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INTEGRODIFFERENTIAL EQUATIONS

WITH TIME DELAY IN HILBERT SPACE

DONG GUN PARK AND SEON Yu KIM

1. Introduction

In this paper we consider two types of integro-differential equations
containing time delay in a complex Hilbert space H. One is an equation
of Volterra type

(1.1 )

(1.2)

d t
dt u(t) + Au(t) + io a(t - s)Bu(s)ds = f(t),

u(O) = x.

0< t < T,

The other is the following retarded functional differential equation

d 10

(1.3) -du(t) + Au(t) + A1u(t - h) + a( -s)A2 u(t + s)ds = f(t),
t -h

0< t < T,

(1.4)u(0) = :l~, u(s) = y(s), sE [-h,O).

Here, A is the operator associated with a sesquilinear form a( tt, v) defined
in V x V and satisfying Garding's inequality and (2.2) of Section 2 where
V is another Hilbert space such that V c H c V*. B, AI, Az are
bounded linear operators from V to V* such that BA -1, AlA -1, AzA- l

map H into itself boundedly. The function a in (1.1), is a numerical
valued function of bounded variation in the interval [0, T], and that in
(1.3) is a similar function in [-h, 0]. The right member f is some function
with values in H.

VVe try to solve (1.1) and (1.2) for an arbitrary x E Hand f which does
not necessarily belong to L1(0, T; H), assuming some other conditions
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(F.i) and (F.ii) of Section 2 instead. An example of such a function
f (j. L1(0, T; H) is given in the appendix.

Following the method in M. G. Crandall and J. A. Nohel [5] we can
reduce (1.1) to the equation

(1.5)
du
- + Au = G(u)
dt

where letting R be the solution of

aBA-1 +R+aBA-1 *R=O

G(u) is defined by

(1.6) G(u) = f + R * f - R(O)u + Rx - R* u.

The function R is of bounded variation with values in B(H) as well as
in B(V*), and G(u) will be considered as a function with values in H
and also in V* for u E C([O, T]; H). Since f is not assumed to belong
to Ll(O, T; H), R * f in the right side of (1.6) is defined as an improper
integral

(R *net) = it R(t - s)f(s)ds = lim rR(t - s)f(s)ds,
+0 e->+O}e

when it is considered as a function taking values in H. Then (1.5) and
(1.2) can be solved by successive approximation, which establish the
existence and uniqueness of a solution u of (1.1) and (1.2) such that

u E L 2(0, T; V) n C([O, T]; H)

u',Au E L 2(0,T;H,tdt).

The third term of the left side of (1.1) exists as a Bocher integral in V *,
but it should be understood in the improper sense when it is considered
as an integral in H:

r a(t - s)Bu(s)ds = lim r aCt - s)Bu(s)ds.
}+O e->+O}e
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Next, we apply this result to the second equation (1.3) under the same
assumption for f as above. Assuming

:r E H. yE L 2
( -h, 0; V) n L 2

( -h, 0; D(A), (s + h)ds)

f o Ay(s)ds E H,
-h+O

we can solve (1.3) and (1.4) step by step in [nh, (n + l)h 1\ T] for n =
0,1, ... , and show the existence and uniqueness of the solution u such
that

u E C ([n h, (n + 1)h 1\ T]; H) n L 2
( n h, (n + 1)h 1\ T; V),

u' , Au E L 2 (nh, (n + l)h 1\ T; H, (t - nh)dt),

1
(n+1 )h/\T

A.u(t)dt E H,
llh+O

for any integer n such that nh < T. The integral in the left side of (1.3)
should be understood in the improper sense

j llh-t 10
{ + }a(-s)A.2 u(t+s)ds

-h llh-t+O

when it is considered as an integral in H.

The author \vishes to express the deepest appreciation to Professor
H. Tanabe of Osaka University for his valuable suggestions and encour­
agement.

2. Assumption and main theorems

Let Hand F be complex Hilbert spaces such that V is a dense sub­
space of H and the embedding of 1/ to H is continuous. The norms of
H and V are denoted by I I and 11 11, respectively. Identifying H with
its antidual we may consider Ii' C H c V*. The norm of V* is de­
noted by 11 Ik For a couple of Hilbert spaces X and Y the notation
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B(X, Y) denotes the totality of bounded linear operators from X to Y,
and B(X) = B(X, X).

Let a(u, v) be a sesquilinear form defined in V x V. Suppose that
there exists positive constants Cl, C, Cl such that

(2.1)

(2.2)
la(u,v)1 :::; Clllullllvll
Rea(u,u) ~ cIlul12 - cllul2

for any u, v E V.
Let A be the operator associated with the sesquilinear form a(u, v):

(2.3) a(u,v) = (Au,v), u,v E V.

The operator A belongs to B(V, V*). The realization of A in H which
is the restriction of A to

D(A) = {u E V : Au E H}

is also denoted by the same letter A. It is known that -A generates an
analytic semigroup in both of V* and H.

We assume that there exist a positive constant C2 such that

(2.4) la(u,v) -a*(u,v)l:::; C2 11ulllvl.

The operator A * associated with a*(u, v) is the adjoint of A. From (2.4)
it follows that (A - A*)u E H for any u E V and

(2.5)

Let B, AI, A_2 be operators belonging to B(V, V*). We assume that
their restrictions to D(A) all belong to B(D(A), H), where D(A) is a
Hilbert space with the graph norm of A.

As for the inhomogeneous term f we assume

(F.i)
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where f E L 2(0, T; H, tdt) means that f is a strongly measurable

function with values in H in (0, T) and JoT If(t)jZtdt < 00,

(F.ii) J:o f(t)dt = lime....+o JeT f(t)dt exists in H.
Concerning the function a and the initial value x we assume that for

the problem (1.1), (1.2)
(Li) a is a complex valued function of bounded variation in [O,T],

(Lii) x E H;
and for the problem (1.3), (1.4)

(ILi) h is some fixed positive number,
(II.ii) a is a complex valued function of bounded varivation in [0, h],

(ILiii) x EH,
(ILiv) yE L2( -h, 0; V) n L2(-h, 0; D(A), (s + h)ds)

where y E L 2 (-h,0;D(A),(s+h)ds) means that y is a strongly mea­
surable function with values in D(A) in (-h,O) and

(ll.v) J~h+O Ay( s )ds = lime_+o J~h+e Ay(s )ds exists in H.

DEFINITION 2.1. A strong solution u of (1.1), (1.2) is a function u E
L 2 (0, T; V) nC([O, T]; H) such that u(O) = x, u is absolutely continuous
as a function taking values in H in [8, T] for any 8 > 0, u(t) E D(A) a.e
in [0, T] and Au E L 2

( 8, T; H) for any 8 > 0, the improper integral

(2.6) i t a(t-s)Bu(s)ds= lim ta(t-s)Bu(s)ds
+0 e ....+O le

exists in H for any t E (0, T), and (1.1) holds a.e in [0, T], where the
integral in the left side of (1.1) is understood as the improper integral
(2.6).

DEFINITION 2.2. A strong solution u of (1.3), (1.4) is a function
u E L 2 (-h,T; V) n C([O,T];H) such that u(O) = x, u(s) = yes) a.e.
in [-h,O), u is absolutely continuous in [nh + 8,(n + l)h /\ T] for each
n = 0, 1, ... , [T/h] and 8 > °as a function with values in H, u(t) E D(A)
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a.e. in [0, T] and Au E L 2(nh+f>, (n+ l)h 1\ T; H) for n = 0,1, ... , [T/h]
and f> > 0, the improper integral
(2.7)

10 jnh-t 10

a( -s )A2 u( t + 8 )ds = lim ( + )a(-8 )A2 u( t + S )d8
-h e-+O -h nh-t+e

exists in H for t E (nh, (n+ l)hI\T), n = 0, 1, ... , [T/h], and (1.3) holds
a.e. in [0, T], where the integral in the left side of (1.3) is understood as
the improper integral (2.7).

THEOREM 1. A strong solution u of (1.1), (1.2) exists and is unique,
and we have u', Au E L 2 (0, T; h, tdt).

THEOREM 2..4 strong solution u of (1.3) and (1.4) exists and is
unique, and we have

u', Au E L 2 (nh, (n + l)h 1\ T; H, (t - nh)dt)

for any nonnegative integer n such that nh < T.

3. Proof of Theorem 1

Since the solution u we are seeking belongs to L 2 (0, T; V)nC([O, T]; H)
and f E L 2 (0, T; V*) by the a.ssumption (F.i), the function a * Bu and
G(u) both belong to L 2 (0,T;V*). Hence, u', Au E L 2(0,T;V*) in view
of J. L. Lions ([7]:Theorem 1.1). Thus, in the proof of the equivalence of
(1.1) and (1.5) wc can argue in the space V* so that all integrals which
appear are ones in Bocher's sense. Hence,

(R * n(t) = t R(t - s )f(s )ds
J+o

exists as an improper integral in H, and is bounded:

(3.1) I(R * f)(t)1 ::; IR(O)II t f(a)dal
J+o

+ V(R; [0, tD sup I r f(a)dal,
o:Ss:St J+o
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LEMMA 3.1. Let u be the solution of

(3.2)

(3.3)

u'(t) + Au(t) = g(t),

u(O) = x,

0< t ~ T,

where x EH and 9 E L2(0, T; V*). Then

(3.4)

If 9 E L2( 0, T; H, tdt) in addition, tilen

(3.5)

Proof. The inequality (3.4) is well known (see J. L. Lions [7], Theorem
1.1). The second inequality (3.5) is also rather well known, and we only
sketch the proof. Assuming that u( t) is a nice function we make formal
calculations which are easily justified by approximating x and f(t) by
sequences of nice elements. Taking inner product of both sides of (3.2)
and u(t), and using (2.2) (Cl = 0), we get

1 d ?

2dt!u(t)I- +Rea(u(t),u(t)) = Re(g(t),u(t))

1 .) C ? 1 2 1
~?!Ig(t)ll; + :)11'll(t)!I- ~ ?llg(t)II* + :)Rea(u(t), u(t)),
~C ~ _C _

from which "ve readily obtain

d 2 1 2
dtll/(t)1 + Rea(u(t),u(t)) ~ ;"g(t)II*.

Integrating this inequality from 0 to t, we have

(3.6) lu(tW + r Rea(u(s),u(s))ds ~ 1:1:1 2 + ~ r IIg(s)!I;ds,lo c la
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and we also get
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1 d
lu'(t)1 2 + --da(u(t),u(t»

2 t

=Re(g(t), u'(t)) + ~(u'(t), (A * - A)u(t)).

Multiplying both sides of this equality by t and integrating from 0 to t
we get after an integration by parts

r t
10 lu'(s)1 2sds + "2 a(u(t),u(t»

It t="210 a(u(s),u(s»ds +Re 10 (g(s),u'(s»sds

+ ~ I t

(lt'(S),(A* - A)u(s»sds.

We obtain

1 t
(3.7) "210Iu'(s)12sds

lIt t
~"2(1 + 2c cit) 10 Rea(u(s),u(s»ds + lo Ig(sWsds.

From (3.6) and (3.7) we conclude

which completes the proof.

Set uo( t) == x. Let Ul be the solution of the following initial value
problem

~ u(t) + AUl(t) = G(uo)(t),

Ul(O) = x.
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Since Uo E C([O, T] : H) and G maps C([O, T]; H) to L 2(0, T; V*),
G(uo) E L2(0, T : V*). Hence, by the above mentioned result of J.L.
Lions [7], the solution UI(t) exists.

Since UI(t) E C([O,T];H), G(ut} E L 2 (0,T;V*). Hence, we can
define U2(t) as the solution of

d
dt U2(t) + AU2(t) = G(UI)(t),

uz(O) = x.

Iterating this process, we can show that there exist a sequence {u n ( t)}
such that

d
-,un(t) + Aun(t) = G(un-d(t),
et
/In(O) = :1;

for any n = 1,2, ....

To prove the convergence of {u n ( t) }, we prove the following lemma.

LEMMA 3.2. Let 1£ and u be elements of C([D, T]; H), and vet) and
vet) be solutions of the follow'ing equations:

d
-,1'(t) + Av(t) = G(u)(t), v(O) = x,
et

~~v(t) + Av(t) = G(u)(t), v(O) = x.

Then the following inequality holds:

(3.8) Iv(t) - v(t)1 ::; (IR(O)I + V(R;O,t)) it Iu(s) - u(s)lds.

Proof. Taking the inner product of both sides of

d
-, (v(t) - vet)) + A.(v(t) - vet)) = G(u)(t) - G(u)(t)
et

and (v(t) - vet)), we obtain

~ ~ Iv(t) - v(tW ::; IG(u)(t) - G(u)(t)llv(t) - V(t)l.
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By Lemma A.5 of page 157 of [4], we have

Iv(t) - v(t)1 ~ it IG(u)(s) - G(u)(s)lds.

Note that G(u) and G(u) themselves do not belong to L 1(0, T; H), but
their difference does. By the definition of G(u)( t), we obtain

G(u)(s) - G(u)(s) = -R(O)(u(s) - u(s» - (R * (u - u»(s).

Hence

Iv(t) - v(t)1 ~ R(O) it Iu(s) - u(s)lds + it I(R * (u - U»(s)lds.

By an elementary calculation, we obtain (3.8).

Applying (3.8) to Un, 'Un-l in place of u, u

If 0 ~ t ~ T then V(R; 0, t) ~ V(R; 0, T). Hence, putting

Co = IR(O)I + VCR; 0, T),

we have

Iterating (3.9) one shows by induction that

which implies that {un(t)} converges uniformly in H.
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Put u(t) = lim ll _ oo u ll (t). Applying (3.4), (3.5) to Un+l' we get

l
t lltc Ilu n +l(s)1I 2 ds:::; Ixl2 + - IIG(u n)(s)lI;ds,

o c 0

it C2 1 c2 it
IU~+1(S)12sds :::;(1 + -. t)lxl 2 + -(1 + -2 t) IIG(u n )(s)lI;ds

o 2c c c 0

+ 21t

IG(un)(sWsds.

As is easily seen the right hand sides of the above inequalities are
uniformly bounded. Hence, we see that u and u' belong to £2(0, T : V)
and £2(0, T : H, t dt), respectively, and u satisfies (1.5) and (1.2). Thus
u is a solution of (1.1) and (1.2).

For 0 < £ < t

(3.10) it aCt - s)Bu(s)ds = it aCt - s)BA-1(G(u)(s) - u'(s»ds

= it a(t-s)BA-1(G(u)(s)-j(s))ds+BA- 1it a(t-s)(f(s)-u'(s»ds.

Since G(u)(s) - f(s) is bounded in H in view of (3.1), the first term in
the right side of (3.10) converges in Has € ---t +0. Since

it aCt - s)(.f(s) - u'(s))ds

j t 1 is= aCt - s)..5:....( f((J)d(J - u(s))ds
e ds +0

=a(O)( t f(a)da - u(t)) - t dsa(t - s)( r f(a)da - u(s) + a(t)x
J+o J+u J+o

as € ---t +0, the second term also converges in H as € ---t +0. Hence,

t aCt - s)Bu(s)ds
J+o

exists as an improper integral in H for each t E (0, T].
Uniqueness of solutions of (1.1) and (1.2) follows from Lemma 3.2.
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4. Proof of Theorem 2

We have only to consider the case h < T. First we show the existence
of solutions of (1.3) and (l.4) in [0, h]. For 0 < t < h the problems (1.3)
and (1.4) are reduced to

(4.1) ~ u(t) + A.u(t) + it aCt - s)A2u(s) ds

= J(t) - Aly(t - h) - fO aCt - s)A2y(s)ds == get),
t-h

(4.2) u(O) = x

By the assumption (F.i) (II.iv) it is obvious that 9 E L 2 (O, T; V"'). In
view of (II.iv)

With the aid of an integration by parts

(4.4) 1° a( t - .5 )A 2y( S )d.5
t-h

=A2 A-l {a(t)1° Ay(a)da-l° l
s

Ay(a)dadsa(t-s)}.
t-h t-h t-h

By (lI.iv), (II.v)

Cl == sup I t Ay(a)dal < 00.
-h<s<tSO ls

Hence, using (4.4)

(4.5) '1° aCt - s )A2 y(s )dsl :::; CdA2A -ll{la( -t)1 + V(a; t, h)}.
t-h
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From (F.i), (4.3), and (4.5) it follows that 9 E LZ(O,h;H,tdt). In view
of (F.ii), (ILv), and (4.5)

fh g(t)dt= fhj(t)dt+AIA-1jO Ay(s)ds
J+o J+o -h+O

+ iOhl:h a(t-s)Azy(s)dsdt

exists in H. Hence, we can apply Theorem 1 to show the existence of a
solution u of (4.1) and (4.2) such that

u E LZ(O, h; V) n LZ(O, h; D(A), tdt),

fh Au(t)dt exists in H.
J+o

Suppose that it has been shown that a solution u exists in [0, nh] for
some integer n with nh < T such that

(4.6) u E L Z(ih, (i + 1)h; V) n LZ(ih, (i + 1)h; D( A ), (t - i h) dt ),

j
(i+llh

(4.7) Au(t)dtEH
ih+O

for i = 0,1,2, ... , n - 1. For nh < t < (n + l)h 1\ T the equation (1.3) is
reduced to

(4.8) d it-d u(t)+Au(t)+ a(t-s)Azu(s)ds
t . Rh

i
Rh

= f(t) - A1u(t - h) - a(t - s)Azu(s)ds == g(t).
t-h

From (4.6) with i = n - 1 it readily follows that 9 E L Z( nh, (n + l)h 1\
T; V*). Following the technique of the proof of (4.4) we get

{

Rh

(4.9) a(t - ,,).42 tt ( S ) ds
t-h

j Tlh jRhjS
=.42 A-1{a(t - nh) Au(a)dO" - .4u(a)dO"dsa(t - s)}.

i-h t-h t-h
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In view of (4.6), (4.7)

(4.10) C2 == sup I r Au(u) dui < 00.
(n-l)h~T<s~nh iT

From (4.9) and (4.10) we get

(4.11) ljnh a(t-s)A2u(s)ds l
i-h

::;C2 IA 2A -ll{la(t - nh)1 + V(a; t - h, nh)}.

By virtue of (4.6), (4.7) with i = n - 1

1
(n+1)hAT

(4.12) IA1u(t - hW(t - nh)dt
nh

j
nhAT

= IA 1 U ( tW(t - (n - 1)h) dt < 00,
(n-I)h

1
(n+1 lhAT jnhAT

(4.13) A. 1u(t - h)dt = A 1A- 1 Au(t)dt E H.
nh+O (n-1)h+0

With the aid of (F.ii), (4.11), (4.12), and (4.13) we get

9 E L 2 (nh, (17, + l)h 1\ T; H, (t - nh)dt),

1
(n+1 lhAT

g(t)dtEH.
nll+O

Hence, applying Theorem 1 to (4.8) in [nh, (17, + l)h 1\ T] we see that there
exists a solution 'It of (4.8) satisfying the initial condition u(nh + 0) =
u(nh - 0) such that

u E C([nh, (n + l)h 1\ T]; H) n L 2(nh, (n + l)h 1\ T; V)

n L 2 (nh, (n + l)h 1\ T; D(A), (t - nh) dl)

and

l
(n+l)hAT

Au( l) dl exists in H.
nll+O
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Appendix

We give an example of H, V, f such that
(A.1) f E L2(0, T; V*) n L2(0, T; H, telt),

(A.2) J:o f(t)dt exists in H

(A.3) JoT If(t)ldt = 00.

Let A be the operator associated with the inner product (C,·)) of V:

(Au,v) = ((u,v)), u,v E V.

Then, the realization of A in H is positive definite and self-adjoint. For
Uo E H set u(t) = e-tAuo. Then, it is easy to see that

(a.I) f(t) = u'(t) = -Ae-tAuo

satisfies (A.1), and (A.2) (cf. Lemma 3.1).
It remains to choose H, V, u 0 so that the function f (t) defined by (a.1)

satisfies (A.3).
Let n be a bounded domain in Rn with smooth boundary. Let H =

L 2 (n), V = HJ(n). Then

(a.2) ~18u &((ll, v)) = L ~ .~ dx
n=J 11 x, x,

is an inner product in HJ(n). The realization in L 2 (n) of the operator
associated with (a.2) is

D(A) = H 2(n) n HJ(n), All = -,6.u for u E D(A).

Denote the eigenvalues of A by Aj, j = 1,2, ... , and the corresponding
orthonormal set of eigenfunctions by {'-P j }. V\Te suppose that {Aj} are
arranged in the increasing order and repeated according to the multi­
plicity.

For A ~ 0 let N( A) be the number of the eigenvalues of A which do
not exceed A. It is known that
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as A -7 00, where Co is some positive constant. Hence, there exists a
positive constant c such that

(a.3)

(aA)

\ . > C}'2/n . 1 2A J _ ,J = , , ... ,

(CA)n/2 :S N(A):S (C-1A)n/2 for A ~ Al.

We use the following elementary fact:

(a.5)

Let

ex> 1

~ n(1ogn)p {
< 00,

= 00,

if p > 1

if p :S 1.

ex>

Uo = L apPj, aj = (j + 1)-1/2{log(j + 1)}-2/3.
j=l

In view of (a.5) 2:;:1 a; < 00. Hence, Uo is an element of L2(f2). Put
u(t) = e-tAuo. Then,

ex>

u'(t) = - L ajAje-Ajtc.pj.
j=l

In what follows we suppose 0 < t < Ai""l. Since {aj} is a decreasing
sequence

Noting that x 2e -2xt is an increasing function of x in the interval [0, lit]
and cp/n :S Aj :S lit for j :S N(l/t) in view of (a.3) we get

(a.7)
N(l/t) N(l/t)

L AJe-2>'jt ~ L (cj2/n)2 e-2c
j2/

n
t.

j=l j=l
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Since x4/ne-2cx2/nt is an increasing function of x in [0, (cj)-n/2] and
N(l/t) :5 (ct)-n/2 in view of (a.4)

(a.S)
(I/O/t)la :t4/ne-2Cx2/ntdx

N(I/t) jL j x4/ne-2Cx2/ntdx

j=1 )-1

N(I/t)

< L j4/n e -2C)2/n t

j=1

On the other hand noting NO/i) 2: (c/i)n/2 in view of (a.4) and by the
change of the variable y = x 2

/
7l t

(a.g)

Combining (a.6), (a.7), (a.8), (a.9) we get

(a.IO)

Set bet) = [(ef)-"/2], where [ . ] means the integral part. By view of
(a.4) N(l/t) ::; bet). Since {aj} is a decreasing sequence, it follows from
(a.lO) that

(a.11)
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for some positive constant Cl. Hence, with the aid of the change of
the variable s = (et) -n/2

('1 ('1
lo ju'(t)1 dt ~ Cl lo C

l
-

n
/
4

ab(t) dt

2 /00> -c cn / 4 s-1/2a ds- 1 [s] ,
n N

where N = [(AI/cr~/2J + 1. As is easily seen

00

~ L (j + 1)-l/2aj

j=N

00

= LU + l)-l{log(j + 1)}-2/3 = 00
j=N

by virtue of (a.5). Thus we conclude

(\1 (\1
lo If(t)1 dt = lo lu'(t)l dt = 00.
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