WHAT ARE CHEVALLEY GROUPS FOR SL(2,F)-MODULE $V(m) \otimes_F V(n)$?

YANG KOHN KIM AND SEO YEON WON

0. Introduction

We presented an easy conjecture in [6]. This paper aims to exhibit its proof without difficulty. We shall follow standard conventions used in [3] through [6] unless otherwise stated.

Let F be any fixed algebraically closed field of characteristic zero. Let L be sl(2,F) and $V=V(\lambda_1)\otimes V(\lambda_2)$ for $\lambda_1,\lambda_2\in\Lambda^+$. Then it is not so hard to conjecture $G_V(K)\cong PSL_2(K)$ when λ_1 and λ_2 have the same parity, and $G_V(K)\cong SL_2(K)$ when otherwise.

It turns out that this is just an easy generalization of the previous result in [5].

1. Notations and Foundation

We assume that K is any extension field of the prime field F_p of characteristic p>0 and that V is a faithful L-module for the time being; then $\Pi(V)$, the weights of V, span a lattice $\Lambda(V)$ which lies between Λ_r and Λ .

For an admissible lattice M in V, its stabilizer L_v in L equals $H_v \oplus \coprod_{\alpha \in \Phi} Zx_{\alpha}$. So there arise natural monomorphisms $L_v(K) \hookrightarrow gl(V(K))$ and $L(Z) \hookrightarrow L_v$, the latter one also inducing a natural Lie algebra homomorphism $L(K) \longrightarrow L_v(K)$. A new L(K)-module V(K) which

Received September 19, 1991. Revised December 24, 1991.

may not be faithful is obtained through the homomorphism $L(K) \longrightarrow L_v(K)$.

2. Chevalley groups of type $\Lambda(V)$

We may define L(K)-automorphisms $\theta_{\alpha}(H)$ of V(K) by the series $\sum_{t=0}^{\infty} (Hx_{\alpha})^t/t!$ with the indeterminate H specialized to $c \in K$. The subgroup $G_v(K)$ generated by all $\theta_{\alpha}(c)$ is called a Chevalley group of type $\Lambda(V)$ in general; adjoint if $\Lambda(V) = \Lambda_r$, and universal if $\Lambda(V) = \Lambda$. It is known that $L_v(K)$ and $G_v(K)$ are not dependent on V itself or on the choice of M, but dependent on the weight lattice $\Lambda(V)$.

3. Generalized results

Now we generalize the main theorem shown up in [5].

THEOREM. Set $V = V(m) \otimes_F V(n)$ for $m, n \in \Lambda^+$ and L = sl(2, F). Then we have $G_v(K) \cong PSL_2(K)$ when m and n have the same parity (even /odd), and $G_v(K) \cong SL_2(K)$, when otherwise.

Proof: Letting $\{v_i : i = 0, 1, \dots, m\}$ and $\{\bar{v}_j : j = 0, 1, \dots, n\}$ be chosen bases as in [6], we know that for $m \leq n$

$$V(m) \otimes V(n) = V(m-2m+n) \oplus V(m-2m+n+2) \oplus \cdots \oplus V(m+n)$$

As we are well aware,

 $\Lambda(V) = \Lambda_r$ if and only if m and n have the same parity;

 $\Lambda(V) = \Lambda$ if and only if m and n do not have the same parity.

Note also $V(\lambda)$ has a minimal admissible lattice M_{\min}^{λ} with a Z-basis $B^{\lambda} = \{v_0^{\lambda}, \dots, v_{\lambda}^{\lambda}\}$ for which the following formulas hold:

$$h \cdot v_i^{\lambda} = (\lambda - 2i)v_i^{\lambda}, \ xv_i^{\lambda} = (\lambda - i + 1)v_{i-1}^{\lambda} \text{ with } v_{-1}^{\lambda} = 0,$$
$$y \cdot v_i^{\lambda} = (i+1)v_{i+1}^{\lambda} \text{ with } v_{\lambda+1}^{\lambda} = 0.$$

Since $V = V(m) \otimes V(n) = V(m-2m+n) \oplus V(m-2m+n+2) \oplus \cdots \oplus (m+n)$, we may decompose V(K) as follows:

$$V(K) = M_{\min} \otimes_{Z} K = \{ (Zv_{0}^{-m+n} \oplus Zv_{1}^{-m+n} \oplus \cdots \oplus Zv_{-m+n}^{-m+n}) \oplus \cdots \oplus (Zv_{0}^{m+n} \oplus \cdots \oplus Zv_{m+n}^{m+n}) \} \otimes_{Z} K$$
$$= (M_{\min}^{-m+n} \oplus M_{\min}^{-m+n+2} \oplus \cdots \oplus M_{\min}^{m+n}) \otimes_{Z} K,$$

whence we have correspondences as

$$\begin{bmatrix} 1 & c \\ 0 & 1 \end{bmatrix} \longrightarrow M_B^B(\theta_2(c))$$

$$\begin{bmatrix} 1 & 0 \\ c & 1 \end{bmatrix} \longrightarrow M_B^B(\theta_{-2}(c)),$$

where $B = \dot{U}B^{\lambda}$. By making use of [5], we easily see that $G_v(K) \cong SL_2(K)$ when $\Lambda(V) = \Lambda$, i.e., m and n don't have the same parity, and $G_v(K) \cong PSL_2(K)$, when $\Lambda(V) = \Lambda_r$, i.e., m and n do have the same parity.

References

- [1] J.E. Humphrey, Introduction to Lie algebras and Representation Theory, Sprin ger- Verlag, 1980.
- [2] N. Jacobson, Lie Algebras, Dover Publications Inc., 1979.
- [3] Y. Kim, A Note on decomposition of a representation of sl(2, K), 전국 기초 과학 연구소 학습 심포지움 논총 제2집, 서울대학교 자연과학 종합연구소 (1988), 77-86.
- [4] _____, A Note on Lie Algebras L(K) and L_v(K), 낙목 박중근 교수 최갑기념 논문집 (1989), 157-166.
- [5] _____, Evaluation of easy Chevalley groups for special linear algebras of degree two, submitted for publication.

[6] _____, Hints for generalized ways toward a certain Chevalley group, submitted for publication.

Department of Mathematics Chonbuk National University Chonju 560-756, Korea