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THE WIENER INTEGRAL OVER PATHS

IN ABSTRACT WIENER SPACE

K. S. RYU

1. Introduction

We snmmarize the properties of Wiener measure on the space of
continuous functions y on [a, b] which values in an abstract Wiener
space B such that y(a) = o. Such properties are very briefly in the
literature [6] with the exception of scaling properties. Since the scaling
properties will be especially impotant to us, we consider them in some
detail. The main results of this paper is in section 3 where we study
the operator-valued function space integral of functionals on Co(B).
Our results are related to works of Johnson and Lapidus (see section
2 and 3 of [4]) except that we work in more complicated Wiener space
Co(B) instead of ordinary Wiener space. On the other hand, our re­
sults are restrict to real ..\ > 0 whereas the results of [4] are not. We
express the operator which are the values of the function space inte­
grals as generalized Dyson series much as in [4]. And these series can
be viewed as disentangling the operator's involved. For a discussion of
disentangling, see [4}.

2. Wiener measure on the space of paths in an arbitrary
abstract wiener space

Let (8,,8(8),m) be an abstract Wiener space. For..\ > 0, let m.\ be
the Borel measure on 8 given by m.\(B) = m(..\-lB) for Borel subsets
B of 8. Let Co(8) denote the set of all continuous functions on [a, b]
into 8 which vanish at a. Then Co(8) is a real separable Banach space
in the norm lIyllco(B) == SUPa<t<b lIy(t)IlB. And from (6], the minimal
IT-algebra ,8(Co(8)) making themapping y -+ y(t) measurable consists
of the Borel subsets of Co(8). Further, Brownian motion in 8 induces
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a probability measure mE on (Go(B),,8(Go(B») which is mean-zero
Gaussian.

We will find a concrete form of mE' Let t = (tl, t z, ... , tn) be given
with a = to < t l < tz < ... < t n ~ b. Let T-; : Bn -+ Bn be given by

(1.1)
T-;(XI,XZ,""xn )

n

= (Vtl - to Xl, Vtl - to Xl + vtz - t l xz, .. ·, L Vti - ti-l Xi)'
i=l

We define a set function v__ on ,8(Bn) given by
t

(1.2)
n

v __(B) = (Xm)(T.:I(B».
t t

Then v__ is a Borel measure. Let ! __ : Go(B) -+ Bn be the function
t t

with

(1.3)

n
For Borel subsets BI,Bz, ... ,Bn ofB, !.:I(J( Bj) is called the I-set

t .=1
with respect to BI,Bz, ... ,Bn • Then the collection I of all I-sets is
an algebra. We define a set function mB on I by

(1.4)

Then mB is well-defined and countably additive on I. Using the
Carathoodory process, we have a Borel measure mE on ,8(Go(B».

By the change of variable theorem, we have

LEMMA 1. (Wiener Integration Theorem). Let t = (tl, tz, ... , tn)
be given with a = to < t l < tz < ... < tn ~ b and let! : Bn -+ C be a
Borel measurable function. Then

(1.5) f !(y(tl),y(tZ),··· ,y(tn»dmJB(y)
}eo(B)

~ f !oT__(xt,xz, ... ,xn)d(Xm)(xl'xZ'."'xn )}JBR t
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where by ~ we mean that if either side exists, both sides exists and
they are equal.

From Lemma 1, we can easily check that ml is a Brownian motion
in B which is a mean-zero Gaussian measure.

Given partition ITn of [a, b]; a = to < tf < ti < ... < tk(n) = b with
tt(ITn) = maxl~p~k(n) lit; - t;_111 -+ 0 as n -+ 00 and y in Go(B), let

(1.6)
k(n)

SOn (y) = L lIy(tj) - y(tj_l)II~·
j=1

By [3], flllxlI~dm(x) and f1Ilxlljdm(x) are finite. Let 0: = (b­
a) flllxll~dm(x) and (3 = fl II xlljdm(x) - {flllxll~dm(x)F· Then,
using Lemma 1,

(1.7)

And

(1.8)

f So (y)dml(Y)
}Co(l) n

k(n) j

= f L 11 L Jtr - tr-l Xi
}Ik(n) . 1 . 1

)= 1=

j-l k(n)

- L Jtr - tf-l Xill~d( i~1 m)(xi)
i=1

k(n) k(n)
= L(tj - tj_l) f IIxjll~d( ;X m)(xi). }lIl k (n) 1=1

)=1

= 0:.

f (SIT (y) - o:?dml(Y)
}Co(l) n

k(n)

= f {L lIy(tj) - y(tj_dlli}2dml(Y) - 0:
2

}Co(l) j=1

k(n) k(n)
= f {L(tj - tj_l)l!xjlli}2d( ;X m)(xi) - 0:

2
}Jllk(n) . 1=1

)=1
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Since p(ITn) -+ 0 as n -+ 00, we can choose a subsequence (ITtT(n)} of

(IT ) such that ,,00 "k(tT(n»(ttT(n) - t a(n»2 is finite Then bv (1 8)
n L..n=l L..p=l P p-l . J' ,

(1.9) f 1 {Sn..(n/Y) - a}2dm:8(Y)
n=l 00(:8)

00 k(tT(n»

=,sI: L (t;(n) _t;~~-l)?
n=l p=l

< 00.

Hence, by [7, p.173},

(1.10)

For .A ~ 0, let

for mB - a.e. y, lim Sn ( )(y) =O.n-+oo tr n

(1.11)
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and let

(1.12) D* = {y in Oo(B) I lim SII )(y) doesn't exist}.
n-oo a(n

Then for two positive reals AI, A2' AI012 = 011A2' 01, A ;::: 0, and D*
are Borel subsets, 0 0(8) is the disjoint union of the sets 01, A ;::: 0,
and D'" and mB(Ol) = 0 if and only if A =F 1.

For A> 0, we define a Bore! measure mB,~ on ,8(Oo(B» by mB,~(B)

= mB(A-1B). Then using Lemma 1, we easily check that for two
positive reals p and q,

(1.13)

3. Operator-valued function space integral on 0 0 (8)
In [2], Chung considered the Borel subsets O~, A > 0 and D of an

abstract Wiener space B which satisfies the following; for two positive
reals Al and A2' AI0~2 = 0~1~2 and B is the disjoint union of this
family of sets. Also m(O~) = 0 if and only if A =F 1. Let (B,,8(B),m:)
be the completion of (B, ,8(8), m).

DEFINITION 1. Let L1°o be the class of all C-valued Bore! measur­
able function t/J on lIB such that for each A> 0, t/J(A(·» is m-integrable
and

(2.1) 1It/Jlhoo == sup 1It/J(A(·»lh == sup '1t/J(Ax)ldm(x)
~>o ~>oJB

is finite. For f and 9 in L 1°o, we say that f is equivalent to g, denote
f '" g, if {A~ E B I f(x) =F g(x)} is an m-null set for all A > 1. Clearly,
'" is an equivalent relation on L 1°o. Hence, we obtain a quotient space
L 100 / '" which we denote L1oo.

THEOREM 1. (L1oo, 1I·lhoo ) is a Banacb space.

Proof. It is clear that (L1 00, 11 • Ih00 ) is a semi-normed linear space.
We suppose that 1It/Jlhoo = o. Then for A> 0,

(2.2) , 1t/J(x)ldm~(x) = '1t/J(Ax)ldm(x) = O.
Jn~ J.
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Hence for A > 0, there is a N>. in ,8(n>.) with m>.(N).) = 0 such
that tP(x) = 0 on n>.\N>.. Put N* = (U>.>o N>.) u no u D and N =
{x E B ItP(x) =1= o}. Then N c N* and since m(AN*) = 0 for all
A > 0, N is a Borel scale-invariant null subset of B, that is, tP '"
o. Therefore, (£100, 11 ./1100 ) is a normed linear space. We need to
show that (£100 , 1I·lhoo) is complete. Suppose (tPn) is an absolutely
summable sequence in (£100 , /I . Ih00). Then

(2.3)

Now, let

(2.4)

l ~ ItPn(x)/dm(x)

::; supf f ItPn(AX)ldm(x)
>'>0 n=l J.

00

::; L IItPnlhoo
n=l

< +00.

00

tP(x) = LtPn(X).
n=1

By (2.3), for A > 0, the series as (2.4) is absolutely convergent for m>.­
a.e. x. Hence tP is well-defined except for some Bore! scale-invariant
null subset and tP is in £100 . Therefore (tPn) is a summable sequence,
as desired.

REMARK. Since IIxo"l - xO"2lhoo = 1 for distinct two positive reals
Al and A2' £100 is not separable.

REMARK. In [1J, Cameron and Storvick introduced the space
W(C1 [a,,8]) which is the class of Borel measurable functionals defined
on the concrete Wiener space Cl [a,,8] such that tP("'(y + x) is Wiener
integrable in yover C1 [a,,8] for each positive "y and each x in C1 [a,,8].
They considered an operator-valued function space integral acting on
this space. However, W(Ch [a,,8]) is not Banach space whereas the
space £100 which we are considering is a Banach space.
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DEFINITION 2. For>' > 0, we define an operator C>.. on LI'''' given
by

(2.5) (C>..tP)(x) = i tP(>'-~X1 +x)dm(x1) for tP in L1°o.

LEMMA 2. For>' > 0, C>.. is a bounded linear operator from L 1°o

into itself. Moreover IIC>..II :::; 1.

Proof. Clearly C>.. is linear and C>..tP is Borel measurable for tP in
L 1°o and for>. > 0. And

(2.6) IIC>..tPlltoo

:::; sup f f ItP(>' -2
1

Xl + Itx)ldm(xddm(x)
P>oJI JI

= sup f ItP(y'1/>.+p2 z)ldm(z)
P>oJI

:::; IItPlltoo, as desired.

REMARK. Let tP(x) = Xnfi(x) on JR. Let>. > 0 be given and let x
be in JR. Then

(2.7) i(C>..tP)(x)dm(x) = iXflfi(y'l/>.+lz)dm(z)

={1 if>'=l
0, otherwise

Since (C>..tP)(x) :::; 1 m-a.e. x, if >. = 1 then (C>..tP)(x) = 1 m-a.e. x.
And if >. -11, then (C>..tP)(x) = 0 m-a.e. x. Hence lim>.._l C>..tP -I C1tP
as in the Lrnorm sense. Thus lim>.._l C>..tP -I C1tP as in the L1oo-norm
sense, that is, C>.. is not strongly continuous.

REMARK. Let >. and It be positive reals, let tP be in L1 00 and let x
be in JR. Then

(2.8) [(C>.. 0 CpW](x)
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= L{L .,p(pfX1 + A-l X2 +X)dm(Xl)}dm(X2)

= L.,ph/l/p + l/AZ + x)dm(x)

~ [CAIl/(A+P).,p] (X).

Let C>.. = Oi/A for A > O. Then O! has the semi-group property
with respect to A.

DEFINITION 3. For a bounded Borel measurable functional 81 on
lIB, we define the multiplication operator M81 by

(2.9) (M81 .,p)(x) = 81(x).,p(x) for 1/J in L1°o·

Let 8 : [a, b] x 8 -+ C be a bounded Borel measurable function. Let
9(s) denote the operator M 8(8,') of multiplication by 9(s, .), acting in
L1°o·

REMARK. IT 91 is bounded by K in the above Definition, M81 is
bounded linear operator from L 1°o into itself and IIM 81 11 ::; K.

NOTATION. Let 0(8) be the space of all B-valued continuous func­
tions on [a, b]. z in 0(8) has a unique decomposition Z = Y+ x where
x is in B and y is in Co(8).

DEFINITION 4. Let F : C(8) -+ C be a function, let A > 0 be given,
let t/J be in L 1°o and let x be in 8. We consider the expression

(2.10) [KA(F).,p](x) = f F(A -;1 y +x).,p(A-ly(b) +X)dmlB(Y).
)Co(lB)

H K A(F) exists and K A(F) is a bounded linear operator from L 1°o

into itself for all A> 0, we say that the operator-valued function space
integral KA(F) exists for all A> O.

The rest of this section, we adopt the following notations and as­
sumptions. Let 9 : [a, b] x B -+ C be a bounded Borel measurable
function and let TJ be a C-valued Borel measure on (a, b). TJ = p + v
will be the decomposition of TJ into its continuous p and discrete parts
v. And let

(2.11) Fn(y) = (f 8(s,y(s»dTJ(s»n for y in C(B).
J(a,b)

Let brp be the Dirac measure with total mass one concentrated at Tp •
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THEOREM 2. (finite supported case). Let '7 = p+v=p+Z::=1 wpbrp

where a < T1 < T2 < ... < Th < b and the wp's (p = 1,2, ... , h) are
in C. Then the operator-valued function space integral K>.(Fn) exists
for all A> 0 and for A> 0, tP in L1°o and x in B except for some Borel
scale-invariant null subset,

(2.12)

[K>.(Fn)tP](x) =

h i,+1
d( X ;X p)(Sp,i)p=Oa=l

where for k = 1,2"" ,h, Lk = Caj,+l,l 08(Sk,t}oGaj,+l,208(Sk,2)O'''O
C ° D(Sk' ) 0 {8(Tk)}qk +t D. .. . -{(so 1 So 2 ...aj,+l,ij,+l ,Jj,+l , QO;J1,J2,···,JIo+1 - "" ,
so,it, Sl,l, Sl,2, ... , sh,ilo+1) Ia= so,o < SO,l < ... < SO,j1 < T1 < Sl,l <
Sl,2 < ... < Sh-t,;1o < Th < Sh,t <... < sh,ilo+1 < b = Th+d and for
p = 1,2",· ,h+1 and fori = 1,2,,·, ,jP+I' Qp,i = A/(Sp-t,i-Sp-1,i-t}

and Qp+I,jp+1+I = A/(Sp,O - sp-l,ip+J = A/(Tp - Sp-l,ip+1)·
Moreover,

(2.13)

Proof. Let A > 0 be given, let tP be in L1°o. Then for x in lS except
for some Borel scale-invariant null subset,

(2.14)
-1 -1 -1

IFn(ATy + X)tP(ATy(b) + x)1 ~ (sup IDIII'7ll)n tP(XTy(b) + x)

for y in Go(lS).

Also ItP(A -2
1

y(b)+x)1 is integrable in y over Go(lS) and ICo(l) ItP(A-iy(b)
+x)ldm)(y) = [G>./(b-a)(ltPl)](x). Hence for x in B except for some
Borel scale-invariant null subset,

(2.15)
[K>.(Fn)tP](x)
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~ f {1 9(S,A-ty(S) +x)dlL(S) + tWp9(Tp , A-2
1
Y(Tp )+X)}n

lCo(B) (a,b) p=l

-1

t/J(>"Ty(b) +X)dmB(y)

n'L . W q1 W Q2 WQ/o1 2· •• h
qO!ql!' .. qh!

QO+Q1+··+Q/o=n

f (1 9(s,A-t y(s)+x)dlL(s))qO
lCo(B) (a,b)

h

(IT 9(Tp , A-tY(Tp ) + x)qp)?jJ(A ~1 y(b) + x)dmB(Y)
p=l

f (f IT 9(Si, A-tY(Si) + x)d(~IL)(Si))
1C(B) 1a qO i=l

h

(IT 9(Tp , A-tY(Tp ) +x)b )?jJ(A ~1 y(b) +x)dmB(Y)
p=l

f f qo
{l~ (le (IT 9(Si,A-tY(Si) +x))

a qO ;;1 ,h,... ,;/O+1 Co(B) i=l

h

(IT 9(Tp , A~1 y(Tp ) + xyJP?jJ(>..-ty(b) + x)dmB(y))d(~IL)(Si)}
p=l
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h

X {IT 8(sp,0, A-2
1
Y(Sp,0)+x)qp}

p=l

f h+1 ip+l
lt:.. .. . (L1 0 L2 0··· 0 Lh?/J)(x)d(pJ!l i!lll)(SP,i)'

90;)I.)2.· ...)h+l

Step (1) results from writing TJ as Il + I:~=1 wp 8rp and carrying out

the integral with respect to I:~::;;:1 wp 8rp ' By the multinomial expansion
theorem, we obtain Step (2). Let ~qO = {(SI, 82, ... ,8qo ) Ia = 80 <
SI < S2 < ... < 8 qO < b}. Since the integrand is invariant under
permutations of s-variables and the integral over the n! simplexes are
equal, we have Step (3). Step (4) follows from the FUbini theorem which
is justified above (2.14). After the relabeling 8it+i2+"+ik+i = Sk,i,
Tk = Sk,O and Th+1 = Sh,ih+l +1, we have Step (5). Letting f3k,i =

k . 1 ·-1

I:U=l I:~::;;:1 a;:,~xu,v + I:~::;;:1(ak+1,vXk+1,v), by Lemma 1, we obtain
Step (6). From the notation of C)., 80 and Lk, we have Step (7), as
desired.

And from (2.14),

(2.16)
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::;(supI811171IDn SUp ({ 1.,p(A2
I

y(b)+ltx)ldmB(y)dm(x)
p>o lB 1Co(B)

= (sup 1811171IDn SUp (I.,p( ./=-b--:--a-+-1t-2 x)ldm(x)
P>OlB V '"

::; (SUp 1811171IDnll.,plhoo.

Thus, we obtain (2.13).

COROLLARY 1. (7] = v purely finite discrete case). Let 7] = v =
2::=1 WpDT where a < Tl < T2 < ....< Th < b. Then the operator­
valued function space integral K>..(Fn) exists for A> 0 and for..\ > 0,
'l/; in L 100 and x in B except for a Bore1 scale-invariant null subset,

where (l:i = A/(Ti - Ti-l) (i = 1,2, ... , h + 1). Moreover,

(2.18)

COROLLARY 2. (7] = It purely continuous case). Let 71 = p. Tben
tbe operator-valued function space integral K>..(Fn) exists for A > 0
and for A > 0, 'l/; in L100 and x in B except for a Bore1 scale-invariant
null subset,
(2.19)

[K>..(Fn)'l/;](x) = n! ( [Gal 0 8(SI) 0···0 8(sn) 0 Can+I'l/;]d(Xp)(Si)lil n

where An = {(st,s2, ... ,sn)la = So < SI < S2 < ... < Sn < Sn+I =
b} and (l:i = A/(si - Si-I) (i = 1,2, ... , n + 1). Moreover,

(2.20)

From the "~o-nomialformular" [see 4, p.41], we obtain the following
Corollary.
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COROLLARY 3. (TJ an arbitrary Borel measure). Let TJ - Jl +
2:;1 w p6T • Then the operator-valued function space integral K;>,(Fn)
exists for A > 0 and for A > 0, 'l/J in L100 and x in B except for some
Borel scale-invariant null subset,

(2.21 )

00 ,

_ '" '" n. wqlw~2 ... wt"
L...J L...J Ql!Q2!'" Qh! 1
h=1 qO+ql +·+q,,=n,q,,#O

L 1 L~oLfo ... oL~
jl+h+··+j"+l=qO a;OJl.j2'···.j"+1

h jp+l

d( X X Jl)(Sp,i)
p=OI=1

where for each h, (f in the permutation of {I, 2, ... , h} such that TU1 <
TU2 < ... < Tu (,,) and ~;o;il,h,... ,j,,+l' L 100 and ap,i are defined as in
Theorem 2 except with T p replaced by Tu(p)' Moreover,

(2.22)

THEOREM 3. Let

(2.23)
00

fez) = L anzn

n=O

be an analytic function with radius of convergence strictly greater than
sup 101llTJII and let

(2.24) F(y) = f(1 8(s,y(s»dTJ(s» for y in C(lB).
(a,b)

Then the operator-valued function space integral K;>,(F) exists for A >
oand for A> 0,

(2.25)
00

K;>,(F) = L anK;>,(Fn)
n=O
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where the series converges in the operator-norm topology. Moreover,

(2.26)
00

\IK).(F)II :::; L lanl(sup 181\1TlIDn.
n=O

Proof. Let A > 0 be given, let t/J be in L 1oo. Then for x in B ex­
cept for some Borel scale-invariant null subset, IE::'=o anFn(A -2

1
y +

x)t/J(A-!y(b) + x)1 :::; E::o lan(sup 18I\1TlIDnlt/J(A-!y(b) + x)l· Also
It/J(A -2

1
y(b) + x)1 is integrable in y. Hence, by the dominated conver­

gence theorem, for x in B except for some Borel scale-invariant null
subset,

00

(2.27) [K>.(F)t/J](x) = L an[K>.(Fn)t/J](x).
n=O

Hence the operator-valued function space integral K).(F) exists for
A> o. And since

(2.28)
m

IIK>.(F) - L anK).(Fn)t/Jlltoo
n=O

00

:::; L lanl\lK).(Fn)t/Jlltoo
n=m+1

00

:::; ( L la~l(sup 181I1TlIDn)IIt/J11t00,
n=m+l

we have
(2.29)

m 00

\IK).(F) ~ L anK).(Fn)lI:::; L lanl(sup 18111TlIDn
n=O n=m+1

~O as m~ +00.
Thus we have (2.25). Moreover, from (2.22) and (2.25),

00

(2.30) IIK).(F)II :::; L lanIIlK).(Fn)1I
n=O
00

:::; L lanl(sup 18111TlIDn, as desired.
n=O



The Wiener integral over paths in abstract Wiener space 331

Corollary in the above Theorem 3 if fez) = exp(z) then

(2.31)

where the series converges in the operator-norm topology and

(2.32) IIK,x(F)1I :$ exp(sup 19111'711).

REMARK. In the above Corollary, if we let '7 be Lebesque measure
and let lR be the concrete Wiener space Cda,,B], the equation (2.31)
and the equation (7,0) in Theorem 8 of [1, p.254] are essentially the
same.
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