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ON CERTAIN REAL HYPERSURFACES

OF A COMPLEX SPACE FORM

NAM GILL KIM, SUNG BAlK LEE AND IN TAlK LIM

Introduction

A complex n-dimensional Kaehler manifold of constant holomorphic
sectional curvature c is called a complex space form, which is denoted by
Mn(c). The complete and simply connected complex space form consists
of a complex projective space PnC, a complex Euclidean space Cn or a
complex hyperbolic space HnC, according as C > 0, C = 0 or c < O.

Let M be a real hypersurface of Mn(c), c =1= O. Then it is seen that
M has an almost contact metric structure (4), ~,fJ, g) induced from the
Riemanman metric and the complex structure J of Mn(c).

In the study of real hypersurfaces of a complex projective space PnC,
Takagi [13] classified all homogeneous real hypersurfaces of PnC and
showed that they are realized as the tubes of constant radius over Kaehler
submanifolds if the structure vector eis principal. Namely, he proved
the following

THEOREM A. Let M be a connected real hypersurface ofPnC. Then
M has constant principal curvatures and eis principal if and only if M
is locally congruent to one of the following

(AI) a tube over a hyperplane Cpn - I ,
(A 2) a tube a totally geodesic Cpk (1 ~ k ~ n - 2),
(B) a tube over a complex quadric Qn-l>
(C) a tube over Cpl x cp(n-I)/2 and n(~ 5) is odd,
(D) a tube a complex Grassmann G2,s(C) and n = 9,
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(E) a tube a Hennitian symmetric space SO(10)jU(5), and n = 15..

Acoording to Takagi's classification [13] the principal curvatures and
their multiplicities of the above homogeneous real hypersurfaces are
gIven.

On the other hand, real hypersurfaces of a complex hyperbolic space
HnC have also been investigated by Berndt [1], Montiel and Romero [10]
and so on. Berndt [1] classified also homogeneous real hypersurfaces of
HnC and showed that they are realized as the tubes of arbitrary constant
radius over Kaehler submanifolds. Namely, he proved the following

THEOREM B. Let M be a connected real hypersurface of HnC (n ~

2). Then M has constant principal curvatures and eis principal if and
only if M is locally congruent to one of the follwoing

(A}) a horosphere in HnC,
(A 2 ) a tube over Hke for a k = 0,1,··· ,n -1,
(B) a tube over HnR.

For the principal curvatures and their multiplicities of the above hy­
persurfaces are also given in [1].

On the other hand, the linear transformation 4> can be regarded as
the operation for the Riemannian curvature tensor R on M. Maeda [8]
studied about real hypersurface of PnC with vanishing condition of this
operation. Namely he proved the following

THEOREM C. Let M be a real hypersurface of PnC. If 4>R = 0 and
if eis principal, then M is of type Al or type A 2 •

Let M be a real hypersurface of type Al or type A2 in a complex
projective space PnC or that of type Aa '" A2 in a complex hyperbolic
space HnC. Then M is said to be of type A for simplicity. By a theorem
due to Okumura [11] and to Montiel and Romero [10] we have

THEOREM D. If the shape operator A and the structure tensor 4>
commute to each other, then a real hypersurface of a complex space
form M n ( c), c =F 0 is locally congruent to be of type A.

Recently, Kimura and Maeda [7] pointed out the importance of the
normal distribution e.L of the tangent bundle TM with respect to the
structure vector e.
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The purpose of the present paper' to generalize Theorem C and Theo­
rem D for the normal distribution ~.L in a real hypersurfce of a complex
space form. We will prove the following

THEOREM 1. Let M be a real hypers~rface of Mn(c), C # 0, n ~ 3.
If the structure vector field ~ is principal and if there exists a tensor field
w of type (0, 3) such that

then M is of type A, where 0 denotes the tensor product.

1. Preliminaries

Let M be a real hypersurface of a complex n-dimensional complex
space form Mn(c) of constant holomorphic sectional curvature c, and
let C be a unit normal vector field on a neighborhood of a point x in
M. We denote by 9 the Riemannian metric tensor of M induced from
that of Mn(c) and we denote by 'V and 'V the Riemannian connection
in Mn(c) and in M, respectively. Then, by the Gauss formula, we have
the relationship between \1 and \1 ; for any vector fields X and Y on
M,

(1.1) VxY = \1xY + g(AX,Y)C,

where A denotes the shape operator of M in Mn(c) with to the unit
normal C to M. Furthermore, we have another equation which is called
the Weingarten formula;

(1.2) VxC=-AX.

For any local vector field X on a neighborhood of x in M, the trans­
fomations of X and C under the complex structure J in Mn(c) can be
given by

JX = </>X + 1J(X)C, JC = -~,
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where </> defines a skew-symmetric transformation on the tangent bundle
TM of M, where TJ and edenote a I-form and a vector field on a neigh­
borhood of x in M, respectively. Then it is seen that g(e,X) = TJ(X).
The set of tensors (</>, e, TJ, g) is called an almost contact metric structure
on M. They satisfy the following

(1.3) </>2 = -1 + TJ 0 e, </>e = 0, TJ(</>X) = 0, TJ(e) = 1,

where I denotes the identity transformation. Futhermore, the covariant
derivatives of the structure tensors are given by

(1.4) (Vx</»Y =TJ(Y)AX - g(AX, Y)e, Vxe = </>AX.

Since the ambient space is of constant holomorphic sectional curvature
c, the equations of Gauss and Codazzi are respectively given as follows:

(1.5)
R(X, Y)Z =c{g(Y, Z)X - g(X, Z)Y + g( </>Y, Z)</>X - g( </>X, Z)</>Y

- 2g(</>X, Y)</>Z} /4 +g(AY, Z)AX - g(AX, Z)AY,

(1.6)
(VxA)Y - (VyA)X = c{TJ(X)</>Y - e(y)</>X - 2g(</>X,Y)O/4,

where R denotes the Riemannian curvature tensor of M and V X A de­
notes the covariant derivative of the shape operator A with respect to
X.

2. Certain lemmas

Let M be a real hypersurface of Mn(c), c # 0, n f;; 3. The linear
transformation </> can be regarded as the oprator for the Riemannian
curvature tensor R, that is, for any vector fields X, Y and Z we get

(2.1)
</>R(X, Y, Z) = </>(R(X, Y)Z) - R(</>X, Y)Z

- R(X, </>Y)Z - R(X, Y)(</>Z).
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In this section we shall assume that the above operator satisfies

(2.2)

for any tensor field w of type (0,3), where @ denotes the tensor product.
In other words, we shall assume that

(2.3) cPR(X, Y, Z) =w(X, Y, Z)e

for any vector fields X, Y and Z orthogonal to e. Accordingly it implies
that

(2.4) g(cPR(X,Y,Z), W) = 0

for any vector fields orthogonal to e. Since the operator cP is skew­
symmetric, by using the definition (2.1), the, above equation (2.4) is
rewritten by

g(R(cPX, Y)Z, W) +g(R(X, cPY)Z, W) +g(R(X, Y)(cPZ), W)
(2.4) + g(R(X,Y)Z, cPW) =O.

Taking account of the property cP2X = -X, because X is orthogonal
to e, and making use of Gauss equation (1.6), we can prove the following
lemma by the direct calculation.

LEMMA 2.1. There exists a tensor field w of type (0,3) satisfies the
condition (2.1) if and only if the shape operator A and the linear trans­
formation cP satisfy

(2.5)
g(AX, Z)g«AcP - cPA)Y, W) +g(AY, W)g«AcP - cPA)X, Z)

- g(AY; Z)g«AcP - cPA)X, W) - g(AX, W)g«AcP - cPA)Y; Z) = 0

for any vector fi.elds X, Y, Z and W tangent to e.
REMARK 2.1. It is seen by Okumura [11] that the real hypersurface

M of PnG is of type Al or A2 if and only if it satisfies Ac/> - c/>A = 0 and
it is also seen by Montiel and Romero [10] that the real hypersurface M
of Mn(c) is of type Ao, Al or A2 if and only if it satisfies AcP - cPA = O.
Acoordingly, combining Lemma 2.1 and these properties we see that the
real hypersurface of type A of Mn(c) satisfies the condition (2.1).



104 Nam Gill Kim, Sung Baik Lee and In Taik Lim

REMARK 2.2. Let M be a ruled hypersurface of PnC defined by
Kimura [5]. Then on the ruled hypersurface, the structure vector field
~ is not principal. But it satisfies the equation (2.5). In fact, for the
ruled hypersurface M of PnC, there exists a unit vector U orthogonal
to ~ which satisfies the following relationships ;

(2.6)

where X is a unit vector field orthogonal to~. Let V be a unit vector
field defined by 4JU. Since V is also orthogonal to ~ and U because of the
property of the almost contact metric structure, so is it, and moreover
it satisfies AV = 0, A4JV = -b~, which yields that (A4J - 4JA)U =
0, g(Y, U) = °for any vector field Y orthogonal to~. This shows that
left hand side of (2.5) vanishes identically, where W is identical with
the vector field U. On the other hand, if W is orthogonal to ~, U and
V = 4JU, it is easily seen that AW = A4JW = 0 and hence (2.5) is
divided.

By this example the assumption in Theorem 1 that ~ is principal can
not be rejected.

By the assumption of the dimension we can choose vector fields X and
Y orthogonal to ~ such that X, 4JX and Y are orthonormal. Suppose
that

(2.7) AX = AX, A4JX = P4JX, AY = aY.

LEMMA 2.2. IfM satisfies (2.2), then

(2.8)
u(A - p) = 0,

(A 2 + p2){A4JY - u4JY - g(tPY,A~)~} = 0

for any vector fields satisfying (2.7).

Proof. By (2.7), it is clear that the equation (2.5) is equivalent to

(2.9)
Ag(X, Z)g(A4JY - u4JY, W) - Ag(X, W)g(A4JY - u4Jy, Z)

+u(,\ - p ){g(<p(X, W)g(Y, Z) - g(4JX, Z)g(Y, W)} = 0
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for any vector fields Z and W orthogonal to e. We put Z = 4>Y in (2.9).
Because of g(A4>Y - q4>Y, 4>X) = JLg( 4>Y, 4>X) - qg(4>Y, 4>X) = 0, we get

q(A- JL ){g(4>X, W)g(~ 4>X) - g(Y, W)} = 0,

which yields that the first equation of (2.8) holds. This means that we
have

Ag(X, Z)g(A4>Y - q<jJY, W) - Ag(X, W)g(A<jJY - q<jJY, Z) = 0

by (2.9). When we put W = A<jJY - q<jJY - g(A<jJY, e)e in this equation,
we get

Ag(X, ZHIA4>Y - q4>Y12 - g(A4>Y,e)2} = 0

for any vector field Z orthogonal to e, because of g(X, W) = 0, where
I. I denote the norm of vector fields on M. This shows that

A{IA4>Y - q4>Y1 2
- (A4>Y,e)2} = 0, (that is) AW = O.

Similarly, if we can replace X with 4>X in the above discussion, we
get JLW = 0, which together with the above property implies that (A2 +
JL2)W = o. This completes the proof.

3. Proof of main theorem

In this section we shall prove Theorem 1. Let M be a real hypersurface
of Mn(c), c ::f:. 0, n ~ 3. We assume that the structure vector e is
principal. The corresponding principal curvature is denoted by a, that
is, we put

(3.1) Ae =ae·

By a theorem by Maeda [9] in the case of c > 0 and a theorem by Ki
and Suh [4] in the case of c < 0, the principal curvature a is constant
on M. Then, by differentiation (3.1) convariantly and using (1.3) and
so on, the followings equation is given ;

(3.2)
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Let ..\ be any principal curvature on M whose coresponding principal
vector X is orthogonal to e. In general, ..\ is the continuous function on
M, and from (3.2) it follows that we obtain

c
(2..\ - a)A4>X = (a..\ + '2)4>X.

For any fixed principal curvature, let Mo be a set consisting of points
on M at which the value of ..\ is not equal to a/2. It is trivial that the
subset Mo is open. We shall consider a point x which does not belong in
the set Mo. Then we have ..\(x) = a/2, which together with (3.2) gives
a 2 +c = O. This means that c is negative and

(3.3)
±yCC

..\= 2 onM-Mo.

On the other hand, by the similar discussion, we get on Mo

(3.4) A..I..X =..I..X =..\a +c/2
'f' fL'f', Jl 2..\ _ a

for a principal vector field X with corresponding principal curvature ..\.
We can choose a unit principal field Y orthogonal to eso that X, 4>X
and Y are mutually orthonormal by the assumption of the dimension.
Let u be the corresponding principal curvature. Then by Lemma 2.3,
we get

Suppose here that there exists a point x in Mo at which ..\ and p. are
different. Then (3.5) yields u(x) = 0 and A4>Y(x) = O. When we act the
operator A4>A to the vector Y at x, the equation c4>Y(x) = 0 is easily
derived from the above equations. It implies that c =0, a contradiction.
This means th~t the principal curvature JL defined by (3.4) is always
equal to the principal curvature ..\ on Mo, which is equivalent to the fact
that the shape operator A and the linear transformation 4> commute with
each other and all principal curvatures on Mo are constant. Moreover the
number of distinct prinCipal curvatures is just two, and they are roots of
the quadratic equation 4y2 - 4ay - c = 0, which shows that the root is
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different from a /2. So, by the continuity of the principal curvatures, the
set Mo is identical with the hypersurface M itself or the set is empty.

In the latter case, the hypersurface M is of type Ao in the complex
hyperbolic space HnC by the classification theorem due to Berndt [1],
where as it is already seen that the other is of type Al or type A2 , inspite
of the sign of the holomorphic curvature c.

As is already stated in Remark 2.2, the real hypersurface of type A
in Mn{c) satisfies the assumptions of Theorem 1. This completes the
proof.

4. Real hypersurfaces of type A

In this section we shall concern about a characterization of a real
hypersurfaces of type A of a complex space form Mn{c), c =F O. As is
generalized Theorem D, we prove

THEOREM 4.1. Let M be a real hypersUIface of Mn(c), c =F O. If
there is a I-form 8 satisfying

(4.1) (A4> - 4>A)I~.l = 8 ® ~

and if ~ is principal, then M is locally congruent to the real hypersurface
of type A of Mn{c).

REMARK 4.1. (I) The real hypersurface of type A satisfies of course
the condition (4.1).

(2) Let M be a ruled hypersurface of a complex projective space PnC. By
(2.6), we have g«A4> - 4>A)U, U) = 0, g«A4> - 4>A)U,X) = 0, g«A4>­
4>A)X, Y) = 0 for any unit vectors X and Y orthogonal to ~ and U,
which means that M satisfies the condition (4.1).

(3) If there is a I-form 8 satisfies

(4.2)

then it is easily seen that ~ is principal. Moreover we get 8 = O. In fact,
for any principal vector X corresponding to a principal curvature >., we
get

A4>X = 4>AX + 8(X)~,
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from which it follows that we have 6(X) = 0 by taking the inner product
with ~.

In order to prove Theorem 4.1 we shall show that the following prop­
erty of M.

LEMMA 4.2. Let M be a real hypersurface of Mn(c), c f:. o. Hit
satisfies the condition

(4.3) g('7xA(Y), Z) = c5g(AX, Y)g(Z, V),

where cS denotes the cyclic sum with respect to X, Y and Z orthogonal
to eand V is the vector defined by '7e~.

Proof. For any vector fields X, Y and Z orthogonal to~, the condition
(4.1) implies that g«A4> - 4>A)(Y), Z) = O. Differentiating this equation
covariantly in the direction of X, we get

g('7xA(4>A) + A '7x 4>(Y) + A4>(\7xY ) - '7x4>(AY), Z)

- 4> \7x A(Y) - 4>A('7 xV), Z) + g«A4> - 4>A)(Y), 'YxZ) =o.

By taking account of (1.4) and the Codazzi equation (1.6), the above
equation is reformed as

g( '7x A(Y), 4>Z) + g( 'Yx A( Z), 4>Y)

(4.4) = 7](AY)g(X,AZ) +77(AZ)g(Y,AX)

+ g(X, A4>Y)g(Z, V) + g(X, A4>Z)g(Y, V)

In this equation we shall replace X, Y and Z cyclically and we shall
then add the second equation to (4.4), from which substract the third
one. By means of the Codazzi equation we get

2g('7xA(Y),4>Z) =277(AZ)g(AX, Y) + g(X, VHg(Y, A4>Z) - g(Z,A4>Y)}

+g(Y, V){g(X, A4>Z) - g(Z, A4>X)} ,

which together with the condition (4.1) we can get the equation (4.3)
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REMARK 4.2. A ruled hypersurface of Pne satisfies the condition
(4.3).

Proof of Thoerm 4.1. We can apply Lemma 4.2 to our situation and
under an additional condition that ~ is principal it is seen that the shape
operator is 7]-parallel, because of V = \7(~ = O. By a theorem of Kimura
and Maeda [7] and a theorem of Sub [12] it means that M is locally
congruent one of real hypersurfaces of type A and type B of M n ( c). But
the case of type B cannot occur.
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