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STRICTLY 2-CONVEX LINEAR 2-NORMED SPACES

R.W. FREESE, Y.J. CHO AND 5.5. KiM

I. Introduction

In [19] the concept of a linear 2-normed space was introduced as a
natural 2-metric analog of that of a normed linear space. Linear 2-
normed spaces were investigated in [19] as well as in numerous other
articles by different authors from many points of view ([4], [6], [7], [9],

Let X be a linear space of dimension > 1 and let ||-,-|| be a real-
valued function on X x X satisfying the following conditions:

(N1) |lz,yll =0 if and only if ¢ and y are linearly dependent,

(NZ) ".’L‘, y“ = "y,:t“,

(N3) llaz,yl| = |||z, y||, where a is real,

(Na) lz,y + 2| <[l yll + ||z, z]|-
The function |-,-|| is called a 2-nerm on X and (X, ||-,-||) a linear 2-
normed space. Some of the basic properties of the 2-norms are that
they are non-negative and ||z, y + az|| = ||z, y|| for every z,y in X and
every real a.

Note that in the definition of 2-norm if the condition (N4) is replaced
by the following condition:

(SN4) Iz, yll = ll=,y — <],
then the function ||-,-|| is called a semi-2-norm on X and (X, ||-,-]|) a
semi-2-normed space ([16]).

Linear 2-normed spaces are special cases of a large class called 2-
metric spaces. A 2-metric space is a set X with a real-valued non-
negative function o defined on X x X x X which satisfies the following
conditions:

(D1) For each pair of points z,y in X with z # y, there exists a

point z in X such that o(z,y,2) # 0,
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(D2) o(z,y,z) = 0, whenever at least two of the points z,y,z are

equal,

(D3) 0’(:1,', Y, z) = a(y, T, z) = U(y, Z, $),

(D4) o(z,y,2) < o(z,y,w) + o(z, 2, w) + o(y, 2, w).

The function o is called a 2-metric for the space X and (X,0) a 2-
metric space. We remark that, in the definition of 2-metric, if the
condition (Dy) is deleted, then the function o is called a semi-2-metric.
If (X,||-,-]l) is a semi-2-normed space, then the function o(z,y,z) =
llz — z,y — z|| defines a semi-2-metric on (X, |-,-||) ([16]). For more
details on 2-metric spaces, refer to [1], [15}-{17], [18]-{20], [22] and [27].
Especially, if (X, ||,-||) is a linear 2-normed space, then the function
o(z,y,z) = ||t — z,y — z|| defines a 2-metric on (X, |-, -||) ([19]). Every
linear 2-normed space will be considered to be a 2-metric space with
the 2-metric defined in this sense. Clearly, any finite example of a 2-
metric space shows that not every 2-metric space is a linear 2-normed
space. Conversely, in [17], some conditions for a 2-metric space to be
a linear 2-normed space are given.

For non-zero vectors z,y in X, let V(z,y) denote the subspace of
X generated by z and y. A linear 2-normed space (X, |-, -||) is said to
be strictly convez ([5]) if |lz + y, 2| = ||z, z|| + ||y, 2|| and 2z ¢ V(=z,y)
imply that y = ar for some a > 0. Some characterizations of strictly
convex linear 2-normed spaces are given in [2]-[5], [8], [11]-[16], [23]-
[26], [28], and [31]. A linear 2-normed space (X, ||-,-]|} is said to be
sirictly 2-convez ([8]) if ||z, yl| = ||z, 2]} = lly, 2|l = |z + 2,y +2]/3 =1
implies that z = z + y. These spaces have been studied in [3], [8],
[10]-[13], [15], [16], [23], [30] and [31]. It is easy to see that every
strictly convex linear 2-normed space is always strictly 2-convex but
the converse is not necessarily true ([8]) and that every linear 2-normed
space of dimension 2 is strictly 2-convex.

In this paper, we give new characterizations of strictly 2-convex
linear 2-normed spaces in terms of extreme points.

II. Strict 2-convexity

A point p of a 2-metric space (X, o) formed from a linear 2-normed
space is called a 2-metric midpoint of three non-collinear points a,b, ¢

of X (o(a,b,c) #0) if o(a,b,p) = a(a,p,c) = o(p,b,¢) = o(a,b,c)/3.
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For three non-collinear points a,b,c in X, let
T(a,b,c) = {z € X |o(a,b,c) = o(a,b,z) + o(a,z,c) + o(z,b,c)}.

T(a,b,c) will be called the triangle with vertices a,b and ¢. Further-
more, we will refer to o(a, b, c) as the area of T(a,b,c). A point p will
be called a center of T(a,b,c) if p is a 2-metric midpoint of a, b and c.
If a,b and c are three non-collinear points in X, let C(a,b,c) denote
the convez envelope of {a, b, c}, that is, C(a, b, c) is the smallest convex
set containing {a,b,c}. In particular,

C(a,b,c) = {aa+ b+ vcla,B,vy20, a+B+vy=1}.

The following theorem is proved in [8] and [10]:

THEOREM 2.1. The following statements are equivalent:

(1) (X, |I,-I) is strictly 2-convex.

(2) T(a,b,c) has a unique center.

(3) If a,b and c are three non-collinear points in X, then T(a, b, ¢)
= C(a,b,¢).

(4) Ifa and b are two points in X with ||a,b|| > 0, then there exists
a unique point ¢ in X such that 0 is a center of T(a, b, ¢).

(5) I |la,b|| = ||b,¢c]l = l|le,all =1, ¢ # —(a +b), a,B,7 > 0 and
a+ B+ =1, then o(aa, fb,vc) < 1/3.

A point z of a semi-2-normed space (X, ||-,||) is called an algebraic
between point of three points a,b,c in X if there exist real numbers
a,B,v € [0,1] such that a+ 8+ vy =1 and 2 = aa + fb+ vc. In the
case a = B = v = 1/3, z is said to be an algebraic midpoint of a,b
and ¢. A point z € X is called a o-between point of three non-collinear
points a,b,cin X if o(a,b,¢) = o(a,b, z)+ o(a,z,c)+ o(z,b,c). In the
case o(a,b,z) = o(a,z,c) = o(z,b,c), = is said to be a g-midpoint of
a,b and c.

Thus every algebraic midpoint of three points is an algebraic be-
tween point of these points and every o-midpoint of three non-collinear
points is a o-between point of these points.

In [16], the following theorems are proved:
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THEOREM 2.2. In a semi-2-normed space (X, ||-,-||), the following
properties hold:
(1) An algebraic midpoint of three non-collinear points in X is a
o-midpoint of these points.
(2) An algebraic between point of three non-collinear points in X
is a o-between point of these points.

THEOREM 2.3. In a semi-2-normed space (X, ||-,-||), the following
statements are equivalent:
(1) A o-midpoint of three non-collinear points in X is a algebraic
midpoint of these points.
(2) For points a,b,c € X with [ja,b] = |b,c] = |le,al] =
lla +¢, 8+ ¢||/3 = 1, it follows that ¢ = a +b.

THEOREM 2.4. In a semi-2-normed space (X, ||-,-||), the following
statements are equivalent:

(1) A o-between point of three non-collinear points in X is an
algebraic between point of these points.

(2) For pointsa, b, c € X with ||a—c, b—c|| # 0 and d = da+(1-6)b,
6 € (0,1), the validity of o(a,c,d) = o(a,c,e) + o(a,e,d) and
o(b,c,d) = o(b,c,e) + o(b,e,d) implies the existence of a real
number A € [0,1} with e = Ac+ (1 — A)d.

(3) For arbitrary points a,b,c in X with ||a+ ¢,b + c|| = ||a, b]| +
18, + llc,all and lla,bl - bl - lc,al] # O, there exist real
numbers a, > 0 such that ¢ = aa + b.

REMARK. (1) A linear 2-normed space (X, ||-,-||) in which the prop-
erties from Theorems 2.3 and 2.4 hold is said to be strictly 2-convex.

(2) By means of the corollary to Theorem 8 ([8]), it follows that
every semi-2-normed linear space of dimension 2 is a strictly 2-convex
linear 2-normed space.

III. Extreme points

In this section, we give some geometric characterizations of strictly
2-convex linear 2-normed spaces in terms of extreme points.

In a 2-metric space (X,0), a point p is said to be a 2-metric ez-
treme point of a set M provided for arbitrary points z,y,z in M with
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o(z,y,2) = o(z,y,p) + o(z, z,p) + 0(y, 2, p), at least one of the terms
on the right-hand side is zero. A point p is said to be a 2-metric ultra-
eztreme point of a set M provided for arbitrary points z,y, z in M with
o(z,y,2) = o(z,y,p) + o(z, z,p) + o(y, 2, p), at least two of the terms
on the right-hand side are equal to zero. In a linear 2-normed space
(X, |Is-1), a point p is said to be an algebraic eztreme point of a set
M provided for arbitrary points ,y,z in M with p = az + By + vz,
a+B++v=1and a,B,7 € [0,1], at least one of @, B, is zero. A point
p is said to be an algebraic ultra-eztreme point of a set M provided for
arbitrary points z,y,z in M with p=az+ fy+vz,a+B+v =1 and
a,B,v € [0,1], at least two of a, 8,7 are equal to zero

REMARK. (1) A 2-metric (resp. algebraic) ultra-extreme point is a
2-metric (resp. algebraic) extreme point but not conversely.

(2) In the euclidean plane a 2-metric extreme point is an algebraic
extreme point and conversely.

We are now ready to present our main theorems:

THEOREM 3.1. A 2-metric extreme point of a set M in a 2-metric
space (X, 0) is an algebraic extreme point of M.

Proof. Suppose that there exists a point p in M such that p is a
2-metric extreme point of M but not an algebraic extreme point of
M. This means that there exist three points z,y,z in M such that
p=oaz+Py+vz,a+ P+~ =1and o,8,7 € [0,1], with each of
a, B, v are non-zero. Therefore z — p and y — p are linearly independent
and hence we have o(p,y,2) = ||z — p,y — p|| # 0. Similarly we have
o(p,z,z) # 0 and o(p, z,y) # 0, which is contrary to p being a 2-metric
extreme point. This completes the proof.

By a similar argument used in Theorem 3.1, we have the following
theorem:

THEOREM 3.2. A 2-metric ultra-extreme point of a set M in a 2-
metric space (X, o) is an algebraic ultra-extreme point of M.

THEOREM 3.3. An algebraic ultra-extreme point of a set M in a
linear 2-normed space (X, ||-,-]|) that is a 2-metric extreme point of M
is a 2-metric ultra-extreme point of M.
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Proof. Suppose that there exists a point p in M such that p is
an algebraic ultra-extreme point of M and a 2-metric extreme point
but not a 2-metric ultra-extreme point. This means that there ex-
ist three distinct points z,y,z in M such that o(p,z,y) = 0 but
o(z,y,2) = o(z,y,p) + 0(z,2,p) + 0(y,2,p). That is, o(z,y,2) =
o(x,z,p) + oy, z,p). Therefore, since p is not an algebraic ultra-
extreme point of M, then we have p # =, p # y, p # z and simi-
larly z,y, z are distinct. From o(p,z,y) = 0, we know that p — = and
y — z are linearly dependent, that is, p = Az + (1 — A)y. Also from
o(z,p,z) = 0 we know that p—z and z —z are linearly dependent, that
is, p= A*z + (1 — A*)z. Since z —z and y — z are linearly independent,
then we have p = z, which is a contradiction. The proof is similar
in the event that o(p,z,z) = 0 or o(p,y,z) = 0. This completes the
proof.

Note that in the above theorem, if the hypothesis that a point is a
2-metric extreme point is deleted, the theorem is false as is shown by
the following example:

ExaMPLE 3.4. Let (X, ]|,+]]) be a linear 2-normed space that is not
strictly 2-convex. Then by Theorem 2.1, there exists a triple p,q,r
in X with a non-unique center. That is, o(p,q,7) = o(p,q,m1) +
o(p,r,m1) + o(g,r,m1) and o(p,q,r) = o(p,g,m2) + o(p,r, ms) +
o(g,r, my) where it may be assumed without loss of generality that m;
is an element of the algebraic triangle T(p, q,r) with my # my. There-
fore, since X is a linear space, it follows that ms is an algebraic ultra-
extreme point of M = T(p, ¢,7)UT(p, g, m2)UT(p, r,mg)UT(g,T,m2).
However, since none of the values o(p, g, m2), o(p, r, m2) and o(g, 7, m2)
are zero, mg is not a 2-metric ultra-extreme point.

This leads naturally to the following theorem:

THEOREM 3.5. In a strictly 2-convex linear 2-normed space (X,
IIs-ll), a point of a set M is an algebraic ultra-extreme point of M if
and only if it is a 2-metric ultra-extreme point of M.

Proof. Since every 2-metric ultra-extreme point is an algebraic ultra-
extreme point, it suffices to show that every algebraic ultra-extreme
point p of M is a 2-metric ultra-extreme point. By Theorems 2.3 and
2.4, we know that in a strictly 2-convex linear 2-normed space, a point
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is an algebraic between point if and only if it is a 2-metric between
point. Therefore, p is a 2-metric ultra-extreme point of A/. This com-
pletes the proof.

Theorem 3.5 gives directly the following:

COROLLARY 3.6. In a strictly 2-convex linear 2-normed space (X,
I, i), a point = is an algebraic extreme point of a set M if and only if
it is a 2-metric extreme point of M.

Furthermore, since the equivalence of algebraic and 2-metric interior
points is equivalent to strict convexity and strict 2-convexity ([8], [16]),
the equivalence of algebraic and 2-metric extreme points implies strict
2-convexity and thus we have shown the following:

THEOREM 3.7. In a linear 2-normed space (X, ||,-||), the set of
algebraic extreme points of a set M is identical to the set of 2-metric
extreme points if and only if (X, ||-,||) is strictly 2-convex.

Note that the circle in the euclidean plane illustrates the fact that
there exists a set M in a strictly convex linear 2-normed space (X, ||, -||)
with an infinite number of both 2-metric and algebraic ultra-extreme
points. Also the set of all points (z,y) in the euclidean plane such that
1 <z <2is aclosed set M which has no ultra-extreme points.

THEOREM 3.8. In a strictly 2-convex linear 2-normed space (X,
lIs-11), the set of algebraic ultra-extreme points of a set M is identical
to the set of 2-metric ultra-extreme points of M.

Proof. By Theorem 3.2, since every 2-metric ultra-extreme point
is an algebraic ultra-extreme point, it suffices to show that every al-
gebraic ultra-extreme point of a set M is a 2-metric extreme point.
Furthermore, by Theorem 3.3, if p is an algebraic ultra-extreme point
and a 2-metric extreme point of a set M, then p is a 2-metric ultra-
extreme point. Therefore, suppose that p is an algebraic extreme
point but neither a 2-metric ultra-extreme point nor a 2-metric ex-
treme point. Then there exist three points z,y,z in M such that
o(z,y,z) = o(z,y,p) + o(z,2,p) + o(y, z,p) but p is not in T(z,y, z).
Thus p is a 2-metric between point of z,y,z but not an algebraic be-
tween point of z,y,z. Therefore, by Theorems 2.2 and 2.3, (X, |, ||)
is not strictly 2-convex, which is a contradiction. This completes the
proof.
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THEOREM 3.9. In a linear 2-normed space (X, ||-, -||), if the set of al-
gebraic ultra-extreme points of a set M is identical to the set of 2-metric
ultra-extreme points of M, then a linear 2-normed space (X, ||-,||) is
strictly 2-convex.

Proof. Suppose that (X, ||-,-||) is not strictly 2-convex. Then, by
Theorem 2.1, there exist a point p and a triple z,y, z in X such that p
is a 2-metric center of z,y, z but p is not the algebraic center of z,y, 2.
Then the set M = T(z,y,p) UT(z,2,5) UT(y, ,p) U T(2,y, ) has p
as an algebraic ultra-extreme point but not a 2-metric extreme point.
This contradiction proves this theorem. This completes the proof.

By Theorems 3.8 and 3.9, we have the following;:

COROLLARY 3.10. In a linear 2-normed space (X, ||-,||), the set
of algebraic ultra-extreme points of a set M is identical to the set of
2-metric ultra-extreme points of M if and only if the set of algebraic
extreme points of a set M is identical to the set of 2-metric extreme
points of M.
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