YOUNG'S LATTICE AND SUBSPACE LATTICE: JUMP NUMBER, GREEDINESS

Hyung Chan Jung

1. Introduction

Suppose we are given a finite number of tasks to be sequenced subject to precedence constraints, that is, a task cannot be scheduled until all of its predecessors have been scheduled. If a task t is scheduled immediately after the task u, then there is a jump (or setup) resulting in a fixed cost if u is not one of t 's precedecessors and there is no cost (no setup) if u is one of t 's precedecessors. Since the cost of a jump does not depend on where it occurs, the cost of a schedule is completely defined by the structure of the underlying partial order which represents the precedence constraints. The problem is: schedule the tasks to minimize the number of jumps. This is the jump number problem of a poset.

Let P be a finite poset and let $|P|$ be the number of vertices in P. A subposet of P is a subset of P with the induced order. A chain C in P is a subposet of P which is a linear order. The length of the chain C is $|C|-1$. A poset is ranked if every maximal chain has the same length. A linear extension of a poset P is a linear order $L=x_{1}, x_{2}, \ldots, x_{n}$ of the elements of P such that $x_{i}<x_{j}$ in P implies $i<j$. Let $\mathcal{L}(P)$ be the set of all linear extensions of P. Szpilrajn [13] showed that $\mathcal{C}(P)$ is not empty. Algorithmically, a linear extension L of P can be defined as follows:

1. Choose a minimal element x_{1} in P.
2. Given $x_{1}, x_{2}, \ldots, x_{i}$ choose a minimal element from $P \backslash\left\{x_{1}, \ldots\right.$, x_{i}) and call this element x_{i+1}.
Let P, Q be two disjoint posets. The disjoint sum $P+Q$ of P and Q is the poset on $P \cup Q$ such that $x<y$ if and only if $x, y \in P$ and $x<y$ in P or $x, y \in Q$ and $x<y$ in Q. The linear $\operatorname{sum} P \oplus Q$ of P and Q

Figure 1: The poset N and its linear extensions.
is obtained from $P+Q$ by adding the relation $x<y$ for all $x \in P$ and $y \in Q$.

Throughout this section, L denotes an arbitrary linear extension of P. Let $a, b \in P$ with $a<b$. Then b covers a, denoted $a \prec b$, provided that for any $c \in P, a<c \leq b$ implies that $c=b$. A (P, L)-chain is a maximal sequence of elements $z_{1}, z_{2}, \ldots, z_{k}$ such that $z_{1} \prec z_{2} \prec \cdots \prec$ z_{k} in both L and P. Let $c(L)$ be the number of (P, L)-chains in L.

A consecutive pair (x_{i}, x_{i+1}) of elements in L is a jump (or setup) of P in L if x_{i} is not comparable to x_{i+1} in P. The jumps induce a decomposition $L=C_{1} \oplus \cdots \oplus C_{m}$ of L into (P, L)-chains C_{1}, \ldots, C_{m} where $m=c(L)$ and $\left(\max C_{i}, \min C_{i+1}\right)$ is a jump of P in L for $i=$ $1, \ldots, m-1$. Let $s(L, P)$ be the number of jumps of P in L and let $s(P)$ be the minimum of $s(L, P)$ over all linear extensions L of P. The number $s(P)$ is called the jump number of P. If $s(L, P)=s(P)$ then L is called an optimal linear extension of P. We denote the set of all optimal linear extensions of P by $\mathcal{O}(P)$.

Let P denote the dual of the poset P, that is, the poset obtained from P by reversing the order. If L is a linear extension of P, then its dual L^{d} is a linear extension of P^{d}.

In Figure 1 only L_{3} is optimal.
The width $\omega(P)$ of P is the maximal number of elements of an antichain (mutually incomparable elements) of P.

Figure 2: (a) Cycle (b) C.
Dilworth [5] showed that $\omega(P)$ equals the minimum number of chains in a partition of P into chains. Since for any linear extension L of P the number of (P, L)-chains is at least as large as the minimum number of chains in a chain partition of P, it follows from Dilworth's theorem that

$$
\begin{equation*}
s(P) \geq \omega(P)-1 \tag{1}
\end{equation*}
$$

If equality holds in (1), then P is called a Dilworth poset or simply a D-poset. More discussion about D-posets is given in [6], [12].

A cycle is a partially ordered set with diagram in Figure 2(a). In 1982, Duffus, Rival and Winkler [6] proved that every poset which contains no cycle as a subposet is a D-poset.

A linear extension $L=x_{1}, x_{2}, \ldots, x_{n}$ of P is greedy if L can be obtained by applying the following algorithm:

1. Choose a minimal element x_{1} of P.
2. Suppose x_{1}, \ldots, x_{i} have been chosen. If there is a minimal element of $P \backslash\left\{x_{1}, \ldots, x_{i}\right\}$ which is greater than x_{i} then choose x_{i+1} to be this minimal element. If not, choose x_{i+1} to be any minimal element of $P \backslash\left\{x_{1}, \ldots, x_{i}\right\}$.
In words, L is obtained by climbing as high as one can. Let $\mathcal{G}(P)$ be the set of all greedy linear extensions of P. In Figure $1, L_{1}, L_{2}, L_{3}$ are greedy linear extensions of the poset N, but L_{4} is not greedy. So $\mathcal{O}(N) \subset \mathcal{G}(N)$. In fact, L_{3} is a greedy optimal linear extension of N. Since the greedy algorighm above is a particular way of carrying out the algorithm for a linear extension, by induction we obtain [11] that every poset P has a greedy optimal linear extension.

X

W

Figure 3: The poset X and W.
A poset P is greedy if $\mathcal{G}(P) \subseteq \mathcal{O}(P)$, that is, every greedy extension is optimal. In Figure 3, $\mathcal{G}(X) \subset \mathcal{O}(X), \mathcal{O}(W)=\mathcal{G}(W)$. In the above examples, X and W are greedy but N is not greedy.

A poset P is called series parallel if it can be constructed from singletons using the operations of disjoint sum (+) and linear sum (\oplus). For example, $(1+1) \oplus(1+1)$, a crown with 4 elements, is a series parallel poset.

In 1979, Cogis and Habib [4] proved that every series parallel poset is greedy. In 1982, Cogis [3] asked for a characterization of greedy posets. The problem remains open. A poset P is N-free if P contains no cover-preserving subposet isomorphic to the poset N in Figure 1. Rival [10] showed that every N-free poset is greedy.

In 1985, El-Zahar and Rival [7] proved that if P is a poset which contains no subposet isomorphic to C in Figure 2(b), then $\mathcal{O}(P) \subseteq$ $\mathcal{G}(P)$.

A poset P is said to be reversible if $L^{d} \in \mathcal{G}\left(P^{d}\right)$ for every $L \in \mathcal{G}(P)$. In 1986, Rival and Zaguia [11] showed that a poset P is reversible if and only if $\mathcal{O}(P)=\mathcal{G}(P)$.

In this paper, we study jump number and greediness of some classical posets (Young's Lattice and Subspace Lattice).

2. The Young's lattice $L(m, n)$

Let m, n be positive integers. The Young's latiice $L(m, n)$ is a poset defined on

$$
\left\{\left(a_{1}, \ldots, a_{m}\right): 0 \leq a_{1} \leq \cdots \leq a_{m} \leq n, \text { all } a_{i} \text { 's are integers }\right\}
$$

with the following order relation: $\left(a_{1}, \ldots a_{m}\right) \leq\left(b_{1}, \ldots, b_{m}\right)$ if and only if $a_{i} \leq b_{i}$ for $i=1, \ldots, m$.

In this section we obtain an upper bound for the jump number of $L(m, n)$, and also we will study the greediness property of $L(m, n)$.

For $0 \leq i_{1} \leq \cdots \leq i_{m-1} \leq n-1$, if $i_{m-1}=n-1$ choose the smallest k such that $i_{k}=n-1$. We define a chain $C\left(i_{1}, \ldots, i_{m-1}\right)$ to be

- $\left\{\left(i_{1}, i_{2}, \ldots, i_{m-1}, x_{m}\right): i_{m-1} \leq x_{m} \leq n\right\}$ if $i_{m-1}<n-1$,
- $\left\{\left(i_{1}, i_{2}, \ldots, i_{k}, x_{k+1}, \ldots, x_{m-1}, x_{m}\right): n-1 \leq x_{k+1} \leq \cdots \leq\right.$ $\left.x_{m-1} \leq x_{m} \leq n\right\}$ if $i_{m-1}=n-1$.
Let $L_{0}=\oplus\left(C\left(i_{1}, \ldots, i_{m-1}\right): 0 \leq i_{1} \leq \cdots \leq i_{m-1} \leq n-1\right.$, lex. order $)$.
Lemma 2.1. L_{0} is a linear extension of $L(m, n)$.
Proof. Let $x \in C\left(i_{1}, \ldots, i_{n-1}\right)$ and $y \in C\left(j_{1}, \ldots, j_{n-1}\right)$ be distinct elements such that $x<y$ in $L(m, n)$. By definition of linear extension it is sufficient to show that $x<y$ in L_{0}.

If $\left(i_{1}, \ldots, i_{n-1}\right)=\left(j_{1}, \ldots, j_{n-1}\right)$, then x and y belong to the same chain and thus $x<y$ in L_{0}.

Suppose $\left(i_{1}, \ldots, i_{n-1}\right) \neq\left(j_{1}, \ldots, j_{n-1}\right)$. Let p be the smallest k such that $i_{k} \neq j_{k}$. Since $x<y$ in $L(m, n)$, we get $i_{p}<j_{p}$. If $\left(i_{1}, \ldots, i_{n-1}\right)<\left(j_{1}, \ldots, j_{n-1}\right)$ in lexicographic order, then $x<y$ in L_{0}. If $\left(i_{1}, \ldots, i_{n-1}\right) \nless\left(j_{1}, \ldots, j_{n-1}\right)$, then there exists $q>p$ such that $i_{q}>j_{q}$. Let $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$. Since $i_{p}<j_{p} \leq j_{q}<i_{q} \leq n-1$ and $i_{q} \leq x_{q}$, we have $x_{p}<y_{p} \leq y_{q}<x_{q}$. Thus $x_{p}<y_{p}$ but $x_{q} \nless y_{q}$, and hence $x \nless y$ in $L(m, n)$ which is a contradiction.

Corollary 2.2.

$$
s(L(m, n)) \leq\binom{ m+n-2}{m-1}-1
$$

Proof. Since $c\left(L_{0}\right)=\mid\left\{\left(i_{1}, \ldots, i_{m-1}\right): 0 \leq i_{1} \leq \cdots \leq i_{m-1} \leq\right.$ $n-1\} \mid$,

$$
c\left(L_{0}\right)=\binom{m+n-2}{m-1} \text { and thus } s(L(m, n)) \leq\binom{ m+n-2}{m-1}-1
$$

It is easy to check $s(L(2, n))=n-1$, that is, equality holds in Corollary 2.2. Consider $L(3,4)$. Let $C_{1}=C(0,0), C_{2}=C(0,1), C_{3}=$ $C(1,1), C_{4}=C(0,2), C_{5}=C(1,2), C_{6}=C(2,2), C_{7}=\{(i, 3,3):$ $i=0,1,2,3\}, C_{8}=\{(i, 3,4): i=0,1,2,3\}, C_{9}=\{(i, 4,4): i=$ $0,1,2,3,4\}$. Let $\ell=\oplus_{i=1}^{9} C_{i}$. Then ℓ is a linear extension of $L(3,4)$. Thus $s(L(3,4)) \leq 8$, that is, equality does not hold in Corollary 2.2.

By (1), we get $\omega(L(m, n))-1 \leq s(L(m, n))$. But this is not a good lower bound. If m or n is, 1 , then equality holds. On the other hand, $\omega(L(2,4))=3$ while $s(L(2,4))=3$.

Proposition 2.3. $L(m, n)$ is greedy if and only if m, n satisfy one of the followings: (1) $m=1$ or $n=1$, (2) $m \leq 2$ and $n \leq 2$.

Proof. Suppose that m, n satisfy (1) or (2). Since $L(1, n)$ is a chain, $L(1, n)$ is greedy. Since $L(n, 1)$ is isomorphic to $L(1, n), L(n, 1)$ is greedy. By direct calculation, $s(L(2,2))=1$. Note that every greedy linear extension of $L(2, \dot{2})$ has two chains. Thus $L(2,2)$ is greedy.

Now assume that either $m \geq 3$ and $n \geq 2$ or $m \geq 2$ and $n \geq$ 3 holds. Let $C_{1}=\{(0,0),(0,1),(1,1)\}, C_{2}=\{(0,2),(0,3)\}, C_{3}=$ $\{(1,2),(1,3)\}, C_{4}=\{(2,2),(2,3),(3,3)\}$. Let $L=C_{1} \oplus C_{2} \oplus C_{3} \oplus C_{4}$. L is a greedy linear extension of $L(2,3)$. Since $s(L(2,3))=2, L$ is not an optimal linear extension of $L(2,3)$. Hence $L(2,3)$ is not greedy. Since $L(3,2)$ is isomorphic to $L(2,3), L(3,2)$ is not greedy.
$L(m, n)$ contains either $L(2,3)$ or $L(3,2)$. Without loss of generality, assume that $L(m, n)$ contains $L(2,3)$. We can construct a greedy linear extension of $L(m, n)$ which is not optimal. Let

$$
\begin{gathered}
C_{1}=\{(0, \ldots, 0),(0, \ldots, 0,1),(0, \ldots, 0,1,1)\}, \\
C_{2}=\{(0, \ldots, 0, i): 2 \leq i \leq n\} \\
C_{3}=\{(0, \ldots, 0,1, i): 2 \leq i \leq n\}
\end{gathered}
$$

$\ell_{0}=\oplus C\left(i_{1}, \ldots, i_{m-1}\right)$ over all $\left(i_{1}, \ldots, i_{m-1}\right)$ satisfying $0 \leq i_{1} \leq \cdots \leq$ $i_{m-1} \leq n-1$ and $\left(i_{1}, \ldots, i_{m-1}\right) \neq(0, \ldots, 0, \ell)$ for $\ell=0,1$, and arranged lexicographically. Let $L=C_{1} \oplus C_{2} \oplus C_{3} \oplus \ell_{0}$, then L is a greedy linear extension of $L(m, n)$. Now we get

$$
c(L)=\binom{m+n-2}{m-1}+1>\binom{m+n-2}{m-1} .
$$

By Corollary 2.2, L is not an optimal linear extension of $L(m, n)$. Hence $L(m, n)$ is not greedy.

3. The subspace lattice $L_{p}(n)$

Let p be a prime number and F_{p} be the Galois field of p elements. Let $L_{p}(n)$ be the lattice of subspaces of the n dimensional vector space $F_{p}^{(n)}$ over F_{p} ordered by inclusion. In general it is very difficult to find $s\left(L_{p}(n)\right)$. In this section we study $s\left(L_{p}(n)\right)$ for $n=3,4$. Let $L_{p}(n)^{k}$ be the set of all k dimensional subspaces of $F_{p}^{(n)}$, i.e., the k-th level of $L_{p}(n)$. It is well known [1] that the following properties hold in $L_{p}(n)$:

1. For $k \geq 1,\left|L_{p}(n)^{k}\right|$ equals the Gaussian coefficient $\binom{n}{k}_{p}$ where

$$
\binom{n}{0}_{p}=1,\binom{n}{k}_{p}=\frac{\left(p^{n}-1\right)\left(p^{n-1}-1\right) \cdots\left(p^{n-k+1}-1\right)}{\left(p^{k}-1\right)\left(p^{k-1}-1\right) \cdots(p-1)}
$$

2. $\left|L_{p}(n)\right|=G_{n, p}$ where $G_{n, p}$ is the Galois number, i.e.,

$$
G_{n, p}=\sum_{k=0}^{n}\binom{n}{k}_{p}
$$

3. For $k=0,1, \ldots, n$,

$$
\binom{n}{k}_{p}=\binom{n}{n-k}_{p}
$$

4. The Gaussian coefficient is unimodal, i.e.,
(a) if n is even then

$$
\binom{n}{0}_{p}<\binom{n}{1}_{p}<\cdots<\binom{n}{n / 2}_{p}>\cdots>\binom{n}{n}_{p}
$$

(b) if n is odd then

$$
\binom{n}{0}_{p}<\cdots<\binom{n}{(n-1) / 2}_{p}=\binom{n}{(n+1) / 2}_{p}>\cdots>\binom{n}{n}_{p}
$$

Let $A \in L_{p}(n)$. Let A_{g} denote a basis of A. Let x be any element of $F_{p}^{(n)}$ such that $x \notin A$. Denote $\left\langle A_{g} \cup\{x\}\right\rangle$ to be the subspace generated by $A_{g} \cup\{x\}$.

Lemma 3.1. If $L \in \mathcal{L}\left(L_{p}(n)\right.$), then every ($\left.L_{p}(n), L\right)$-chain C has length at most one.

Proof. Let $X=\sup C$ and $Y=\inf C$. We may choose bases X_{g} and Y_{g} so that $Y_{g} \subseteq X_{g}$. Suppose that $|C| \geq 3$, so that $\left|X_{g}\right| Y_{g} \mid \geq$ 2. Then there exist $y_{1}, y_{2} \in X_{g} \backslash Y_{g}$ such that $\left\langle Y_{g} \cup\left\{y_{1}\right\}\right\rangle \in C$ and $y_{2} \in X \backslash\left\langle Y_{g} \cup\left\{y_{1}\right\}\right\rangle$. This implies that $\left\langle Y_{g} \cup\left\{y_{2}\right\}\right\rangle \neq\left\langle Y_{g} \cup\left\{y_{1}\right\}\right\rangle$. But $\left\langle Y_{g} \cup\left\{y_{2}\right\}\right\rangle \notin C$. Hence $\left\langle Y_{g} \cup\left\{y_{2}\right\}\right\rangle>X$ or $\left\langle Y_{g} \cup\left\{y_{2}\right\}\right\rangle<Y$ in L, contradicting $Y \leq\left\langle Y_{g} \cup\left\{y_{2}\right\}\right\rangle \leq X$.

A $(k+1)$-dimensional subspace covers $\frac{p^{k+1}-1}{p-1} k$-dimensional subspaces, while a k-dimensional subspace is covered by $\frac{p^{n-k}-1}{p-1}(k+1)$ dimensional subspaces.

We may regard $L_{p}(n-1)$ as the sublattice of $L_{p}(n)$ obtained by considering only those n-tuples whose n-th coordinate is 0 . No subspace of $L_{p}(n) \backslash L_{p}(n-1)$ is contained in a subspace of $L_{p}(n-1)$.

Let e_{1}, \ldots, e_{n} be the standard basis of $F_{p}^{(n)}$. Let

$$
M_{p}(k+1)=L_{p}(k+1) \backslash\left(L_{p}(k) \cup L_{p}(k)^{*}\right)
$$

where $L_{p}(k)^{*}=\left\{\left\langle X \cup\left\{e_{k+1}\right\}\right\rangle: X \in L_{p}(k)\right\}$. Given a linear ordering $L=x_{1}, x_{2}, \ldots$ of $L_{p}(k)$, let $L^{*}=\overline{x_{1}}, \overline{x_{2}}, \ldots$ where $\overline{x_{i}}=\left\langle x_{i} \cup\left\{e_{k+1}\right\}\right\rangle$.

Define a good extension L_{n} of $L_{p}(n)$ inductively as follows:

1. Let $L_{1}=C_{1} \in \mathcal{O}\left(L_{p}(1)\right)$ where $C_{1}=\left\{\langle 0\rangle,\left\langle e_{1}\right\rangle\right\}$.
2. Given L_{k}, let $L_{k+1}=L_{k} \oplus \ell_{k+1} \oplus L_{k}^{*}$ where $\ell_{k+1} \in \mathcal{O}\left(M_{p}(k+1)\right)$.

Theorem 3.2. Let L_{n} be a good extension of $L_{p}(n)$. Then $L_{n} \in$ $\mathcal{L}\left(L_{p}(n)\right)$.

Proof. For any $X \in L_{p}(n-1)$, there doesn't exist $Y \in L_{p}(n) \backslash L_{p}(n-$ 1) such that $X>Y$. Thus $\mathcal{L}\left(L_{p}(n)\right)$ has an element of the form $L_{n-1} \oplus$ L where $L \in \mathcal{L}\left(L_{p}(n) \backslash L_{p}(n-1)\right)$. Now consider $L_{p}(n) \backslash L_{p}(n-1)$. For any $Y \in L_{p}(n) \backslash\left(L_{p}(n-1) \cup L_{p}(n-1)^{*}\right)$, there does not exist $Z \in L_{p}(n-$ $1)^{*}$ such that $Y>Z$. This implies that $\ell_{n} \oplus L_{n-1}^{*} \in \mathcal{L}\left(L_{p}(n) \backslash L_{p}(n-1)\right)$ where $\ell_{n} \in \mathcal{O}\left(M_{p}(n)\right)$. Hence $L_{n}=L_{n-1} \oplus \ell_{n} \oplus L_{n-1}^{*} \in \mathcal{L}\left(L_{p}(n)\right)$.

Conjecture 3.3. The good extension L_{n} of $L_{p}(n)$ is an optimal linear extension.

By direct calculation, we can obtain $s\left(L_{p}(1)\right)=0$ and $s\left(L_{p}(2)\right)=p$. That is, $L_{1}=C_{1}=\left\{\langle 0\rangle,\left\langle e_{1}\right\rangle\right\} \in \mathcal{O}\left(L_{p}(1)\right)$ and $L_{2}=L_{1} \oplus \ell_{2} \oplus L_{1}^{*} \in$ $\mathcal{O}\left(L_{p}(2)\right)$ where $\ell_{2}=\oplus_{i=1}^{p-1}\left\{\left\langle e_{1}+i \cdot e_{2}\right\}\right\}$.

Let $N(i, L)$ be the number of one-element chains of L which belong to $L_{p}(n)^{i}$.

Proposition 3.4. For $n \geq 2$, let $L \in \mathcal{L}\left(L_{2}(n)\right)$. Then $N(1, L) \geq$ $n-1$.

Proof. For any $L \in \mathcal{L}\left(L_{2}(n)\right)$, we can rearrange the ($\left.L_{2}(n), L\right)$ chains in L so that all one-element $\left(L_{2}(n), L\right)$-chains $\left\langle u_{1}\right\rangle, \ldots,\left\langle u_{N(1, L)}\right\rangle$ which belong to $L_{2}(n)^{1}$ come before all the two-element ($\left.L_{2}(n), L\right)$ chains which begin with an element in $L_{2}(n)^{1}$. Since any two-dimensional subspace X covers 3 one-dimensional subspaces and $X \backslash\{0\}$ has 3 elements, the sum of two different elements in $X \backslash\{0\}$ is the other element in $X \backslash\{0\}$. Without loss of generality we may assume that the first $\left(L_{2}(n), L\right)$-chain in L is $\left\{\langle 0\rangle,\left\langle e_{1}\right\rangle\right\}$ since the first $\left(L_{2}(n), L\right)$-chain in L has two elements. Thus

$$
\left|\left\{a_{0} \cdot e_{1}+a_{1} \cdot u_{1}+\cdots+a_{N(1, L)} \cdot u_{N(L, 1)}\right\} \backslash\{0\}\right| \geq\left|L_{2}(n)^{1}\right|
$$

So $2^{N(1, L)+1}-1 \geq 2^{n}-1$. Hence we get $N(1, L) \geq n-1$.
Corollary 3.5. For $n \geq 2$, let $L \in \mathcal{L}\left(L_{2}(n)\right)$. Then $N(n-1, L) \geq$ $n-1$.

Proof. Consider $L_{2}(n)^{d}$.
Application 3.6. $s\left(L_{2}(3)\right)$ and $s\left(L_{2}(4)\right)$.
For the simplicity of notation, let $i j=e_{i}+e_{j}$ and $i, j=e_{i}, e_{j}$.
[1] We determine $s\left(L_{2}(3)\right)$. Let L be any linear extension of $L_{2}(3)$. With $n=3$ we get, by Proposition 3.4 and Corollary $3.5, N(1, L) \geq 2$ and $N(2, L) \geq 2$. And thus L has at least 4 one-element $\left(L_{2}(3), L\right)$ chains. By Lemma 3.1, every ($\left.L_{2}(3), L\right)$-chain which has more than one element has two elements. So L has at most $\left(G_{3,2}-2-2\right) / 2=6$ twoelement $\left(L_{2}(3), L\right)$-chains. Thus $s\left(L_{2}(3)\right) \geq 9$. The good extension L_{3} of $L_{2}(3)$, i.e., $L_{3}=L_{2} \oplus \ell_{3} \oplus L_{2}^{*}$ where $\ell_{3}=\{\langle 123\rangle\} \oplus\{\langle 13\rangle,\langle 2,13\rangle\} \oplus$ $\{\langle 23\rangle,\langle 1,23\rangle\} \oplus\{\langle 13,23\rangle\}$, has 10 chains. Hence $s\left(L_{2}(3)\right)=9$.
[2] We determine $s\left(L_{2}(4)\right)$. Let L be any linear extension of $L_{2}(4)$. With $n=4$ we get, by Proposition 3.4 and Corollary $3.5, N(1, L) \geq 3$ and $N(3, L) \geq 3$. So any L has at least 6 one-element chains in $L_{2}(4)^{1}$ and $L_{2}(4)^{3}$.

Suppose that there exist $L_{0} \in \mathcal{L}\left(L_{2}(4)\right)$ which has 6 one-element ($\left.L_{2}(4), L\right)$-chains in $L_{2}(4)^{1}$ and $L_{2}(4)^{3}$. Then

$$
N\left(2, L_{0}\right)=\binom{4}{2}_{2}-2\left(\binom{4}{1}_{2}-3-1\right)=13
$$

By Lemma 3.1, every ($L_{2}(4), L_{0}$)-chain which has more than one element has two elements. So L_{0} has $\left(G_{4,2}-3-13-3\right) / 2=24$ two-element $\left(L_{2}(4), L_{0}\right)$-chains. Thus $s\left(L_{0}, L_{2}(4)\right)=3+13+3+24-1=42$. So $s\left(L_{2}(4)\right) \geq 42$. Let

$$
\begin{gathered}
\ell_{\alpha}=\{\langle 14\rangle,\langle 14,23\rangle\} \oplus\{\langle 124\rangle,\langle 3,124\rangle\} \oplus\{\langle 24\rangle,\langle 24,13\rangle\} \\
\oplus\{\langle 134\rangle,\langle 2,134\rangle\} \oplus\{(234\rangle,\langle 1,234\rangle\} \oplus\{\langle 34\rangle,(12,34\rangle\}, \\
\ell_{\beta}=\{\langle 1,24\rangle\} \oplus\{\langle 1,34\rangle\} \oplus\{(14,2\rangle\} \oplus\{\langle 14,234)\} \oplus\{(23,134\rangle\} \\
\oplus\{(13,234\rangle\} \oplus\{(24,134\rangle\} \oplus\{\langle 34,124\rangle\} \oplus\{\langle 134,234\rangle\}, \\
\ell_{\gamma}=\{\langle 2,34\rangle,\langle 1,2,34\rangle\} \oplus\{\langle 3,24\rangle,\langle 1,3,24\rangle\} \oplus\{\langle 3,14\rangle,\langle 2,3,14\rangle\}, \\
\ell_{\delta}=\{(23,24\rangle,\langle 1,23,24)\} \oplus\{\langle 13,14\rangle,\langle 2,13,14\rangle\} \oplus \\
\{\langle 12,14\rangle,\langle 3,12,14\rangle\}, \\
\ell_{4}=\{\langle 1234\rangle\} \oplus \ell_{\alpha} \oplus \ell_{\beta} \oplus \ell_{\gamma} \oplus \ell_{\delta} \oplus\{\langle 21,23,24\rangle\} .
\end{gathered}
$$

Then $\ell_{4} \in \mathcal{O}\left(M_{2}(4)\right)$. Define $L_{4}=L_{3} \oplus \ell_{4} \oplus L_{3}^{*}$. This L_{4} is a good extension of $L_{2}(4)$ and has $43\left(L_{2}(4), L_{4}\right)$-chains. Hence $s\left(L_{2}(4)\right)=42$.

Note that every element in $M_{p}(n)^{k}$ is a $(k+1)$-dimensional subspace in $M_{p}(n)$ and every element in $L_{p}(n-1)^{* k}$ is a ($k+1$)-dimensional subspace in $L_{p}(n-1)^{*}$. Note also that $L_{p}(n)^{i}=L_{p}(n-1)^{i} \cup M_{p}(n)^{i-1} \cup$ $L_{p}(n-1)^{* i-1}$.

APPlication 3.7. Upper Bounds of $s\left(L_{p}(3)\right)$ and $s\left(L_{p}(4)\right)$.
[1] Consider $L_{p}(3)$.

Let

$$
\begin{aligned}
A & =\left\{\left\langle e_{1}+a_{2} \cdot e_{2}+a_{3} \cdot e_{3}\right\rangle: 1 \leq a_{i} \leq p-1\right\}, \\
B & =\left\{\left\langle e_{1}+a_{3} \cdot e_{3}\right\rangle: 1 \leq a_{3} \leq p-1\right\}, \\
C & =\left\{\left\langle e_{2}+a_{3} \cdot e_{3}\right\rangle: 1 \leq a_{3} \leq p-1\right\}, \\
M & =M_{p}(3)^{1} \backslash\left\{\left\{\left\langle\left\{e_{2}\right\} \cup Y\right\rangle: Y \in B\right\} \cup\left\{\left\langle\left\{e_{1}\right\} \cup Z\right\rangle: Z \in C\right\}\right] .
\end{aligned}
$$

Define

$$
\begin{gathered}
\ell(A)=\oplus X \in A\{X\}, \\
\ell(B)=\oplus Y \in B\left\{Y,\left\{\left\{e_{2}\right\} \cup Y\right\rangle\right\}, \\
\ell(C)=\oplus Z \in C\left\{Z,\left\{\left\{e_{1}\right\} \cup Z\right\rangle\right\}, \\
\ell(M)=\oplus Z \in M\{Z\}, \\
\ell_{3}=\ell(A) \oplus \ell(B) \oplus \ell(C) \oplus \ell(M) .
\end{gathered}
$$

Now define

$$
\begin{equation*}
L_{3}^{0}=L_{2} \oplus \ell_{3} \oplus L_{2}^{*} \tag{2}
\end{equation*}
$$

where
(3) $L_{2}=\left\{\langle 0\rangle,\left\langle e_{1}\right\rangle\right\} \oplus\left(\oplus\left\{\left\langle e_{1}+a \cdot e_{2}\right\rangle\right\}: 1 \leq a \leq p-1\right) \oplus\left\{\left\langle e_{2}\right\rangle,\left\langle e_{1}, e_{2}\right\rangle\right\}$.

Note that $N\left(1, L_{3}^{0}\right)=N\left(2, L_{3}^{0}\right)=p^{2}-p$. By the same technique as in [1] of Application 3.6, we get

$$
c\left(L_{3}^{0}\right)=2\left(p^{2}-p\right)+\frac{G_{3, p}-2\left(p^{2}-p\right)}{2}=2 p^{2}+2 .
$$

Hence

$$
\begin{equation*}
s\left(L_{p}(3)\right) \leq 2 p^{2}+1 \tag{4}
\end{equation*}
$$

[2] Consider $L_{p}(4)$. Let

$$
\begin{aligned}
A & =\left\{\left\langle e_{1}+a_{2} \cdot e_{2}+a_{3} \cdot e_{3}+a_{4} \cdot e_{4}\right\rangle: 1 \leq a_{i} \leq p-1\right\}, \\
B_{1} & =\left\{\left\langle e_{1}+a \cdot e_{4}, e_{3}\right\rangle: 1 \leq a \leq p-1\right\}, \\
B_{2} & =\left\{\left\langle e_{2}+a \cdot e_{4}, e_{3}\right\rangle: 1 \leq a \leq p-1\right\}, \\
B_{3} & =\left\{\left\langle e_{3}+a \cdot e_{4}, e_{2}\right\rangle: 1 \leq a \leq p-1\right\}, \\
B_{4} & =\left\{\left\langle e_{1}+a \cdot e_{4}, e_{2}+b \cdot e_{4}\right\rangle: 1 \leq a, b \leq p-1\right\}, \\
B_{5} & =\left\{\left\langle e_{1}+a \cdot e_{4}, e_{3}+b \cdot e_{4}\right\rangle: 1 \leq a, b \leq p-1\right\}, \\
B_{6} & =\left\{\left\langle e_{2}+a \cdot e_{4}, e_{3}+b \cdot e_{4}\right\rangle: 1 \leq a, b \leq p-1\right\} \\
C & =\left\{\left\langle e_{1}+a \cdot e_{4}, e_{2}+b \cdot e_{4}, e_{3}+c \cdot e_{4}\right\rangle: 1 \leq a, b, c \leq p-1\right\},
\end{aligned}
$$

For each $X \in A^{c}$ where $A^{c}=M_{p}(4)^{0} \backslash A$, choose a $T_{X} \in L_{p}(3)^{1}$ such that $X+T_{X} \in A$. Define

$$
\begin{gather*}
\ell(A)=\oplus_{X_{a} \in A}\left\{X_{a}\right\}, \\
\ell\left(A^{c}\right)=\oplus X \in A^{c}\left\{X,\left\langle X, T_{X}\right\rangle\right\}, \\
\ell(M)=\left(\oplus\left\{Y_{0}\right\}: Y_{0} \in M_{p}(4)^{1} \backslash \cup_{i=1}^{6} B_{i} \backslash\left\{\left\langle X, T_{X}\right\rangle: X \in A^{c}\right\}\right), \\
\ell\left(B_{1}\right)=\oplus Y_{1} \in B_{1}\left\{Y_{1},\left\{\left\{e_{2}\right\} \cup Y_{1}\right\rangle\right\}, \\
\ell\left(B_{2}\right)=\oplus Y_{2} \in B_{2}\left\{Y_{2},\left\{\left\{e_{1}\right\} \cup Y_{2}\right\rangle\right\}, \\
\ell\left(B_{3}\right)=\oplus Y_{3} \in B_{3}\left\{Y_{3},\left\{\left\{e_{1}\right\} \cup Y_{3}\right\rangle\right\}, \\
\ell\left(B_{4}\right)=\oplus Y_{4} \in B_{4}\left\{Y_{4},\left\{\left\{e_{3}\right\} \cup Y_{4}\right\rangle\right\}, \\
\ell\left(B_{5}\right)=\oplus Y_{5} \in B_{5}\left\{Y_{5},\left\{\left\{e_{2}\right\} \cup Y_{5}\right\rangle\right\}, \\
\ell\left(B_{6}\right)=\oplus Y_{6} \in B_{6}\left\{Y_{6},\left\{\left\{e_{1}\right\} \cup Y_{6}\right\rangle\right\}, \\
\ell(C)=\oplus Z \in C\{Z\}, \\
\ell_{4}=\ell(A) \oplus \ell\left(A^{c}\right) \oplus \ell(M) \oplus\left[\oplus_{i=1}^{6} \ell\left(B_{i}\right)\right] \oplus \ell(C) . \tag{5}
\end{gather*}
$$

Then $c\left(\ell_{4}\right)=p^{4}+3 p^{3}-6 p^{2}+5 p-3$. Now define

$$
L_{4}^{0}=L_{3}^{0} \oplus \ell_{4} \oplus\left(L_{3}^{0}\right)^{*}
$$

where L_{3}^{0} is defined in (2). Note that $N\left(1, L_{4}^{0}\right)=N\left(3, L_{4}^{0}\right)=p^{3}-2 p^{2}+$ $2 p-1$. The L_{4}^{0} has $p^{4}+3 p^{3}-2 p^{2}+5 p+1\left(L_{p}(4), L_{3}^{0}\right)$-chains. Thus

$$
\begin{equation*}
s\left(L_{p}(4)\right) \leq p^{4}+3 p^{3}-2 p^{2}+5 p . \tag{6}
\end{equation*}
$$

[3] In general, equality does not hold in (4) and (6). If $p=2$, then we get equality in (4) and (6). Let L_{2} be defined as in (3) and ℓ_{4} as in (5). We construct $L_{\alpha} \in \mathcal{L}\left(L_{3}(3)\right)$ such that $s\left(L_{\alpha}, L_{3}(3)\right)=18$. Let

$$
\begin{aligned}
\ell_{1}^{e}= & \left\{\left\langle e_{1}+e_{2}+e_{3}\right\rangle\right\} \oplus\left\{\left\langle e_{1}+2 e_{2}+2 e_{3}\right\rangle\right\} \oplus\left\{\left\langle e_{1}+e_{2}+2 e_{3}\right\rangle\right\}, \\
\ell_{2}^{e}= & \left\{\left\langle e_{2}+e_{3}\right\rangle,\left\langle e_{1}, e_{2}+e_{3}\right\rangle\right\} \oplus\left\{\left\langle e_{1}+2 e_{3}\right\rangle,\left\langle e_{2}, e_{1}+2 e_{3}\right\rangle\right\} \\
& \left.\oplus\left\{\left\langle e_{1}+2 e_{2}+e_{3}\right\rangle\right\},\left\langle e_{1}+e_{2}, e_{2}+e_{3}\right\rangle\right\} \\
& \oplus\left\{\left\langle e_{2}+2 e_{3}\right\rangle,\left\langle e_{1}, e_{2}+2 e_{3}\right\rangle\right\} \oplus\left\{\left\langle e_{1}+e_{3}\right\rangle,\left\langle e_{2}, e_{1}+e_{3}\right\rangle\right\}, \\
\ell_{3}^{e}= & \left\{\left\langle e_{1}+e_{2}, e_{2}+2 e_{3}\right\rangle\right\} \oplus\left\{\left\langle e_{1}+2 e_{2}, e_{2}+e_{3}\right\rangle\right\} \\
& \oplus\left\{\left\langle e_{1}+2 e_{2}, e_{2}+2 e_{3}\right\rangle\right\} .
\end{aligned}
$$

Let

$$
L_{\alpha}=L_{2} \oplus \ell_{1}^{e} \oplus \ell_{2}^{e} \oplus \ell_{3}^{e} \oplus L_{2}^{*}
$$

Then $s\left(L_{\alpha}, L_{3}(3)\right)=18$. So $s\left(L_{3}(3)\right) \leq 18$. So equality does not hold in (4). Similiarly, we can construct a linear extension $L_{\beta}=L_{\alpha} \oplus \ell_{4} \oplus L_{\alpha}^{*} \in$ $\mathcal{L}\left(L_{3}(4)\right)$. Since $s\left(L_{\beta}, L_{3}(4)\right)=157$, equality does not hold in (6).

Proposition 3.8. $L_{p}(n)$ is greedy if and only if $n=1,2$. Furthermore, $L_{p}(n)$ is reversible, i.e., $\mathcal{G}\left(L_{p}(n)\right)=\mathcal{O}\left(L_{p}(n)\right)$, if and only if $n=1,2$.

Proof. $L_{p}(1)$ is obviously greedy. If $L \in \mathcal{G}\left(L_{p}(2)\right)$, then only the first $\left(L_{p}(2), L\right)$-chain and the last $\left(L_{p}(2), L\right)$-chain have two elements, and the other $\left(L_{p}(2), L\right)$-chains have one element. Since $s\left(L, L_{p}(2)\right)=$ $1+p-1+1-1=p, L \in \mathcal{O}\left(L_{p}(2)\right)$.

Suppose $n \geq 3$. Let L be the linear extension of $L_{p}(3)$ defined by

$$
\begin{aligned}
& L=L_{2} \oplus\left\{\left\langle e_{1}+e_{3}\right\rangle\right\} \oplus\left(\oplus\left\{\left\langle e_{1}+a \cdot e_{2}+b \cdot e_{3}\right\rangle\right\}: 1 \leq a, b \leq p-1\right) \\
& \oplus \ell_{3}^{0} \oplus\left\{\left\langle e_{2}, e_{1}+e_{3}\right\rangle\right\} \oplus L_{2}^{*}
\end{aligned}
$$

where L_{2} is a good extension of $L_{p}(2)$ and
$\ell_{3}^{0} \in \mathcal{O}\left(M_{p}(3) \backslash \cup_{1 \leq a, b \leq p-1}\left\langle e_{1}+a \cdot e_{2}+b \cdot e_{3}\right\rangle \backslash\left\langle e_{1}+e_{3}\right\rangle \backslash\left\langle e_{2}, e_{1}+e_{3}\right\rangle\right)$.
Then $L \in \mathcal{G}\left(L_{p}(3)\right)$ but $L \notin \mathcal{O}\left(L_{p}(3)\right)$. Thus $L_{p}(3)$ is not greedy. Since $L_{p}(n) \supset L_{p}(3)$, we can construct $\ell \in \mathcal{G}\left(L_{p}(n) \backslash L_{p}(3)\right)$. Then $L \oplus \ell \in \mathcal{G}\left(L_{p}(n)\right)$ where L is defined as above. But $L \oplus \ell \notin \mathcal{O}\left(L_{p}(n)\right)$. This shows that $L_{p}(n)$ is not greedy for $n \geq 3$.

For $n=1,2$ we have $\mathcal{O}\left(L_{p}(n)\right) \subset \mathcal{G}\left(L_{p}(n)\right)$. Thus from the above result we obtain that $\mathcal{G}\left(L_{p}(n)\right)=\mathcal{O}\left(L_{p}(n)\right)$ if and only if $n=1,2$.

References

1. M. Aigner, Combinatorial Theory, Springer Verlag (1979).
2. M. Chein and M. Habib, The jump number of dags and posets: an introduction, Ann. Disc. Math. 9 (1980), 189-194.
3. O. Cogis, Problem 4.6, in Ordered Sets (I. Rival, ed.), D. Reidel, Dordrecht, 814 (1982).
4. \qquad and M. Habib, Nombre de sauts et graphes serie-paralleles, RAIRO. Inform. Theor. 13 (1979), 3-18.
5. R. P. Dilworth, A decomposition theorem for partially ordered sets, Ann. of Math. 51 (1950), 161-166.
6. D. Duffus, I. Rival, and P. Winkler, Minimizing setups for cycle-free ordered sets, Proc. Amer. Math. Soc. 85 (1982), 509-513.
7. M. H. ElZahar and I. Rival, Greedy linear extensions to minimize jumps, Disc. Applied Math. 11 (1985), 143-156.
8. Sneh Gulati, A Study of Sperner theory and its application of $L(m, n)$-The Young's lattice, master's thesis, Dept. of Math., Univ. of South Carolina (1987).
9. Bernt Lindstrom, A Partition of L(3,n) into Saturated Symmetric Chains, Europ. J., Combinatorics 1 (1980), 61-63.
10. I. Rival, Optimal linear extensions by interchanging chains, Proc. Amer. Math. Soc. 89 (1983), 387-394.
11. ___ and N. Zaguia, Constructing greedy linear extensions by interchanging chains, Order 3 (1986), 107-121.
12. M. M. Syslo, Remarks on Dilworth partially ordered sets, in Proceedings of the WG'85 (H. Noltemeir, ed.), Trauner Verlag, Linz, (1985), 355-362.
13. E. Szpilrajn, Sur l'extension de l'ordre partiel, Fund. Math. 16 (1930), 386-389.

Department of Mathematics Education
KonKuk University
Seoul 133-701, Korea

