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CYCLIC COINCIDENCE THEOREMS FOR ACYCLIC

MULTIFUNCTIONS ON CONVEX SPACES

SEHIE PARK

1. Introduction

Usually, two multifunctions 5, T : X -+ Y are said to have a coin
cidence if there exists a point (x, y) E X x Y such that y E 5x n Tx.
On the other hand, for multifunctions T : X -+ Y and U : Y -+ X,
(x, y) E X x Y is also called a coincidence of T and U if y E Tx and
x E Uy. In [7], Browder proved the existence of such coincidences in
a variety of situations. In a recent paper [17], Simons extended Brow
der's result to the case of m (2: 2) spaces, and obtained new results
on cyclical coincidences.

The aim in this paper is to generalize all the main results of Simons
[17] to much wider classes of multifunctions, for example, to acyclic
valued multifunctions instead of convex valued ones. The basic tools
that we use are the Brouwer fixed point theorem, some of its generaliza
tions in [1, 11, 13], and the concept of a regular class of multifunctions
in [5, 11]. Our new results are proved in a much simpler way than the
proofs in [17], and contain many useful particular known cases.

2. Preliminaries

In this paper, multifunctions are always denoted by capital letters
and single-valued functions are denoted by small letters.

For topological spaces X and Y, a multifunction A : X -+ Y is said
to be compact if the range A(X) is contained in a compact subset of
Y. Recall that a nonempty space is acyclic if all of its reduced Cech
homology groups over rationals vanish.

A convex space X is a nonempty convex set (in a vector space) with
any topology that induces the Euclidean topology on the convex hulls
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of its :finite subsets [12]. This topology is called the polytopology in
[17].

We introduce classes~,M, K, and V of multifuIletions A: X ~ Y
as follows [5, 11]:

A E ~(X,Y) ~ (i) Y is a convex space; (ii) Ax is convex for
each x E X; and (iii) {Int A-lY}YEY covers X, where Int denotes the
interior with respect to the topology of X.

AE M(X, Y) ~ (i) Y is a convex space; and (ii) for each
nonempty compact subset K ofX, there exist a :finite subset {YI, Y2, ... ,
yd of Y and a continuous selection s : K ~ Y of AIK such that
seX) c P = CO{Yb Y2,···, Yk}.

A E K(X, Y) ~ A is an u.s.c. multifunction with nonempty
compact convex values.

A E VeX, Y)~ A is an u.s.c. multifunction with compact and
acyclic values. .. ... ... . .

Note that the (poly)-Browder-Fan type multifunctions [17] belong
to ~, and. the Kakutani type multifunctions [17] belong to K. It is
known that ~ C M [4] and K C V clearly.

Let M be a class of multifunctions. We say that the class M is
regular [5, 11] provided that

(i) if SE M, then Shas nonempty values;

(ii) given S~ Y ~ Z with s a continuous function and T EM,
we have T·s E M; and

(iii) given two functions S : X ~ Y, T : X' ~ Y' in M, their
product S x T : X x X' ~ Y X Y' is also in M.

It is known that all of~, M, K, and V are regular [5, 11].
Let Zm = {O, 1, ... ,m -I} with (m -1) +1 interrreted as o. For

a topological vector space E, E* denotes its topological dual.

3. Main results

The following is our first cyclic coincidence theorem. This result will
eventually be incorporated into Theorems 4 and 5.

THEOREM 1. Let m ~1 and,foreachi E Zm, let TiEM(Xi,Xi+I ).

Suppose that there exists an io E Zm such that Tio is compact. Then
there exists (XO,XI"",Xm-l) E X o X Xl X .•. X X m - l such that
Xi+! E Tixi for all i E Zm.
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Proof. Case 1 (m = 1). A direct consequence of the Brouwer fixed
point theorem. The proof is semilar to, but simpler than, Case 2
discussed below.

Case 2 (m ;::: 2). Without loss of generality, we suppose that Tm - l

is compact; that is, Tm-I(Xm- l ) C Ko for some compact Ko C X o.
Since To E M(Xo, Xd, TolKo has a continuous selection fo : Ko --t PI
where PI is a polytope; that is, the convex hull of some finite subset
in Xl. Similarly, TilPi : Pi --t Xi+! has a continuous selection fi :
Pi --t Pi+l for each i = 2, ... ,m - 2, where PHI is a polytope in Xi+!.
Finally, Tm-IIPm- 1 : Pm- I --t X o has a continuous selection fm-I:
Pm - l --t Po, where Po is a polytope in Ko. Then the composition
fm-dm-2 ... fo 1P0 : Po --t Po has a fixed point Xo E Po by the Brouwer
theorem. Now put Xi+1 = fiXi E TiXi for i = 0,1, ... , m - 2. Then
fm-IXm-1 = Xo E Tm-1xm-l. This completes our proof.

For the cases m = 1 and m = 2, Theorem 1 is due to Ben-El
Mechaiekh et al. [5, Theoremes 2 et 3J. For ep instead of M, Theorem
1 is due to Simons [17, Theorem 1.4]. Moreover, a number of partic
ular cases of Theorem 1 for cP and applications have appeared in the
literature as follows: For m = 1, Theorem 1 extends Browder [6, The
orem 1], Ben-EI-Mechaiekh et al. [2, Thooreme 1; 4, Thooremes 3.1 et
3.2], and Granas and Liu [11, Corollary 4.4]. Far-reaching generaliza
tions are also given in [15]. For m = 2, Theorem 1 extends Ben-El
Mechaiekh et al. [3, Thooreme 3; 4, Thooreme 4.3], and Granas and
Liu [11, Corollary 4.5].

The second cyclic coincidence theorem of Simons [17, Theorem 2.5]
can be generalized in two directions as follows :

THEOREM 2. Let k ;::: 1 and, for eacb h E Zk, let Yh be a nonempty
compact convex subset of a topological vector space Eh on which Eh
separates points, and Sh E K(Yh,Yh+d. Tben tbere exists (Yo, YI," . ,
Yk-I) E Yo X YI X •.. X Yk-I such tbat Yh+l E ShYh for all h E Zk.

Proof. Case 1 (k = 1). For a nonempty compact convex subset
of a topological vector space E on which E* separates points, every
S E K(X,X) has a fixed point. This is due to Granas and Liu [11,
Theorem 10.5] and Park [13, Theorem 6]. See also [14].

Case 2 (k ;::: 2). Let X = Yo X ... X Yk-l and E = Eo X •.• X Ek-l
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and define S : X -+ X by
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S(yo, ... ,Yk-l) = Sk-IYk-l x SOYO X .•• X Sk-2Yk-2

for (Yo, ... ,Yk-d EX. Since K is regular, S E K(X,X). Therefore,
by Case 1, there exists x = (Yo, ... ,Yk-d E X such that x E Sx. This
completes our proof.

The case k = 2 of Theorem 2 is due to Granas and Liu [11, Theorem
12.1]. H all Eh are Hausdorfflocally convex spaces, Theorem 2 reduces
to Simons [17, Theorem 2.5], Theorem 2 for k = 1 to Fan [8] and
Glicksberg [9], and for k = 2 to Browder [7, Theorem 1] and Granas
and Liu [10, Thooreme 5.1]. For finite dimensional spaces, the case
k = 2 goes back to von Neumann [lS].

Another generalization of [17, Theorem 2.5J is the following:

THEOREM 3. Let k ;::: 1 and, for each h E Zk, let Yh be a nonempty
compact convex subset of a HausdorfI locally convex space Eh, and
Vh E V(Yh, Yh+!). Then there exists (Yo, Yll' .. ' Yk-l) E 10 x Yi x
••• X Yk - 1 such that Yh+! E VhYh for all h E Zk.

Proof. Case 1 (k = 1). A nonempty compact convex subset X
of a Hausdorff locally convex space is an lc space. Therefore, every
V E V(X, X) has a :fixed point, by Begle [1, Theorem 1].

Case 2 (k ;::: 2). Note that V is regular, and just follow the proof of
Theorem 2.

Note that, for K instead of V, Theorem 3 reduces to Simons [17,
Theorem 2.5], and includes results in [S, 9, 10, 11, 18] as noted above.

As was the case with Theorem 1, Theorems 2 and 3 will be incor-
porated into Theorems 4 and 5, resp., as follows:

We now come to our general cyclic coincidence theorems.

THEOREM 4. Let m ;::: 1 and, for each i E Zm, let either
(1) Ti E M(Xi,Xi+d or
(2) 1i E K(Xi, XHd with XHI a compact subset in a topological

vector space EH1 on which Ei+1 separates points.
Suppose that there exists an i o E Zm such that 1io E M with Xio

compact or Tio E K. Then there exists (xo, XI, ... , xm-d E X o X Xl X

••• X X m- l such that Xi+! E TiXi for all i E Zm.
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Proof. In view of Cases 1 of Theorems 1 and 2, we can suppose
that m 2 2 and, in view of Theorem 1, we may suppose that there
exists s E Zm such that Ts E K. Let s(O) < s(l) < ... < s(k - 1) be
exactly those values of s E Zm for which Ts E K. For each h E Zk,

let Yh = Xs(h)+I where s(h) + 1 E Zm. For each h E Zk, we define
Sh : Yh -+ Yh+l as follows:

Case 1 (s(h + 1) = s(h) + 1 E Zm)' Then Yh+l = X s(h)+2' Define
Sh = Ts(h)+l E K.

Case 2 (s(h+l) #s(h)+1 E Zm)' Since each of Ts(h)+b" . ,Ts(h+l)-l

is M and Xs(h)+l is compact, there exist continuous selections Ii for
j = s(h) + 1, ... ,s(h + 1) -1 as in the proof of Theorem 1 such that

f.(h)+l f.(h)+2 f.(h+l)-l
Xs(h)+l --+ P s(h)+2 --+ P s(h)+3 --+ ... --+ Ps(h+l)'

where Pi's are polytopes in Xj, resp. Now let Sh = Ts(h+l)' fs(h+l)-l .

. .. . fs(h)+2 . fs(h)+l' Since K is regular, we know Sh E K and
Yh+l = Xs(h+l)+l is compact. Thus, from Theorem 2, there exists
(Yo, ... , Yk-d E Y o x ... X Yk-l such that Yh+l E VhYh. For all h E Zk
we write Xs(h)+l = Yh E Yh = Xs(h)+l' If rE Zm \{s(h) + 1: h E Zh},

then there exists h E Zk such that r E {s(h) + 2, ... ,s(h + I)}. We
write

X r = fr-l' .... fs(h)+l(Xs(h)+d E X r .

Then XHl E TiXi for all i E Zm. This completes our proof.

If each Ei+I is a Hausdorff locally convex space, then Theorem 4
reduces to Simons [17, Theorm 3.1]. The case with m = 2 for To E
cl>(X, Y) and T l E K(Y,X) generalizes Browder [6, Theorem 7; 7,
Theorem 3], Ben-El-Mechaiekh et al. [3, Theoreme 1; 4, Thooreme
4.1].

The following is a somewhat simpler form of Theorem 4.

COROLLARY 4.1. Let m 2 1 and, for each i E Zm, eitber
(1) Ti E M(Xi,Xi+I) and Xi a compact convex space, or
(2) T i E K(Xi, Xi+d and Xi+I a nonempty compact convex subset

of a topological vector space E Hl on which Ei+l separates points.

For cl> instead of M and for Hausdorff locally convex spaces, Corol
lary 4.1 reduces to [17, Corollary 3.2]. Similarly, [17, Corollary 3.3]
holds under weaker assumptions.
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For Hausdorff locally convex spaces, Theorem 4 can be strengthened
as follows:

THEOREM 5. Let m ~ 1 and, for each i E Zm, let Xi be convex
spaces, and let either

(1) Ti E M(Xi,Xi+!) or
(2) Ti E V(Xi, X i+!) with Xi+! a compact convex subset ofa Haus

dorff locally convex space EHI .

Suppose that there exists an io E Zm such that Tio E M with Xio
compact or 7'io E V.

Then there exists (XO,XI,'" ,xm-I) E X o X Xl X ••• X X m- l such
that xHI E TiXi for all i E Zm.

Proof. Use Theorem 3 instead of Theorem 2 in the proof of Theorem
4.

For «P and K instead of M and V, resp., Theorem 5 reduces to
Simons [17, Theorem 3.1]. Similarly, we can formulate generalized
versions of [17, Corollaries 3.2 and 3.3] as was done for Theorem 4.

Added in Proof. Recently the author found that Theorems 3 and 5
also hold for topological vector spaces E on which E* separates points.
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