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THE WIENER INTEGRAL OVER PATHS
IN ABSTRACT WIENER SPACE

K. S. Ryu

1. Introduction

We summarize the properties of Wiener measure on the space of
continuous functions y on [a,b] which values in an abstract Wiener
space B such that y(a) = 0. Such properties are very briefly in the
literature [6] with the exception of scaling properties. Since the scaling
properties will be especially impotant to us, we consider them in some
detail. The main results of this paper is in section 3 where we study
the operator-valued function space integral of functionals on Cq(B).
Our results are related to works of Johnson and Lapidus (see section
2 and 3 of [4]) except that we work in more complicated Wiener space
Co(B) instead of ordinary Wiener space. On the other hand, our re-
sults are restrict to real A > 0 whereas the results of [4] are not. We
express the operator which are the values of the function space inte-
grals as generalized Dyson series much as in [4]. And these series can
be viewed as disentangling the operator’s involved. For a discussion of
disentangling, see [4].

2. Wiener measure on the space of paths in an arbitrary
abstract wiener space

Let (B, 3(B), m) be an abstract Wiener space. For A > 0, let m, be
the Borel measure on B given by my(B) = m(\~!B) for Borel subsets
B of B. Let Co(B) denote the set of all continuous functions on {a, b]
into B which vanish at a. Then Cy(B) is a real separable Banach space
in the norm ||yllc,() = suPa<i<s ly(t)lls- And from {6], the minimal
o-algebra $(Co(B)) making the mapping y — y(t) measurable consists
of the Borel subsets of Co(B). Further, Brownian motion in B induces
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a probability measure mg on (Co(B), 5(Co(B))) which is mean-zero
Gaussian.

We will find a concrete form of mg. Let T = (t1,t2,...,t,) be given
witha=ty<t; <ty <---<t,<b. Let T_t,:]B"—dB" be given by

(1.1)

T—t>($17$2’ .. -azn)
n
= (\/tl —tgz1, Vi —toz1 +VEa — 1 1,‘2,...,2\/%]' _tj—l Itj).
Jj=1

We define a set function v_, on §(B") given by

(1.2) v(B) = (Xm)(T-}(B)).

Then v is a Borel measure. Let fo: Co(B) — B™ be the function
with

(1.3) () = (y(t), y(t2)s - - -, y(ta))-

For Borel subsets By, By,..., B, of B, f_;,l()’z'lB,-) is called the I-set
=

with respect to By, Bz,...,B,. Then the collection Z of all I-sets is
an algebra. We define a set function mg on Z by

(14) ma(FH(X Bi)) = v (X By).

Then mp is well-defined and countably additive on I. Using the
Carathéodory process, we have a Borel measure mg on B(Co(IB)).
By the change of variable theorem, we have

LEMMA 1. (Wiener Integration Theorem). Let T = (1,82, .- 5tn)
begiven witha=1%y <t; <ty <---<tp,<bandlet f:B* - C bea
Borel measurable function. Then

(1.5) ] Fy(t2),y(t2), - »y(ta))dmn(y)
Co(B)

= foT?(:vl,:r:z,...,a:n)d()?m)(zl,:cz,...,xn)
Bﬂ
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where by = we mean that if either side exists, both sides exists and
they are equal.

From Lemma 1, we can easily check that mg is a Brownian motion
in B which is a mean-zero Gaussian measure.

Given partition [], of [a,8);a = £§ <1 <t} <--- <t} = bwith
(I1,.) = max; <p<i(n) ||t;,' - t,',‘__1|| — 0 as n — co and y in Co(B), let

k(n)
(1.6) S, (v) = O (D) — w2 I3
=1

By (3], [zllzll}dm(z) and fj ||zligdm(z) are finite. Let o = (b —
a) Jg lzllgdm(z) and B = flzllzgdm(z) — {fg lzlfdm(z)}*. Then,

using Lemma 1,

(L7) /C 3, ST 0)dma()

k(n) 5

o VTR

j=1 i=1

J-1 k(n)
=Y VIt wilgd( X m)(:)
=1
k(n)

k(n)
=S -6 [ lelhd X mie)
i=1 B =
= .

And

(1.8) /C PRCORDE

k(n)

_ Y — u(t._ )2 V2dm —a?
- /C .,m{,.; ly(t;) — (t;-1)12 P dms(y)

k(n)

(n
- /Bk(n){z(t? — 5 llz; l13}2d( I:.i(l)m)(m,-) —a?

=1
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k(n) k(n)
=D > (G-t —th)
p=1 g=1,9#p
2 2 k(n)
[ laslflzalidm( X m)a)
Bk(n) =
Yo K(n)
+ 2~ [ Il X m)(@) - o?
r=1 i =
k(n) k(n)
=) Y —tn )~ 1oy}
r=1 g=1
. k(n)
[ elan@) + 836 .07 - o”
B . =1
k(n)
=B (-,
r=1

Since p(J],) — 0 as n — oo, we can choose a subsequence ([],,,) of

([T,.) such that Y22 ¥ (5™ — 1292 55 finite. Then by (1.8),

(1.9) i /

n=1 7 Co(B)
oo k(a(n))
=53 3 (5055
n=1 p=1
< Q.

{811, .., (W) — a}?dmsy)

Hence, by [7, p.173],
(1.10) for mp—ae. vy, nango SH,(,.)(?/) =0.
For A > 0, let

(1.11) @ = {y in Go(B)| lm Sy, (v) = A%a}
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and let
(1.12) D* = {y in Co(B) | nh_x}:o Sl'lc(..)(y) doesn’t exist}.

Then for two positive reals A1, Az, \1Q}, = Q3 ,,,3, A 20, and D*
are Borel subsets, Co(B) is the disjoint union of the sets Q3, A > 0,
and D* and mg(Q2}) = 0 if and only if A # 1.

For A > 0, we define a Borel measure mg ) on $(Co(B)) by mg A(B)
= mg(A"1B). Then using Lemma 1, we easily check that for two
positive reals p and g,

(1.13) MB,p ¥ Mpg =My f5rs on B(Co(B)).

3. Operator-valued function space integral on Cp(B)

In [2], Chung considered the Borel subsets O, A > 0 and D of an
abstract Wiener space B which satisfies the following; for two positive
reals A; and Az, A1Qy, = Q,a, and B is the disjoint union of this
family of sets. Also m(Q,) = 0 if and only if A # 1. Let (B, 3(B), 7)
be the completion of (B, 5(B), m).

DEFINITION 1. Let L1~ be the class of all C-valued Borel measur-
able function 9 on B such that for each A > 0, ¥(A(-)) is m-integrable

and
@1 [l = sup A = sup / () ldm(z)
A>0 A>0JE

is finite. For f and g in Ly, we say that f is equivalent to g, denote
f~g,if {A; € B| f(z) # g(z)} is an m-null set for all A > 1. Clearly,
~ 1s an equivalent relation on Lj~. Hence, we obtain a quotient space

Lye / ~ which we denote Lj.
THEOREM 1. (L, || - |1 ) is a Banach space.

Proof. 1t is clear that (L, || - ||l1) is a semi-normed linear space.
We suppose that ||#|l1> = 0. Then for A > 0,

(22) /Q b(a)ldma (=) = /B b(Az)ldm(z) = o.
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Hence for A > 0, there is a Ny in B(2) with mx(Ny) = 0 such
that ¥(z) = 0 on Qy\\Nx. Put N* = (U5, MA) U UD and N =
{z € B|¢¥(x) # 0}. Then N C N* and since m(AN*) = 0 for all
A > 0, N is a Borel scale-invariant null subset of B, that is, ¥ ~

0. Therefore, (L, || - [|1=) is a normed linear space. We need to
show that (Lie, || - [l1=) is complete. Suppose (3,) is an absolutely
summable sequence in (Lje, ||« [f1c). Then

2.3) AE]%@WM@

n=1

<sup> | uha)ldm(z)

n=1
< Y Il
n=1
< + o00.
Now, let
(2:4) P(z) = Yal2).
n=1

By (2.3), for A > 0, the series as (2.4) is absolutely convergent for m-
a.e. . Hence 9 is well-defined except for some Borel scale-invariant
null subset and ¢ is in Lj. Therefore (¥,) is a summable sequence,

as desired.

REMARK. Since [|xa,, — X, ll1= =1 for distinct two positive reals
A1 and A2, L~ is not separable.

REMARK. In [1], Cameron and Storvick introduced the space
W(Cli[a, B]) which is the class of Borel measurable functionals defined
on the concrete Wiener space Ci[a, ] such that ¢(vyy + z) is Wiener
integrable in y over C[a, (] for each positive v and each z in Ci[a, 8].
They considered an operator-valued function space integral acting on
this space. However, W(C},[a, B]) is not Banach space whereas the
space Ly~ which we are considering is a Banach space.
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DEFINITION 2. For A > 0, we define an operator C on L~ given
by

(2.5) (Cry)(z) = /Bzﬁ(/\—%zl +z)dm(z,) for % in Lje.

LEMMA 2. For A > 0, C) is a bounded linear operator from Lj«
into itself. Moreover ||C|| < 1.

Proof. Clearly C) is linear and Cx¢ is Borel measurable for ¥ in
Lloo and for A > 0. And

(26) ICx$ll1=
< sup /B /B (AT 2, + po)ldm(z; dm(z)

#>0

= sup / (V17 F 12 2) | dm(2)
p>0JB

[ |l1o, as desired.

IA

REMARK. Let ¢(z) = xq () on B. Let A > 0 be given and let «
be in B. Then

@) [Cb)e)imis) = [ xas/TAFz)dm(:)
{ 1 fA=1

0, otherwise -

Since (Cryp)(z) £ 1 m-a.e. z,if A =1 then (Ca¢p)(z) =1 m-a.e. z.
And if A # 1, then (Ca¢)(z) = 0 m-a.e. z. Hence limyx_; Cr¢p # C1¢
as in the L;-norm sense. Thus limy_; Cx% # C1¢ as in the Ly -norm
sense, that is, C) is not strongly continuous.

REMARK. Let A and y be positive reals, let ¥ be in Ly~ and let z
be in B. Then

(2:8) [(Cx 0 Cu)y(=)
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= /{/ P(pFz+ A"ty + z)dm(z1)}dm(z2)
B JB
— /l S5 F 1/ z + 2)dm(z)

= [Cau/r+m¥)(2)-
Let Cx = C} /A for A > 0. Then C5 has the semi-group property
with respect to A.

DEFINITION 3. For a bounded Borel measurable functional 6; on
B, we define the multiplication operator M, by

(2.9) (Mo, ¥)(z) = 61(2)Y(z) for 9 in Lyes.

Let 0: [a,b] x B — C be a bounded Borel measurable function. Let
6(s) denote the operator Mg(,,.) of multiplication by 6(s,-), acting in
L.

REMARK. If 6; is bounded by K in the above Definition, My, is
bounded linear operator from Li~ into itself and ||Mpy, || < K.

NoOTATION. Let C(B) be the space of all B-valued continuous func-
tions on [a,b]. z in C(B) has a unique decomposition z = y + = where
z is in B and y is in Co(B).

DEFINITION 4. Let F : C(B) — C be a function, let A > 0 be given,
let ¥ be in Ly~ and let z be in B. We consider the expression

210) [KA(F)|(z) = [C o FOF v+ 200 40) + 2)amay).

If K \(F) exists and K(F') is a bounded linear operator from L;«
into itself for all A > 0, we say that the operator-valued function space
integral K,(F") exists for all A > 0.

The rest of this section, we adopt the following notations and as-
sumptions. Let & : [a,b] x B — C be a bounded Borel measurable
function and let n be a C-valued Borel measure on (a,b). n = p+ v
will be the decomposition of # into its continuous g and discrete parts
v. And let

@11)  Fay)=( /( Ky for yin O®)

Let 5,.p be the Dirac measure with total mass one concentrated at 7.
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THEOREM 2. (finite supported case). Let n = /‘+”=i‘+z:=1 wpbsr,
where a < 1y < T2 < -+ < 7, < b and the w,’s (p = 1,2,...,h) are
in C. Then the operator-valued function space integral K(Fy,) exists
for all A > 0 and for A >0, ¢ in Ly~ and z in B except for some Borel
scale-invariant null subset,

(2.12)
wa qu e wq"
[KA(Fa)4)(z) = 3 WL W Wy

! gl ---qgn!
gotqittqu=n J1°92° "Gk

x ¥ / (LooLyo--o Lag)(z)
J1tdetting1=g0 Y Atoiinrizingr
k Jo41
d(pg—-(o i‘ifl #)(sp,3)
where fork =1,2,--+ ,h, Ly = Ca,, , 00(5%,1)0Cq,,, ,060(s5k2)0---0
C°k+1,i;,+1 ° o(skyjk+1) o {6(rx)}+, Agosjisizgeemsintt ={(s0,1,80,2,"
50,j1251,1,51,2," " * 5 Sh,jxs) | 8= 80,0 < 801 < -++ < 89,5, < T1 <8131 <
312 < o° < 8p-t gy, <Th < 8p1 <+ < Shyjrpr < b= Th+1} and for
p= 1) 2)' o )h+1 and for: = 172" e ,jp-’rl; Qp i = A/(s}’—-l,i_'Sp—l,i—l)
and apyyj, 41 = A (8p0 = Sp-1,jo41) = A (Tp — Sp—1,p.41)-
Moreover,

(2.13) IEACF)I < (sup 6] {|n]])™-

Proof. Let X > 0 be given, let ¥ be in Lyj~. Then for z in B except
for some Borel scale-invariant null subset,
(2.14)
IFa(A% y + 2)$(AT y(8) + )| < (sup 6] []n]))"$(AZ y(b) + 2)
for y in Co(B).

Also (A7 y(b)+z)| is integrable in y over Co(B) and fco(n) [ (A~ 2y(b)
+z)|ldmp(y) = [Caje—a)(1¢])](z). Hence for z in B except for some
Borel scale-invariant null subset,
(2.15)

[KA(Fr)4)(=)
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~
[
S

fl

h
/ ([ 0 A" by(s) +2)du(s) + 3 wpb(rp AT y(rp) + 2)}
Co(B) J(a,b)

r=1

H(AT y(b) + z)dmz(y)

§: n! q1,, d2 ah
olgal gl 12T
got+q1+-+agp=n 10741

/ ( / 8(s, A~ y(s) + 2)du(s))®
Co(B) J(a,b)

h
(TT 8o A~ ¥y () + 2)92 )p(A T y(b) + z)dm(y)
p=1
® Z ____n! wl"1 wgz w,q,"

tgol---agn!
go+q1+---+gr=n 91:92- 9n-

/C (B) /A ]'Ie(s.,,\-ay(s,)+z)d(xu)(s,))

90 i=1

=

He(r,,A zy(rp)+z)"v)¢(h y(b) + z)dmx(y)

p=1

) n! Q, g2 . ah
I e >

!
got+grttgn=n It ga! - jitiztHinp1=go

{f ([ qT06s3 4000 +2)
Aqo;jl:jzv",jh-]—l CO(B) =1

k qo
(TT 6Cros A= () + )2 (A~ y(b) + z)dmp(y))d( X s)(s:)}

r=1
y )
5 n.
D DI erriic i A S Y
got+tq1+--tgn=n au: 92 EL ' Jitjeteting1=4q0
h+1 Jp

/. [ AT TT06r16A% s(pr.) + )
Ago3d1sizy--sdnt1r v Co

®B) p—1i=1
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h 1
x {]T 6Csp,0, A7 y(sp,0) + 2)%7}
p=1

=1 h .p 1
PO Yshr10) + )dma@)d(X, K #)(sps)

!

6 n!

© E —_—w{'wd . w E
a1!g2! - qa! . ;

gotqit-tga=n Jitizttie+1=90

h+l jp+1
/ / (T1 TI 8Cop-r.0 B +2)
A Boo+h+1

=1 i=1
X (H 0(p,0, Bp,0 + ) ) (Bh,jnsr+1 + )

90i1:d2,

p=1
h+lJp+
d(p‘z_ﬂ 2, m)(a:p,,)d(X Xl‘)(spt)
(7 n! L
c Y oottt 3
go+q1+--+gn=n stizte-+ing1=g0
Jp1
/. (LyoLyo- -0 Lip)(@)d( X, X w)(op).

205132, h41

Step (1) results from writing n as u + E:__:l wpb,, and carrying out
the integral with respect to z:=1 wpéy,. By the multinomial expansion
theorem, we obtain Step (2). Let Ay, = {(51,82,-..,8g)|a = 30 <
81 < 83 < -+ < 84, < b}. Since the integrand is invariant under
permutations of s-variables and the integral over the n! simplexes are
equal, we have Step (3). Step (4) follows from the Fubini theorem which
is justified above (2.14). After the relabeling sj, 4,4 tjsti = Sk,is
Tk = Sk and Thy1 = Sp j,,,41, We have Step (5). Letting Bi; =

. 1 . -1
E:=1 Y oom1 @ub Tuw + Loum1(@) ) ,Th41,0), Y Lemma 1, we obtain
Step (6). From the notation of C), 6(-) and Li, we have Step (7), as
desired.

And from (2.14),

(2.16)
[ EA(F )b |l1
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< Guplollrl)sup [ [ 16OF 400 + po)ldm(s)am(z)

= (auplpl )" sup [ oty 2 52 + 2 o))

< (sup |0] |7l | llace-

Thus, we obtain (2.13).
COROLLARY 1. (n = v purely finite discrete case). Let n = v =

E;=1 wpdy where a < 71 < 72 < -++ < 7, < b. Then the operator-

valued function space integral Kx(F,) exists for A > 0 and for A > 0,
¥ in Ly~ and z in B except for a Borel scale-invariant null subset,

(2.17)

n!
[Ex(Fa)bl@)= D>, g qoiwf-wl
qo+91+'"+9h=ﬂ QI-qZ. e qh. .

[Cay 0 {0(11)}* 0 Cq,0---0Ch,
o {8()}* 0 Ca, , ¥](=)

where a; = A[(1; — 1i—1) (¢ =1,2,...,h + 1). Moreover,

(2.18) HEA(F) < (sup (0] [iml])"-

COROLLARY 2. (7 = p purely continuous case). Let n = p. Then
the operator-valued function space integral K (F,) exists for A > 0
and for A > 0, ¢ in L1~ and z in B except for a Borel scale-invariant
null subset,

(2.19)

[KA(Fa)¥(z) = n! / [Cay 08(51) 0 -+ 08(5s) 0 Car W1 X 1) (5:)
An
where Ap = {(81,52,-..,8n)|@ =50 < 81 < 82 <+ < 85 < Spyy =

b} and a; = A\/(s; — s;—1) (i =1,2,...,n + 1). Moreover,

(2:20) IEA(F)| < (sup 16} ||7l])™

From the “Rg-nomial formular” [see 4, p.41], we obtain the following
Corollary.
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COROLLARY 3. (n an arbitrary Borel measure). Let n = p +
Y pe1 Wpdr. Then the operator-valued function space integral K(Fy)
exists for A > 0 and for A > 0, ¢ in L1~ and = in B except for some
Borel scale-invariant null subset,

(2.21)
[KA(Fn)¥)(z)

oo

n! q
=Y Y lep e
q1lga! - qn!

k=1 go+q1+:-+aa=n,qa #0

> L3oL0---0LC

. , . e X
Jitj2++In+1=90 A!ouldz ----- Jh41

h Jp41
d( X X p)(sp,i)

p=0 i=1

where for each h, o in the permutation of {1,2,...,h} such that 74, <

L o . . . . {
Tos < < Toyy and A7 5wy L1 and oap; are defined as in

Theorem 2 except with 1, replaced by 75 ,,. Moreover,
(2.22) HKA(F)|| < (sup 6] [In]])™-

THEOREM 3. Let

(2.23) f(2) =) anz"

n=0

be an analytic function with radius of convergence strictly greater than
sup |0} [|n]| and let

(224)  F(y) = ]( , e3(e))in(s) for g in O(B).

Then the operator-valued function space integral K (F') exists for A >
0 and for A > 0,

o0

(2.25) Ex(F) =) anKx(Fu)

n=0
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where the series converges in the operator-norm topology. Moreover,

o
(2.26) IEAE < D laal(sup 6] fIn]])™-

n=0

Proof. Let A > 0 be given, let ¥ be in Lj. Then for z in B ex-
cept for some Borel scale-invariant null subset, |Y oo, anFn(Azzly +
-’c)'ﬁ()\:%y(b) +2)| < Yool lan(sup (0] Inll)*[¥(A~2y(b) + z)|. Also
(A7 y(b) + z)| is integrable in y. Hence, by the dominated conver-
gence theorem, for ¢ in B except for some Borel scale-invariant null
subset, '
(2:27) [EX(F)$](z) = ) an[Kr(Fa)p)(2)-
n=0

Hence the operator-valued function space integral K(F) exists for
A > 0. And since

(2.28) IEAF) =Y anKa(Fo)pll1
n=0
< Y lanl EAFR) Yl
n=m-1 .
< () lanl(sup 18] )™ llzee,
n=m+1
we have
(2.29)
IEA(F) = 3 auEa(Fa)ll < Y lanl(sup ] llnl)"
n=0 n=m-+1

— 0 as m— +oo.

Thus we have (2.25). Moreover, from (2.22) and (2.25),

(230)  JEAFP < Y laol IEA(F)I|

oo
< ) lanl(sup 6] |Inll)", as desired.

n=0
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Corollary in the above Theorem 3 if f(z) = exp(z) then

(=]

(2.31) KxF)=Y_ i—!'KA(Fn)

n=0

where the series converges in the operator-norm topology and

(2:32) I KA(F)|| < exp(sup |8} {In]l)-

REMARK. In the above Corollary, if we let  be Lebesque measure
and let B be the concrete Wiener space Cj[a, 3], the equation (2.31)
and the equation (7,0) in Theorem 8 of [1, p.254] are essentially the
same.
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