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YOUNG'S LATTICE AND SUBSPACE LATTICE:

JUMP NUMBER, GREEDINESS

HVUNG CHAN JUNG

1. Introduction

Suppose we are given a finite number of tasks to be sequenced sub
ject to precedence constraints, that is, a task cannot be scheduled until
all of its predecessors have been scheduled. H a task t is scheduled im
mediately after the task u, then there is a jump (or setup) resulting in
a fixed cost if u is not one oft's precedecessors and there is no cost (no
setup) if u is one of t's precedecessors. Since the cost of a jump does
not depend on where it occurs, the cost of a schedule is completely
defined by the structure of the underlying partial order which repre
sents the precedence constraints. The problem is: schedule the tasks to
minimize the number of jumps. This is the jump number problem of a
poset.

Let P be a finite poset and let IPI be the number of vertices in P. A
subposet of P is a subset of P with the induced order. A chain C in P
is a subposet of P which is a linear order. The length of the chain C is
ICI-1. A poset is ran1ced if every maximal chain has the same length.
A linear extension of a poset P is a linear order L = Xl, X2, • •• , X" of
the elements of P such that Xi < X j in P implies i < j. Let £(P) be
the set of all linear extensions of P. Szpilrajn [13] showed that £(P) is
not empty. Algorithmically, a linear extension L of P can be defined
as follows: .

1. Choose a minimal element Xl in P.
2. Given X1,X2, ••• ,Xi choose a minimal element from P\{x}, ... ,

Xi} and call this element Xi+1.

Let P, Q be two disjoint posets. The disjoint sum P +Q of P and Q
is the poset on PUQ such that X < Y if and only if x,y E P and X < y
in P or x,y E Q and X < Y in Q. The linear sum PEa Q of P and Q
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FIGURE 1: THE POSET N AND ITS LINEAR EXTENSIONS.

is obtained from P +Q by adding the relation x < y for all x E P and
yEQ.

Throughout this section, L denotes an arbitrary linear· extension of
P. Let a, b E P with a < b. Then b covers a, denoted a -{ b, provided
that for any c E P, a < c ~ b implies that c = b. A (P, L)-chain is a
maximal sequence of elements Zl, Z2, ••• ,Zk such that Zl -{ Z2 -{ ••• -{

Zk in both L and P. Let eeL) be the number of (P,L)-chains in L.

A consecutive pair (xi,Xi+d of elements in L is a jump (or setup)
of P in L if Xi is not comparable to Xi+! in P. The jumps induce a
decomposition L = Cl $ ... $ Cm of L into (P, L)-chains Cb" ., Cm
where m = eeL) and (maxCi,minCi+l) is a jump of Pin L for i =
1, ... ,m - 1. Let s(L, P) be the number of jumps of P in L and let
s(P) be the minimum of s(L, P) over all linear extensions L of P. The
number s(P) is called the jump number of P. H s(L,P) = s(P) then
L is called an optimal linear extension of P. We denote the set of all
optimal linear extensions of P by O(P).

Let pd denote the dual of the poset P, that is, the poset obtained
from P by reversing the order. H L is a linear extension of P, then its
dual L d is a linear extension of pd.

In Figure 1 only La is optimal.

The width w(P) of P is the maximal number of elements of an
antiehain (mutually incomparable elements) of P.
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FIGURE 2: (A) CYCLE (B) C.

Dilworth [5] showed that w(P) equals the minimum number of chains
in a partition of P into chains. Since for any linear extension L of P
the number of (P, L)-chains is at least as large as the minimum number
of chains in a chain partition of P, it follows from Dilworth's theorem
that

(1) s(P) ~ w(P) -1.

IT equality holds in (1), then P is called a Dilworth poset or simply a
D-poset. More discussion about D-posets is given in [6], [12].

A cycle is a partially ordered set with diagram in Figure 2(a). In
1982, Duffus, Rival and Winkler [6] proved that every poset which
contains no cycle as a subposet is a D-poset.

A linear extension L = XI,X2, ... ,Xn of P is greedy if L can be
obtained by applying the following algorithm:

1. Choose a minimal element Xl of P.
2. Suppose X}, ••• , Xi have been chosen. IT there is a minimal

element of P\{Xl, ... , Xi} which is greater than Xi then choose
Xi+l to be this minimal element. H not, choose Xi+! to be any
minimal element of P\{x}, .... , Xi}.

In words, L is obtained by climbing 4S high 48 one can. Let g(P) be
the set of all greedy linear extensions of P. In Figure 1, LI, L2 , L3

are greedy linear extensions of the poset N, but L4 is not greedy. So
O(N) c g(N). In fact, L 3 is a greedy optimal linear extension of N.
Since the greedy algorighm above is a particular way of carrying out
the algorithm for a linear extension, by induction we obtain [11] that
every poset P has a greedy optimal linear extension.
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FIGURE 3: THE POSET X AND W.

A poset P is greedy if Q(P) ~ O(P), that is, every greedy extension
is optimal. In Figure 3, Q(X) c O(X), O(W) = Q(W). In the above
examples, X and W are greedy but N is not greedy.

A poset P is called series parallel if it can be constructed from
singletons using the operations of disjoint sum (+) and linear sum
(EB). For example, (1 + 1) EB (1 + 1), a crown with 4 elements, is a series
parallel poset.

In 1979,Cogis and Habib [4} proved that every series parallel poset
is greedy. In 1982, Cogis [3} asked for a characterization of greedy
posets. The problem remains open. A poset P is N-free if P contains
no cover-preserving subposet isomorphic to the poset N in Figure 1.
Rival [10] showed that every N -free poset is greedy.

In 1985, El-Zahar and Rival [7} proved that if P is a poset which
contains no subposet isomorphic to C in Figure 2(b), then O(P) ~
Q(P).

A poset P is said to be reversible if L d E g(pd ) for every L E Q(P).
In 1986, Rival and Zaguia [11] showed that a poset P is reversible if
and only if O(P) = Q(P).

In this paper, we study jump number and greediness ofsome classical
posets (Young's Lattice and Subspace Lattice).

2. The Young's lattice L(m,n)

Let m, n be positive integers. The Young's lattice L(m, n) is a poset
defined on

{(at, ... , am) : 0 ~ at ~ ... ~ am ~ n, all ai's are integers}



Young's lattice and subspace lattice 427

with the following order relation: (al, ... am) ~ (b l , ... , bm ) if and only
if ai ~ bi for i = 1, ... , m.

In this section we obtain an upper bound for the jump number of
L(m, n), and also we will study the greediness property of L(m, n).

For 0 ~ i l ~ ... ~ i m - l ~ n -1, if i m - l = n -1 choose the smallest
k such that ik = n - 1. We define a chain C(iI, ... , im-d to be

• {(iI,i 2 ,··. ,im-I,xm ): i m - l ~ Xm ~ n} if i m - l < n -1,
• {(iI,i 2 , ••• ,ik,Xk+I, ... ,xm-I,Xm ) : n -1 ~ Xk+l ~ ... <

Xm-l ~ X m ~ n} if i m - l = n - 1.

Let Lo = EB(C(iI, ... , im-d : 0 ~ i l ~ ... ~ im - l ~ n -1, lex. order).

LEMMA 2.1. Lo is a linear extension of L(m, n).

Proof. Let x E C(iI, ... , in-d and y E C(iI, ... , jn-l) be distinct
elements such that x < y in L(m, n). By definition of linear extension
it is sufficient to show that x < y in Lo.

IT (il , ... , in-d = (il,'" ,in-d, then x and y belong to the same
chain and thus x < y in L o.

Suppose (iI, ... ,in-d :f. (i!, ... ,jn-l)' Let p be the smallest k
such that i k :f. jk' Since x < y in L(m, n), we get i p < jp. IT
(il, ... ,in-d < (iI, ... ,jn-d in lexicographic ord~r, then x < y in
L o. IT (il, ... ,in-d I- (iI, ... ,jn-d, then there exists q > p such
that iq > jq. Let x = (XI, ... , x n ) and y = (YI, ... , Yn). Since
ip < i p ~ jq < i q ~ n - 1 and iq ~ x q, we have x p < YP ~ yq < x q.
Thus x p < YP but x q I- Yq, and hence x I- Y in L(m,n) which is a
contradiction.

COROLLARY 2.2.

(
m+n-2)

s(L(m,n)) ~ m-I -1.

Proof. Since c(Lo) = l{(iI, ... , im-d : 0 ~ i l <
n - I}I,

< Zm-l <

(
m+n-2) (m+n-2)c(Lo) = and thus s(L(m,n)) ~ -1.

m-I m-I
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It is easy to check s(L(2, n» = n - 1, that is, equality holds in
Corollary 2.2. Consider L(3,4). Let Cl = C(O,O), C2 = C(O, 1), C3 =
C(l,l), C4 = C(0,2), Cs = C(1,2), C6 = C(2,2), C7 = {(i, 3, 3) :
i = 0,1,2,3}, Cs = {(i,3,4) : i = 0,1,2,3}, C9 = {(i,4,4) : i =
0,1,2,3,4}. Let £ = El1~=1 Ci. Then £ is a linear extension of L(3,4).
Thus s(L(3,4» :::; 8, that is, equality does not hold in Corollary 2.2.

By (1), we get w(L(m,n» -1:::; s(L(m,n». But this is not a good
lower bound. H m or n is, 1, then equality holds. On the other hand,
w(L(2,4» = 3 while s(L(2,4» = 3.

PROPOSITION 2.3. L(m, n) is greedy if and only ifm,n satisfy one
of the foRowings: (1) m = 1 or n = 1, (2) m :::; 2 and n :::; 2.

Proof. Suppose that m, n satisfy (1) or (2). Since L(l, n) is a chain,
L(l,n) is greedy. Since L(n,l) is isomorphic to L(l,n), L(n,l) is
greedy. By dir~t calculation, s(L(2,2» = 1. Note that every greedy
linear extension of L(2, 2) has two chains. Thus L(2,2) is greedy.

Now assume that either m ~ 3 and n ~ 2 or m ~ 2 and n ~

3 holds. Let Cl = {(O, 0), (0,1), (1, I)}, C2 = {(O, 2), (0, 3)}, C3 =
{(I, 2), (1, 3)}, C4 = {(2, 2), (2,3), (3, 3)}. Let L = Cl EI7 C2 El1 C3 El1 C4 •

L is a greedy linear extension of L(2,3). Since s(L(2,3» = 2, L is
not an optimal linear extension of L(2, 3). Hence L(2, 3) is not greedy.
Since L(3,2) is isomorphic to L(2,3), L(3,2) is not greedy.

L(m, n) contains either L(2, 3) or L(3, 2). Without loss of generality,
assume that L(m, n) contains L(2,3). We can construct a greedy linear
extension of L(m, n) which is not optimal. Let

Cl = {(O, ... , 0), (0, ... ,0,1), (0, ... ,0,1, I)},

C2 = {(0, , 0, i) : 2 :::; i :::; n},

C3 = {(O, ,0, 1,i): 2:::; i:::; n},

£0 = E17C(it, ... ,im - l ) over all (it, ,im - l ) satisfying 0:::; i l :::; ••• :::;

im- l :::; n-1 and (it, ... , im-tl =1= (0, ,0, £) for £ = 0,1, and arranged
lexicographically. Let L = Cl ffiC2 ffiC3 (B£o, then L is a greedy linear
extension of L(m,n). Now we get

c(L) = (m+n-2) +1> (m+n-2).
m-I m-I
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By Corollary 2.2, L is not an optimal linear extension of L(rn, n).
Hence L(rn, n) is not greedy.

3. The subspace lattice Lp ( n)
Let p be a prime number and Fp be the Galois field of p elements.

Let Lp ( n) be the lattice of subspaces of the n dimensional vector space
F;n) over Fp ordered by inclusion. In general it is very difficult to find
s(Lp(n)). In this section we study s(Lp(n)) for n = 3,4. Let Lp(n)k
be the set of all k dimensional subspaces of F;n), i.e., the k-th level of
Lp(n). It is well known [1] that the following properties hold in Lp(n):

1. For k ~ 1, ILp(n)kl equals the Gaussian coefficient (:)p where

(
n) (n) (pn _l)(pn-l - 1) ... (pn-k+l -1)
o p = 1, k p = (pk -1)(pk-l_1) ... (p-1) .

2. ILp(n)1 = Gn,p where Gn,p is the Galois number, i.e.,

Gn,p = t (~) .
k=O P

3. For k = 0,1, ... ,n,

4. The Gaussian coefficient is unimodal, i.e.,

(a) if n is even then

( n) «n) < ... «n) > ... >(n) ,o p 1 p n/2 p n p

(b) if n is odd then

(~)p < ... < ((n _n1)/2)p = ((n +n1)/2) p > ... > (:);

Let A E Lp(n). Let Ag denote a basis of A. Let x be any element of
F;n) such that x rt A. Denote (AgU {x}) to be the subspace generated
by Ag U {x}.
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LEMMA 3.1. If L E £(Lp(n», then evezy (Lp(n), L)-chain C has
length at most one.

Proof. Let X ~ sup C and Y = inf C. We may choose bases X g

and ~ so that ~ ~ Xg. Suppose that ICI ~ 3, so that IXg\~1 ~

2. Then there exist Yll Y2 E X g\~ such that (Vg U {Yd) E C and
Y2 E X\(Yg U {Yl}). This implies that (Yg U {Y2}) # (~U {Yd). But
(~ U {Y2}) f}. C. Hence (Yg U {Y2}} > X or (~ U {Y2}} < Y in L,
contradicting Y ~ {~U {Y2}) ~ X.

A (k + I)-dimensional subspace covers plc:~-;l k-dimensional sub

spaces, while a k-dimensional subspace is covered by P:~;l (k + 1)
dimensional subspaces.

We may regard Lp(n -1) as the sublattice of Lp( n) obtained by con
sidering only those n-tuples whose n-th coordinate is O. No subspace
of Lp(n)\Lp(n -1) is contained in a subspace of Lp(n - 1).

Let et, ... , en be the standard basis of F~n). Let

Mp(k + 1) = Lp(k + 1)\(Lp(k) U Lp(k)*)

where Lp(k)* = ({X U {eHl}} : X E Lp(k)}. Given a linear ordering
L = Xt,X2, ... of Lp(k), let L* = Xl, X2, ... where Xi = (Xi U {eHt1).

Define a good extension Ln of Lp(n) inductively as follows:
1. Let L l = Cl E O(Lp(l» where Cl = {{O}, (el)}.
2. Given Ll" let LHl = Lk EB.ek+l EBLi where .ek+l E O(Mp(k+ 1».

THEOREM 3.2. Let L n be a good extension of Lp(n). Then L n E

.c(Lp(n». '

Proof. For any X E Lp(n-l), there doesn't exist Y E Lp(n)\Lp(n-
1) such that X > Y. Thus £(Lp(n» has an element of the form L n - l EB
L where LE £(Lp(n)\Lp(n -1». Now consider Lp(n)\Lp(n -1). For
any YE Lp(n)\(Lp(n-l)ULp(n-l)*), there does not exist Z E Lp(n
1)* such that Y > Z. This implies that .en EBL;_1 E £(Lp(n)\Lp(n-l»
where.en E O(Mp(n». Hence Ln = L n - l EB.en EB L:_1 E £(Lp(n».
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CONJECTURE 3.3. Tbe good extension Ln of Lp(n) is an optimal
linear extension.

By direct calculation, we can obtain 8(Lp(1)) = 0 and 8(Lp(2» = p.
That is, L 1 = Cl = {(O), (el)} E O(Lp(l» and L2 = L 1 EB £2 EB Li E
O(Lp(2)) where £2 = EBf::-f {(e1 +i . e2)}'

Let N( i, L) be the number of one-element chains of L which belong
to Lp(n)i.

PROPOSITION 3.4. For n ~ 2, let L E £(L2(n». Tben N(l, L) ~
n-l.

Proof. For any L E £(L2(n)), we can rearrange the (L2(n), L)
chains in L so that all one-element (L2(n), L)-chains (U1}"'" (UN(l,L))

which belong to L2 (n)1 come before all the two-element (L2(n), L)
chains which begin with an element in L 2(n)1. Since any two-dimension
al subspace X covers 3 one-dimensional subspaces and X\ {O} has 3
elements, the sum of two different elements in X\ {O} is the other el
ement in X\{O}. Without loss of generality we may assume that the
first (L2 ( n), L)-chain in L is {(O), (el)} since the first (L2(n), L )-chain
in L has two elements. Thus

I{ao' el + al' U1 + ... + aN(l,L)' UN(L,l)}\{O}! ~ IL2 (n)11·

SO 2N (1,L)+1 - 1 ~ 2n - 1. Hence we get N(l, L) ~ n -1.

COROLLARY 3.5. For n ~ 2, let LE £(L2 (n». Tben N(n-1, L) ~
n-l.

Proof. Consider L2(n)d.

ApPLICATION 3.6. 8(L2(3» and 8(L2(4».

For the simplicity of notation, let ij = ei + ej and i,j = ei, ej'

[1] We determine 8(L2(3». Let L be any linear extension of L2(3).
With n = 3 we get, by Proposition 3.4 and Corollary 3.5, N(l, L) ~ 2
and N(2,L) ~ 2. And thus L has at least 4 one-element (L2 (3),L)
chains. By Lemma 3.1, every (L2(3), L)-chain which has more than one
element has two elements. So L has at most (G 3,2 - 2 - 2)/2 = 6 two
element (L2 (3),L)-chains. Thus 8(L2(3» ~ 9. The good extension L 3

of L2(3), i.e., L3 = L2 EB £3 EB L2where £3 = {(123}} EB {(13), (2, 13)} EB
{(23, }(1, 23)} EB {(13, 23)}, has 10 chains. Hence 8(L2 (3)) = 9.
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[2] We determine s(L2(4». Let L be any linear extension of L2(4).
With n = 4 we get, by Proposition 3.4 and Corollary 3.5, N(I, L) ~ 3
and N(3,L) ~ 3. So any L has at least 6 one-element chains in L2 (4)1
and L 2(4)3.

Suppose that there exist Lo E .c(L 2 ( 4» which has 6 one-element
(L2 (4),L)-chains in L2 (4)1 and L2(4)3. Then

By Lemma 3.1, every (L2(4), Lo)-chain which has more than one ele
ment has two elements. So Lohas (G4 ,2-3-13-3)/2 = 24 two-element
(L2(4), Lo)-chains. Thus s(Lo,L2(4» = 3 + 13 + 3 + 24 -1 = 42. So
s(L2 (4» ~ 42. Let

£Ot = {(14), (14,23)} $ {(124), (3, 124)} $ {(24) , (24, 13)}

EB{ (134), (2,134)} EB {(234)., (1, 234)} EB {(34), (12, 34)},

£p = {(I, 24)} EB {(I, 34)} EB {(14, 2)} EB {(14, 234)} EB {(23, 134)}

EB{ (13, 234)} $ {(24, 134)} EB.{(34, 124)} EI1 {(134, 234)},

£-y = {{2, 34}, (1,2, 34)} $ {(3, 24), (1,3, 24)} EI1 {(3, 14), (2,3, 14)},

£r, = {{23, 24}, (1, 23,24)} $ {(13, 14), (2, 13, 14)}$

{(12, 14), (3, 12, 14)},

£4 = {{1234}} $ £Ot $ £p EI1 £-y EB £r, EB {(21, 23, 24)}.

Then £4 E O(M2(4». Define L4 = L3 EB £4 EI1 L;. This L4 is a good
extension of L2(4) and has 43 (L2(4), L4 )-chains. Hence s(L2(4» = 42.

Note that every element in Mp ( n)k is a (k+1)-dimensional subspace
in Mp(n) and every element in Lp(n - l)d is a (k + I)-dimensional
subspace in Lp(n-l)*. Note also that Lp(n)i = Lp(n-l)iUMp(n)i-1U
Lp(n - 1)*i-1.

ApPLICATION 3.7. Upper Bounds of s(Lp(3» and s(Lp(4».

[1] Consider Lp (3).
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Let

A = {(el + a2 . e2 + aa . ea) : 1 ~ ai ~ P - I},

B = {(el + aa . ea) : 1 ~ aa $. p -I},
C = {(e2 + aa . ea) : 1 $. aa $. p - I},

M = Mp (3)1\[{({e2} U Y} : Y E B} U {({ed U Z) : Z E Cl].
Define

f(A) = EBxEA{X},

f(B) = EBYEB{Y, ({e2} U Y}},

f(C) = EBZEC{Z, ({ed U Z)},

f(M) = EBzEM{Z},

fa = f(A) EB f(B) EB f(C) EB f(M).

Now define

(2)

where

433

(3) L2 = {(O},(el}}EB(EB{(el+a.e2)}: 1 $. a ~p-l)EB{(e2},(elle2}}'

Note that N(I, Lg) = N(2, Lg) = p2 - p. By the same technique as in
[1] of Application 3.6, we get

c(Lg) = 2(p2 _ p) + Ga,p - 2(p2 - p) = 2p2 + 2.
2

Hence

(4) s(Lp (3)) $. 2p2 + 1.

[2J Consider L p ( 4). Let

A = {(Cl + a2 . C2 + aa . ea + a4 . e4) : 1 ~ ai ~ P -I},

BI = {(Cl + a . e4, ea) : 1 ~ a $. p - I},

B2 = {(e2 + a . e4, ea) : 1 ~ a ~ p - I},

Ba = {(ea + a . e4, e2) : 1 ~ a $. p - I},

B 4 = {(el + a . e4, e2 + b . e4) : 1 ~ a, b ~ p - I},

Bs = {(el + a· e4, ea + b· e4) : 1 ~ a, b $. p - I},

B6 = {(e2 + a . e4, ea + b· e4) : 1 $. a, b $. p - I}

C = {(el +a· e4, e2 + b· e4, ea + c' e4) : 1 ~ a, b, c ~ p - I},
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For each X E Ac where AC = M p (4)O\A, choose a Tx E L p (3)1 such
that X +Tx E A. Define

leA) = 67Xa EA{Xa },

l(AC
) = 67XEAc{X, {X, Tx}},

l(M) = (67{1O} : 10 E Mp (4)1\ Uf=1 Bi\{(X,Tx } : X E AC
}),

l(B1 ) = 67Y1EB1{Yi, {fez} UYi}},
l(Bz) = 67Y2EB2{Y2, {{et} U Yz}},
£(Ba) = $v3EB3{Ya, {{et} U Ya}},

£(B4) =67Y4EB4{14, ({ea} U Y4)},

£(Bs) = 67Y 5EB5{YS , ({ez} UYs)},

£(B6 ) = 67Y6EBe{l"6, (fed U Y6)},
£(C) = 67ZEC{Z},

(5) £4 =£(A)67£(AC )67l(M) 67 [67f=I£(Bi)]67l(C).

Then C(£4) = p4 + 3p3 - 6pz +5p - 3. Now define

L~ = Lg 67 £4 67 (Lg)*

where L~ is defined in (2). Note that N(l,L~)= N(3,Ln = pa_2r +
2p - 1. The L~ has p4 + 3pa - 2pz +5p + 1 (Lp ( 4), Lg)-chains. Thus

(6)

[3] In general, equality does not hold in (4) and (6). Hp = 2, then
we get equality in (4) and (6). Let L z be defined as in (3) and.e4 as in
(5). We construct La E £(La(3» such that s(La , La(3» = 18. Let

£~ = {(el + e2 + ea)} 67 {{el +2e2 +2ea}} 67 {{el + e2 +2ea}},
.e; = {(e2 + ea), {el, e2 + ea}} 67 {(el +2ea), {e2' el + 2ea}}

67 {{el + 2ez + ea}}, {el + e2, e2 + ea}}

67 {{e2 +2ea}, (et, e2 +2ea)} 67 {(el + ea), {e2' e1 + ea}},

£~ = {(el + ez, ez + 2ea)} 67 {{et + 2e2, ez + ea}}

67 {{el + 2ez,ez + 2ea}}.
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LOt = L2 EB i~ EB i~ EEl i; EB L;.

Then 8(LOt , L3 (3)) = 18. So 8(L3(3)) ~ 18. So equality does not hold in
(4). Sirniliarly, we can construct a linear extension L(:J = LOtEBi4EElL~ E
£(L3(4)). Since 8(L(:J, L3(4)) = 157, equality does not hold in (6).

PROPOSITION 3.8. Lp ( n) is greedy if and only if n = 1,2. FUr
thermore, Lp(n) is reversible, i.e., g(Lp(n)) = O(Lp(n)), ifand only if
n =1,2.

Proof. Lp(l) is obviously greedy. If L E (;(Lp(2)), then only the
first (Lp (2), L)-chain and the last (Lp(2), L)-chain have two elements,
and the other (Lp(2),L)-chains have one element. Since 8(L, Lp(2)) =
1 + p - 1 + 1 - 1 = p, L E 0(Lp(2)).

Suppose n ~ 3. Let L be the linear extension of Lp (3) defined by

L = L2 EEl {(el + e3)} EB (EB{(el + a· e2 + b· e3)} : 1 ~ a, b ~ p - 1)

EBig EB {(e2' el + e3)} EB L;

where L2 is a good extension of Lp(2) and

Then L E g(Lp(3)) but L rt 0(Lp(3)). Thus Lp(3) is not greedy.
Since Lp(n) ::> Lp(3), we can construct f E g(Lp(n)\Lp(3)). Then
L EB i E g(Lp(n)) where L is defined as above. But L EB f rt O(Lp(n)).
This shows that L p ( n) is not greedy for n ~ 3.

For n = 1,2 we have O(Lp(n)) c g(Lp(n)). Thus from the above
result we obtain that g(Lp(n)) = O(Lp(n)) if and only if n = 1,2.
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