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STRICTLY 2-CONVEX LINEAR 2-NORMED SPACES

R.W. FREESE, Y.J. CHO AND 5.5. KIM

I. Introduction
In [19] the concept of a linear 2-normed space was introduced as a

natural 2-metric analog of that of a normed linear space. Linear 2­
normed spaces were investigated in [19] as well as in numerous other
articles by different authors from many points of view ([4], [6], [7], [9],
[12], [13], [16], [18]-[21], [28], [29]).

Let X be a linear space of dimension> 1 and let 11,,·11 be a real-
valued function on X X X satisfying the following conditions:

(NI) IIx,YII = 0 if and only if x and Yare linearly dependent,
(N2 ) IIx, ylI = IIY, xli,
(N3 ) lIax, yll = lalllx, yll, where a is real,
(N4 ) Ilx, y + zll ~ Ilx, yll + IIx, zll·

The function 11-,·11 is called a 2-norm on X and (X, 11" ·11) a linear 2­
normed space. Some of the basic properties of the 2-norms are that
they are non-negative and IIx, y +axil = Ilx, yll for every x, y in X and
every real a.

Note that in the definition of2-norm if the condition (N4 ) is replaced
by the following condition:

(SN4 ) IIx, ylI = Ilx, y - xii,
then the function 11',·11 is called a semi-2-norm on X and (X, 11" ·11) a
semi-2-normed space ([16]).

Linear 2-normed spaces are special cases of a large class called 2­
metric spaces. A 2-metric space is a set X with a real-valued non­
negative function a defined on X X X X X which satisfies the following
conditions:

(Dd For each pair of points x, y in X with x i- y, there exists a
point z in X such that a(x, y, z) i- 0,
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(02) u(X, y, z) = 0, whenever at least two of the points X, y, z are
equal,

(Da) u(x, y, z) = u(y, x, z) = u(y, z, x),
(04 ) u(x,y,z) $ u(x,y,w) + u(x,z,w) + u(y,z,w).

The function u is called a 2-metric for the space X and (X,u) a 2­
metric space. We remark that, in the definition of 2-metric, if the
condition (04 ) is deleted, then the function u is called a semi-2-metric.
If (X, 11" ·ID is a semi-2-normed space, then the function u(x, y, z) =
IIx - z, y - zl/ defines a semi-2-metric on (X, 11-, ·ID ([16]). For more
details on 2-metric spaces, refer to [1], [15]-[17], [18]-[20], [22] and [27].
Especially, if (X, 11-, ·ID is a linear 2-normed space, then the function
u(x, y, z) = IIx - z, y - zll defines a 2-metric on (X, 11-, ·ID ([19]). Every
linear 2-normed space will be considered to be a 2-metric space with
the 2-metric defined in this sense.. Clearly, any finite example of a 2­
metric space shows that not every 2-metric space is a linear 2-normed
space. Conversely, in [17], some conditions for a 2-metric space to be
a linear 2-normed space are given.

For non-zero vectors x, y in X, let V (x, y) denote the subspace of
X generated by x and y. A linear 2-normed space (X, Ih ·ID is said to
be strictly convex ([5]) if IIx +y,zll =: Ilx,zll +Ily,zll and z rt V(x,y)
imply that y = ax for some a > O. Some characterizations of strictly
convex linear 2-normed spaces are given in [2]-[5], [8], [11]-[16], [23]­
[26J, [28], and [31]. A linear 2-normed space (X, I/o, ·ID is said to be
strictly 2-convex ([8]) if IIx, yll = IIx, zll = IIY, zll = IIx + z, y + zll/3 = 1
implies that z = x + y. These spaces have been studied in [3], [8],
[10]-[13], [15], [16], [23], [30] and [31]. It is easy to see that every
strictly convex linear 2-normed space is always strictly 2-convex but
the converse is not necessarily true ([8]) and that every linear 2-normed
space of dimension 2 is strictly 2-convex.

In this paper, we give new characterizations of strictly 2-convex
linear 2-normed spaces in terms of extreme points.

11. Strict 2-convexity

A point p of a 2-metric space (X,u) formed from a linear 2-normed
space is called a 2-metric midpoint of three non-collinear points a, b, c
of X (u(a,b,c) =F 0) if u(a,b,p) = u(a,p,c) = u(p,b,c) = u(a,b,c)/3.
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For three non-collinear points a, b, c in X, let
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T(a, b, c) = {x E X Iu(a, b, c) = u(a, b, x) + u(a, x , c) + u(x, b, c)}.

T( a, b, c) will be called the triangle with vertices a, b and c. FUrther­
more, we will refer to u(a, b, c) as the area of T( a, b, c). A point p will
be called a center of T( a, b, c) if p is a 2-metric midpoint of a, b and c.
If a, b and c are three non-collinear points in X, let C (a, b, c) denote
the convex envelope of {a, b, c}, that is, C(a, b, c) is the smallest convex
set containing {a, b, c}. In particular,

C(a,b,c) = {aa+,Bb+ l cla,,B,/2:: 0, a+,B+, = I}.

The following theorem is proved in [8] and [10]:

THEOREM 2.1. The following statements are equivalent:

(1) (X, 11" ·11) is strictly 2-convex.
(2) T(a, b, c) has a unique center.
(3) If a, band c are three non-collinear points in X, then T( a, b, c)

= C(a,b,c).
(4) Ifa and b are two points in X with lIa, bll > 0, then there exists

a unique point c in X such that 0 is a center of T(a, b, c).
(5) If lIa,bll = IIb,cll = IIc,all = 1, c i= -(a + b), a,,B,'Y > 0 and

a +,B + ,= 1, then u(aa, ,Bb, IC) < 1/3.

A point x of a semi-2-normed space (X, 11" ·11) is called an algebraic
between point of three points a, b, c in X if there exist real numbers
a, ,B, I E [0, 1] such that a + ,B + I = 1 and x = aa + ,Bb + 'YC. In the
case a = ,B = I = 1/3, x is said to be an algebraic midpoint of a, b
and c. A point x E X is called a u-between point of three non-collinear
points a, b, c in X if u(a, b, c) = u(a, b, x) +u(a, x, c) +u(x, b, c). In the
case u(a, b, x) = u(a, x, c) = u(x, b, c), x is said to be a u-midpoint of
a, band c.

Thus every algebraic midpoint of three points is an algebraic be­
tween point of these points and every u-midpoint of three non-collinear
points is a u-between point of these points.

In [16], the following theorems are proved:
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THEOREM 2.2. In a semi-2-nozmed space (X, 11-, ·11), the following
properties hold:

(1) An algebraic midpoint of three non-collinear points in X is a
O'-midpoint of these points.

(2) An algebraic between point of three non-collinear points in X
is a O'-between point of these points.

THEOREM 2.3. In a semi-2-nozmed space (X, 11·, ·ID, the following
statements are equivalent:

(1) A O'-midpoint of three non-collinear points in X is a algebraic
midpoint of these points.

(2) For points a, b, c E X with lIa, bll = llb, ell = lie, all =
lIa + c, b+ cll/3 = 1, it follows that c = a + b.

THEOREM 2.4. In a semi-2-nozmed space (X, 11-, ·ID, the following
statements are equivalent:

(1) A O'-between point of three non-collinear points in X is an
algebraic between point of these points.

(2) For points a, b, c E X with lIa-c, b-cll =J: °and d = 6a+(1-6)b,
6 E (0, 1), the validity of 0'(a, c, d) = 0'(a, c, e) + 0'(a, e, d) and
O'(b,c,d) = O'(b,c,e) + O'(b,e,d) implies the existence of a real
number -X E [0,1] with e = -Xc +(1- -X)d.

(3) For arbitrary points a, b, c in X with lIa + c, b+ cll = lIa, bll +
llb, cll + IIc, all and lI a, bll . IIb,cll . IIc,all =J: 0, there exist real
numbers 0, f3 > °such that c = oa + f3b.

REMARK. (1) A linear 2-normed space (X, 11·, ·ID in which the prop­
erties from Theorems 2.3 and 2.4 hold is said to be strictly 2-convex.

(2) By means of the corollary to Theorem 8 ([8]), it follows that
every semi-2-normed linear space of dimension 2 is a strictly 2-convex
linear 2-normed space.

m. Extreme points
In this section, we give some geometric characterizations of strictly

2-convex linear 2-normed spaces in terms of extreme points.
In a 2-metric space (X,O'), a point p is said to be a 2-metric ex­

treme point of a set M provided for arbitrary points x, y, z in M with
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O'(x, y, z) = O'(x, y,p) + O'(x, z,p) + O'(y, z,p), at least one ofthe terms
on the right-hand side is zero. A point p is said to be a 2-metric ultra­
extreme point of a set M provided for arbitrary points x, y, z in M with
O'(x, y, z) = O'(x, y,p) + O'(x, z,p) + O'(y, z,p), at least two of the terms
on the right-hand side are equal to zero. In a linear 2-normed space
(X, 11·, ·11), a point p is said to be an algebraic extreme point of a set
M provided for arbitrary points x, y, z in M with p = ax + f3y + 'Yz,
a+ 13+1' = 1 and a,f3" E [0,1], at least one of a,f3" is zero. A point
p is said to be an algebraic ultra-extreme point of a set M provided for
arbitrary points x, y, z in M with p = ax + f3y +'Yz, a + 13 +1' = 1 and
a, 13, l' E [0,1], at least two of a, 13" are equal to zero

REMARK. (1) A 2-metric (resp. algebraic) ultra-extreme point is a
2-metric (resp. algebraic) extreme point but not conversely.

(2) In the euclidean plane a 2-metric extreme point is an algebraic
extreme point and conversely.

We are now ready to present our main theorems:

THEOREM 3.1. A 2-metric extreme point of a set M in a 2-metric
space (X, 0') is an algebraic extreme point of M.

Proof. Suppose that there exists a point p in M such that p is a
2-metric extreme point of M but not an algebraic extreme point of
M. This means that there exist three points x, y, z in M such that
P = ax + f3y + ,Z, a + 13 +, = 1 and a,f3,'Y E [0,1], with each of
a, 13, l' are non-zero. Therefore z - p and y - p are linearly independent
and hence we have O'(p, y, z) = 11 z - p, y - pll # 0. Similarly we have
O'(p, x, z) # 0 and O'(p, x, y) # 0, which is contrary to p being a 2-metric
extreme point. This completes the proof.

By a similar argument used in Theorem 3.1, we have the following
theorem:

THEOREM 3.2. A 2-metric ultra-extreme point of a set M in a 2­
metric space (X, 0') is an algebraic ultra-extreme point of M.

THEOREM 3.3. An algebraic ultra-extreme point of a set M in a
linear 2-normed space (X, II-. ·ID that is a 2-metric extreme point of M
is a 2-metric ultra-extreme point of M.
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Proof. Suppose that there exists a point p in M such that p is
an algebraic ultra-extreme point of M and a 2-metric extreme point
but not a 2-metric ultra-extreme point. This means that there ex­
ist three distinct points x, y, z in M such that u(p, x, y) = 0 but
u(x,y,z) = u(x,y,p) + u(x,z,p) + u(y,z,p). That is, u(x,y,z) =
u(x,z,p) + u(y,z,p). Therefore, since p is not an algebraic ultra­
extreme point of M, then we have p =f:. x, p =f:. y, p #- z and simi­
larly x, y, z are distinct. From u(p, x, y) = 0, we know that p - x and
y - x are linearly dependent, that is, p = Ax + (1 - A)y. Also from
u(x, p, z) = 0 we know that p- x and z - x are linearly dependent, that
is, p = A*X +(1- A*)z. Since z -x and y-x are linearly independent,
then we have p = x, which is a contradiction. The proof is similar
in the event that u(p,x,z) = 0 or l1(p,y,z) = O. This completes the
proof.

Note that in the above theorem, if the hypothesis that a point is a
2-metric extreme point is deleted, the theorem is false as is shown by
the following example:

EXAMPLE 3.4. Let (X, 1/., ·ID be a linear 2-normed space that is not
strictly 2-convex. Then by Theorem 2.1, there exists a triple p, q, r
in X with a non-unique center. That is, l1(p,q,r) = l1(p,q,mt} +
l1(p, r, ml) + l1(q, r, ml) and u(p, q, r) = l1(p, q, m2) + u(p, r, m2) +
l1(q, r, m2) where it may be assumed without loss of generality that ml
is an element of the algebraic triangle T(p, q, r) with ml =f:. m2. There­
fore, since X is a linear space, it follows that m2 is an algebraic ultra­
extreme point of M = T(p,q,r)UT(p, q,m2)UT(p,r, m2)UT(q,r,m2).
However, since none of the values l1(p, q, mz), 11(p, r, m2) and u(q, r, m2)
are zero, m2 is not a 2-metric ultra-extreme point.

This leads naturally to the following theorem:

THEOREM 3.5. In a strictly 2-convex linear 2-normed space (X,
Ih ·ID, a point of a set M is an algebraic ultra-extreme point of M if

and only if it is a 2-metric ultra-extreme point of M.

Proof. Since every 2-metric ultra-extreme point is an algebraic ultra­
extreme point, it suffices to show that every algebraic ultra-extreme
point p of M is a 2-metric ultra-extreme point. By Theorems 2.3 and
2.4, we know that in a strictly 2-convex linear 2-normed space, a point
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is an algebraic between point if and only if it is a 2-metric between
point. Therefore, p is a 2-metric ultra-extreme point of M. This com­
pletes the proof.

Theorem 3.5 gives directly the following:

COROLLARY 3.6. In a strictly 2-convex linear 2-normed space (X,
11" ·11), a point x is an algebraic extreme point of a set M if and only if
it is a 2-metric extreme point of M.

Furthermore, since the equivalence of algebraic and 2-metric interior
points is equivalent to strict convexity and strict 2-convexity ([8], [16]),
the equivalence of algebraic and 2-metric extreme points implies strict
2-convexity and thus we have shown the following:

THEOREM 3.7. In a linear 2-normed space (X,II,,·ID, the set of
algebraic extreme points of a set M is identical to the set of 2-metric
extreme points if and only if (X, 11-, ·11) is strictly 2-convex.

Note that the circle in the euclidean plane illustrates the fact that
there exists a set M in a strictly convex linear 2-normed space (X, 11-, ·11)
with an infinite number of both 2-metric and algebraic ultra-extreme
points. Also the set of all points (x, y) in the euclidean plane such that
1 ~ x ~ 2 is a closed set M which has no ultra-extreme points.

THEOREM 3.8. In a strictly 2-convex linear 2-normed space (X,
1/" .1/), the set of algebraic ultra-extreme points of a set M is identical
to the set of 2-metric ultra-extreme points of M.

Proof. By Theorem 3.2, since every 2-metric ultra-extreme point
is an algebraic ultra-extreme point, it suffices to show that every al­
gebraic ultra-extreme point of a set M is a 2-metric extreme point.
Furthermore, by Theorem 3.3, if p is an algebraic ultra-extreme point
and a 2-metric extreme point of a set M, then p is a 2-metric ultra­
extreme point. Therefore, suppose that p is an algebraic extreme
point but neither a 2-metric ultra-extreme point nor a 2-metric ex­
treme point. Then there exist three points x, y, z in M such that
u(x, y, z) = u(x, y,p) + u(x, z,p) + u(y, z,p) but P is not in T(x, y, z).
Thus p is a 2-metric between point of x, y, z but not an algebraic be­
tween point of x, y, z. Therefore, by Theorems 2.2 and 2.3, (X, 11" ·11)
is not strictly 2-convex, which is a contradiction. This completes the
proof.
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THEOREM 3.9. In a linear 2-normed space (X, Ih ·11), if the set ofal­
gebraic ultra-extreme points ofa set M is identical to tbe set of2-metric
ultra-extreme points of M, tben a linear 2-normed space (X, 11·, ·11) is
strictly 2-convex.

Proof. Suppose that (X, Ih ·11) is not strictly 2-convex. Then, by
Theorem 2.1, there exist a point p and a triple x, y, z in X such that p
is a 2-metric center of x, y, z but P is not the algebraic center of x, y, z.
Then the set M = T(x, y,p) U T(x, z,p) U T(y, z,p) U T(x, y, z) has p
as an algebraic ultra-extreme point but not a 2-metric extreme point.
This contradiction proves this theorem. This completes the proof.

By Theorems 3.8 and 3.9, we have the following:

COROLLARY 3.10. In a linear 2-normed space (X, Ih ·11), the set
of algebraic ultra-extreme points of a set M is identical to tbe set of
2-metric ultra-extreme points of M if and only if tbe set of algebraic
extreme points of a set M is identical to the set of 2-metric extreme
points of M.
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