, \nabla u) = 0 \text{ in } \Omega \\ \frac{\partial u}{\partial l} = f \text{ on } \partial \Omega \end{cases}$$

Here l is a C^{∞} tangent vector field on $\partial\Omega$ and f is a given C^{∞} function on $\partial\Omega$. In order to solve the problem (2.1), by Theorem A, it suffices to find a function $\phi \in C^{\infty}(\partial\Omega)$ such that

$$\frac{\partial u}{\partial t} = f.$$

A necessarily condition for the solvability of the problem (2.2) is that

for any closed integral curve C of l.

LEMMA 2.1. Ω is a bounded smooth domain in R^2 and $\partial\Omega$ is a connected C^{∞} manifold. Let l be a C^{∞} tangent vector field to $\partial\Omega$ which never vanishes. Then (2.1) is solvable for any f satisfying the condition (2.3).

Proof. Observe that any point $p \in \partial \Omega$ has a neghborhood U_p and a function $g_p \in C^{\infty}(U_p)$ such that

$$\frac{\partial g_p}{\partial l} = f \text{ on } U_p.$$

We can cover $\partial\Omega$ by a finite number of open set U_1, U_2, \dots, U_k with corresponding functions g_1, g_2, \dots, g_k such that $U_i \cap U_j \neq 0$ if and only if $j = i + 1 \pmod{k}$. Choose constants c_i 's so that

$$\varphi_i = \varphi_{i+1} \text{ on } U_i \cap U_{i+1}, i = 1, 2, \dots, k-1,
\varphi_1 = f_1,
\varphi_i = f_i + c_{i-1}, i = 2, 3, \dots, k-1.$$

Then condition (2.3) implies that

$$\varphi_k = \varphi_1 \text{ on } U_k \cap U_1.$$

Therefore we can glue together $\varphi_1, \varphi_2, \dots, \varphi_k$ to a single function $\varphi \in C^{\infty}(\partial\Omega)$ with $\frac{\partial \varphi}{\partial l}$.

Now by theorem A we can solve the Dirichlet problem Qu = 0 in Ω and $u = \varphi$ on $\partial\Omega$. This completes the proof.

Since $\partial\Omega$ is compact, l is complete. Let $\Psi: R \times \partial\Omega \to \partial\Omega$ be a 1-parameter group of transformations of $\partial\Omega$ for l.

COROLLARY 2.2. Let Ω be a bounded smooth domain in $\mathbb{R}^n, n \geq 3$. l is a tangent vector field to $\partial \Omega$ which never vanishes. Suppose there exists a (n-2)-dimensional connected submanifold D of $\partial \Omega$ such that each integral curves of l starting from $p \in D$ retruns to p in a finite time. Suppose l is transversal to D and

$$\bigcup_{(t,p)\in R\times D}\psi_p(t)=\partial\Omega.$$

Then (2.1) is solvable for any f satisfying the condition (2.3).

Proof. Choose any function $h \in C^{\infty}(\partial\Omega)$. Define a function $\phi: \partial\Omega \longrightarrow R$ by the following procedure; Given $x \in \partial\Omega$, choose $p \in \partial\Omega$ such that $x = \psi_p(t)$ for some $t \in R$. By applying the method of proof of the above Lemma to the orbit of l through p, we get a function g_p defined on the orbit with $g_p(p) = h(p)$. Take $\psi(x) = g_p(x)$. Then $\frac{\partial \varphi}{\partial l} = f$ by our construction. Now theorem A completes the proof.

Again we denote by $\Psi: R \times \partial \Omega \longrightarrow \partial \Omega$ the 1-parameter group of transformations of $\partial \Omega$ for l.

THEOREM 2.3. Let Ω be a bounded and smooth domain in \mathbb{R}^3 . Suppose $\partial\Omega$ is connected and every simple closed curve in $\partial\Omega$ separates $\partial\Omega$ into two components. Suppose that the vector field l satisfies the following conditions;

(i) there exist a 1-dimensional path connected submanifold with boundary D such that

$$\bigcup_{(t,p)\in R\times D} \{\Psi(t,p)\} = \partial\Omega,$$

- (ii) l vanishes only on ∂D with indices 1,
- (iii) every integral curve of l is of finite length.

Then (2.1) has a solution for every f which vanishes on ∂D and which satisfies the condition (2.3).

Proof. Let C_p denote the orbit of l through $p \in D$. Conditions (ii) and (iii) implies that C_p is a simple closed curve in $\partial\Omega$. Hence $C_p \cap D$ is a finite set. If $C_p \cap D$ contains more then one point, there exists t_1 such that $\Psi(t_1,p) \in D$ but $\Psi(t_1,p) \notin D$ for $0 < t < t_1$. Let $q = \Psi(t_1,p)$. Choose a path $\alpha : [0,1] \longrightarrow D$ from q to p. Define $\beta : [0,t_1+1] \longrightarrow \partial\Omega$ by

$$\beta(s) = \begin{cases} \Psi(s,p), & 0 \le s \le t_1, \\ \alpha(s-t_1), & t_1 \le s \le t_1 + 1. \end{cases}$$

Then β is a simple closed curve separating $\partial\Omega$ into two components. But it contradicts the fact that C_p is a simple closed curve. Hence

 $C_p \cap D = \{p\}$. Hence for each $x \in \partial \Omega$ there exist a unique point $p \in D$ such that $x \in C_p$. Now Corollary 2.2 completes the proof.

References

- [1] D.Gilbarg & N.S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlar, Berlin Heidelberg, 1983.
- [2] G.M.Lieberman, The nonlinear oblique derivative problem for quasilinear elliptic equations, Nonlinear Analysis Theory method & Applications 8 (1) (1984), 49-65.
- [3] B.P.Panejah, On a problem with oblique derivative, Soviet Math. Dokl. 19 (6) (1978).
- [4] P.R.Popivanov and N.D.Kutev, The tangential oblique derivative problem for nonlinear elliptic equations, Comm. in PDEs 14 (3) (1989), 413-428.
- [5] B.Winzell, A boundary value problem with an oblique derivative, Comm. in PDEs
 6 (3) (1981), 305-328.

Department of Mathematics Kangweon National University Chuncheon 200-701, Korea