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ON THE TYPE OF PLANE CURVE SINGULARITIES
ANALYTICALLY EQUIVALENT TO THE
EQUATION :" + y* = 0 WITH gcd(n, k) = 1

CHUNGHYUK KANG

1. Introduction

Let V.= {(2,9) : f(z,y) =0} and W = {(z,9) : g = 2" + ¢* =
0} with ged(n,k) = 1 be germs of analytic subvarities of a polydisc
near the origin where f has an isolated singular point at the origin.
Assume that V and W are topologically equivalent near the origin.
Then by a nonsingular linear change of coordinates f can be written
as 2"+ Ay 2™ 24 Ay 2" b+ Ay y® -tz +yF where the
A; = A(y) are nonvanishing holomorphic near the origin and > &
for i = 2,--- ,n — 1 by [2]. Assume that n < k and gcd(n, k) = 1.
We are going to prove in each case whether V and W are analytically
equivalent near the origin or not as follows : If V and W are analytically
equivalent, then denote this relation by V =~ W or f = ¢g. If not, we
write VE Wor f % g.

(1) Ha;+n—1t<kand A;(0) # 0 for some : with2 < i< n -1,
then f % g.

2)fai;+n—i=kforsomeiwith2<:<n-—1land V~W, then
either 4;(0) =0fori=2,--- ,n~1or A;(0)#0fori=2,--- ;n—-1
If An_1(0) # 0, then A,_;(0) = Ci(}An_1(0)) fori=2,--- ,n - 2.

(3) Suppose that a; +n —¢ >k fori=2,--- ,n — 1 and that there
is some t with 2 < ¢ <n-—1suchthat ay +n—¢t=Min{a; +n—1:
2<i<n-1}anda; <k—2. Then f#g.

4)Ha;>k—1fori=2,---,n—1 (which implies a; + n —7 > k)
and aj = k — 1 for some j with 2 < j < n —1, then f = g if and only
if2(n—1)>n—1wherel=Max{j:a;=k—-1,2<3<n-1}
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(5) Assume that a;+n—i>kfori =2,--- ;n—landas+n—t >
Min{a; + n —i: 2 < i < n — 1} whenever a; < k£ — 2. Then either
frgorfég. |

Moreover, it is interesting to apply this result to some examples
which are not analytically equivalent to any weighted homogeneous
polynomial by using the blowing-up process.

2. Known Preliminaries

DEFINITION 2.1. Let V={2€C": f(z) =0} and W ={z € C":
g(z) = 0} be germs of complex anaytic hypersurfaces with isolated
singular points at the origin. V and W are said to be topologically
equivalent near the origin if there is a germ at the origin of homeomor-
phisms ¢ : (U;,0) — (Uz,0) such that ¢(V) = W and ¢(0) = 0 where
U, and U; are open subset containing the origin in C?. Also, V and
W are said to be analytically equivalent near the origin if there is a
germ at the origin of biholomorphisms 9 : (U1,0) — (Uz,0) such that
(V) = W and 4(0) = 0 where U; and U, are open subset containing
the origin in C2.

DEFINITION 2.2. The polynomial f(z,--- ,2,) is weighted homo-
geneous of type -‘;1;, ceey ;};) if there is some positive rational numbers
ay,--- ,ayn such that f(£%12y,--- , 1% 2,) = tf (21, , 2n).

Let ,O denote the ring of germs of holomorphic functions at the
origin in C™. ‘ ,
THEOREM 2.3(MATHER-YAU [3] AND SHOSHITAISHVILI [4]). Sup-

pose that f(z,--+,2,) has the isolated singular point at the origin.
Then the following statements are equivalent.

(i) f is analytically equivalent to a weighted homogeneous poly-
nomial.

(ii) f € mA(f) where mA(f) is the ideal in ,,O generated by z;%
foralli,j=1,---,n.

(iii) There is a germ at the origin of biholomorphisms ¥ : (Uy,0) —
(U3, 0) such that foy = g for a weighted homogeneous polyno-
mial g where U; and U, are open neighborhoods of the origin
in C™.
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(iv) K(f) is isomorphic to K(g) for a weighted homogeneous poly-
nomial g as a C-algebra where K(f) = ,O/(f,mA(f)), K(g)
= 20/(g,mA(g)) and (f, mA(f)) is the ideal in ,O generated
by f and mA(f).

Proof. See (3] and [4].

3. On the type of plane curve singularities analytically
equivalent to the equation 2" + y* = 0 with ged(n, k) =1

THEOREM 3.1. Let V = {(z,y) : f = z" + Ay*22"" 2 +--- +
Az e+ Apyiz + oy = 0 and W= {(2,y) g =
z" + y* = 0} be germs of analytic subvarieties of a polydisc near the
origin in C? where f and g are Weierstrass polynomials, the A; = Ai(y)
are nonvanishing holomorphic neary =0 fori = 2,--- ;n — 1. Assume
that n < k and gcd(n, k) =1. fa;+n—1t < k and A;(0) # 0 for some
twith2<i<n-1,then f #g.

Proof. Note that since f is irreducible in O, a;+n—: > n. Note by
Theorem 2.3 that f ~ ¢ if and only if fo¢ = g for some biholomorphic
mapping ¢ : (U1,0) — (Uz,0) with (V) = W where U; and U, are
open subsets containing the origin in C?. Then we may assume that
#(z,y) = (H(z,y), L(z,y)) as follows :

H=H(z,y)=az+PBy+ Hy+ Hy+--- and
L=L(z,y)=vz+6éy+ Lo+ Lz +---

where H,, and L,, are homogeneous polynomials of degree n with H,, =
Hn(za y) = an,Ozn + a'n—-l,lzn_ly + -+ ap,ny" and L, = Ln(zay) =
bnoz™ +bp1,12" Yy + oo+ bo ny".

Observe that ad — By # 0. We suppose that

foo(z,y)=(az+PBy+Hy + H3 +---)"
+Ay(LY(y24+8y+ Lo+ Ly +---)*(az+ By + Ho + Hy ++-- )2
+A(L)Y vz +8y+ Lo+ Ly + -+ )*(az+ By + Hy+ Hy +--- )"
+...
+An (LY (vz+ by + Lo+ Ly +--- ) (az+ By + Hy + Hy +---)
+An(D)(yz+ 6y + Lo+ Ly +--- ) = 2" +y*.
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Now it is enough to get a contradiction. Let I={j:a; +n—j =
Min{a; +n—::2<¢<n-—1}} and m = MaxI. Then 3 = 0 because
n < k and n < a; + n — i for any ¢. Note that aé — fy = ad # 0. But
Ar(0)-(8y)*™ - (az)" ™™ = Ap(0)6*ma™ ™y*=z"~™ is the unique one
containing the monomial y®=z"~™ in the expansion of f o ¢(2,y) with
am +n —m < k. This would imply that aé = 0. It is impossible.

Before proving Theorem 3.3, we need the following Lemma.

LEMMA 3.2. Recall the notation ,Cr = () =n(n—1)---(n —k+
1)/k!. Then

nCI n+101 M n+k—lcl
D nC2 n+lc2 * ntk-1 C2
2Cr 210k -+ apk-1Ci
2C1 2Co 0 0
uC2 nCI nCO 0
an-l an—Z an—3 e nCO
an an—l an-——2 b nCl
0 0 nt+k—2C0 n+k-1C1
0 oo ngr-3Co nt+k—2C1 ntk-102
— (_l)k(k—-l)/2 . . . .
2Co - nt8—3Ck—3 nt+£-2Ck—2 ntr-1Ck—1
2C1 r atk-3Ck—2 n42—2Ck—1 n4x-1Ck

= ntk-1Ck.
Proof. To compute D, subtracting (k — 1)-column from k-column,
we have
nCI n+1 C‘1 M n+k—201 n+k—-200
D 2nCe 2102 -0 k20 at+k-2C1

2Ck n+1Ck  *  n4k-20k-1 n48—2Cr1
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Applying the same technique to (k — 1)—column, (k — 2)—column,: - -,
the second column in order, we get

2Ci1 2Cy o+ n4k-3C0 n+k—-2C0
nC2 2Cy o ntk-3C1 ntk—2C1
nCr nCio1 - a4k-3Ck-1 n4r—2Ck—1
Using the same technique, by induction we get

nCI nCO - 0 0

nCZ nCI e 0 0
p=|: o

an-—l an—Z ot nCI nCO

an an—-l ct nCZ nCI

This is the first form which we want.
With respect to the k-th column only, D is linear and so, D can be
represented in the following:

2C1 2Co -« 0 0
G2 2Ch -0 0

D=|: Do
an—l an—-2 cet nCI n—lCO
an an-—l tte nCZ n—lCl
2C1 2Co - 0
nCZ nCI ot 0

o :

an—Z an—3 e nCO
an—l an—2 et ncl

= D, + D, where D is the k x k matrix and D, is the (k—1) x (k—1)
matrix. Applying the same technique to D; as in the beginning of the
proof, then we have

n-1D1 n-1Co - 0 0
n—1 02 n—lCI e 0 0

D, = |: : : :
n-1Ck=1 a-1Ck—2 -+ n-1C1 n-1Co

n-1Ck n—1Ck—1 -+ 10y i Ch
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Next, applying the same method to D; and D; reversely as in the
beginning of the proof, then we get

2-1C1 2C1 v aprk—2Cy
n-1C2 nC2 -+ n4k—202
D=D;+ Dy =], ) )

n-1Cr 2Cr -+ p45-2Ck

1101 n+].Cl M ﬂ+k—201
2C2 +1C2 coo atk-2C

+ ) .
aCk=1 n41Ck—1 -+ p4k—2Ck—1

By induction on n + k, then Dy = 44 9Ck and Dy = 44-2Ck—1.
Therefore D = ,4+—1Ck. Now to express D in another way, subtracting
the second column from the first column, the third column from the
second columm,: - -, the k-column from (k — 1)-column in D in order,
then we have

nCO n+1 CO e n+k—1 Cl
EY] e
an—-l n+1 Ck-—l e n+k—10k

Using the same process by induction on k, we have the desired result.

THEOREM 3.3. Let V = {(2,y) : f = 2™ + Aggy* ™27 2 ... 4
Atz o A b 2+ y*F =0} and W = {(2,9) : g =
2" + y* = 0} be germs of analytic subvarieties of a polydisc near
the origin in C? where f and g are Weierstrass polynomials and the
A; = A,(y) are holomorphic near y =0 for i = 2,--- ,n — 1. Assume
that n < k and ged(n, k) = 1. If f = g, then either A;(0) = 0 for all
i=2,---,n—1orA(0)#0foralli=2,--- ,n—-1. KFA, ;(0)#0,
then Ap_i(0) = kCi(+An-1(0)) fori =2,--- ,;n—2.

Proof. Note by Theorem 2.3 that f ~ gifand only if fod = ¢
for some biholomorphic mapping ¢ : (Uy,0) — (U3, 0) with ¢(V) =W
where U; and U, are open subsets containing the origin in C?. Now
we may assume that ¢(z,y) = (H(2,y),L(z,y)) where H = H(z,y) =
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az+PBy+Hs+Hs+--- and L = L(z,y) =v2+6y+ Lo+ Lg+---,
and H, and L, are homogeneous polynomials of degree n with H, =
Ho(2,9) = @no2™ 4 Gno102" 'y + -+ + ap ny™ and L, = Lo(2,9) =
bn,02™ + bp—102""y+--- + by ny™. Then

fod(z,y)=(az+Py+Hy, + Hs +---)"
+Ay(L) vz +6y+ Lo+ La+--- ) "2 (az+ By + Hy + Hy 4 --- )2
+...
+A(L) vz + 6y + Lo+ L+ - )" ""(az + By + Hy + Hy +--- )"
+...
+An (L) (yz+6y+ Lo+ La+--- Y Yaz+By+ Hy + Ha +---)
+(yz+ 6y + Lo+ Ly+--- )% = 2" + ¢*.

Observe that # =0, Hy =H; =+ - =Hy_, =0,a" =1and 6¥ =1
since n < k. If v = 0, then it is easy to show that A;(0) = 0 for all
i=2,---,n—1 because ab — By = ab # 0. Suppose that A4,,_;(0) =0
for some i with 1 < ¢ < n—2. Then consider coefficients of the following
monomials y¥~%z¢, yk—iH1zi1 Lo yk=2,2 k=1, in fo ¢(z,y) : For
brevity, put s; = A,_;(0) for j =1,--- ,i.

. .. kE—741 ..
[1] yk—lzt . s,—6k—'a'+s,~_1( ;‘*‘ )76k—:az—1 4

k—1\ i1ck-i (BN _ick—i
+sl(i_1)7 ) a+(i>76

. E—i . E—1\ .
— 61:—:[3'._1( ;+1)7al-‘1 ++31( 1)’)"—10

oL 1—1
+(£)7]—0.
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o I i R ) (k o 2) Yo" 4 -

1
E—1\ i E N -1
+S1( 2)7 a+(z._1)7 ]

) E—i 49 .
l,yat—l +5i—2< ;+ )72a1—2+”.

+81(i_2)‘)’ Ol+(z._1)‘)’]—0-

= §k—i+1 ’7—1 [s,-_

y* 722 65 sea® + 5 (k N l)m + (;) 7’]

-2, 2—if, i E-1\ E\
= §¥722 5y 2azz+sl( 1 )7 1a+(2>"/]=0.

[2] y""lz : Sk'l[sla-i- (f)-y] = 6k'171'i[sl7i"1a+ (llc)'y'] = 0.

We are going to prove that 4 = 0. Suppose not.

Then considering s;—1ya’™!,s;_27%a'~ 2, .- 97" 2a?, 517 lay’
as a solution of the above [{]-homogeneous equations, we get an ¢ X i-
square matrix A consisting of coefficients of s;_;ya*™* 282,

. $$i—2Y & R
527" 2a?, 517°"'a, 4" in these equations as follows:

) )

(o N o e S = =

L ) 6

N L D () (&)
(:) (:) ";‘ ’;

k 0 0 0 (1) (5/

To compute the determinant |A|, subtracting (¢ — 1)-column from :--
column and (Z — 2)-column from (7 —1)-column and so on, by induction
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on z, we get

(("‘{'H) (B=itt) (iYL (RO () ()
1 (k—ls‘+1) (k-—;+1) (k-a+1) (k__.+1 ( _—,+1)
N 0 1 ("'{“"1) (k—r+1) (k7s+1) (*+ —_.;-1)
6 0 0 1 (k-—;'+l) (k—;+1)
\ o 0 0 o 1 (k—;'+1)/
= k—i+14i-1Ci =, Ci # 0
by Lemma 3.2.
Smce |Al # 0, we would have s;_j7a*~! = s;_37%a"2 = ... =

517 la = 4* = 0, and so v would be zero. It is 1mposs1ble Thus we
proved that 4 = 0. Therefore, 4;(0) = 0 for each ¢ = 2,--- ;n — 2.
As a result, either 4;(0) =0 for i = 2,--- ,n —2 or A,-(O) # 0 for
t=2,---,n—2.

Now we assume that v 7é 0. Similarly, consider coefficients of the fol-
lowing monomials y*~iz¢ ykF—i+1i-1 ... k=22 k=1, in fo ¢(z,y)
: Put s; = A,_;(0) for j =1,-

(1] yF it 65 si0t + iy (k —; * 1) yei T 4

k-1 i—1 k £ __
+sl(i_1)~r “+(z‘)7]'°'

L . . E—3 .
[2] y* Ty T s et 4 8:‘—2( ; * 2)720'—2 +ee
k=1 i ki
+sl(i_2)'y a+(i_1)7]—0.

: - -2, 2—if. . i- E—-1\ . LAWY
[1—1] yk 2,2. ok 272 [37 2a2+sl( ) )7 1a+(2)’)’]=0-

[1] y* 1z 8y sy e (?)7‘] = 0.

Note that s; # 0 because v # 0. Considering s;a’,s;_yya‘~!,---,
527" 20?2, 517" "' as a solution of the above [i}-nonhomogeneous equa-
tions, then we get s;a' = (—1)|A|y* = (-1)':Ci7* by Lemma 3.2.

Thus s; = (—%)ikCg = (%An_l(O))ikCg fori=2,---,n—2.
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THEOREM 3.4. Let V = {(z,y) f=2"+Ay22z" 2 + ... +
Ay iz bt Ay qy®™ 2+ yF =0t and W = {(2,9) : g =
2" + y* =0} be germs of analytic subvarieties of a polydisc near the
origin in C? where f is a Weierstrass polynomial and the A; = A;(y)
are nonvanishing holomorphic neary =0 fort = 2,--- ,n—1. Assume
that n < k and ged(n, k) = 1. Ka;+n—i > kforalli =2,--- ,n—1 and
a; < k—2 for somet such that ay+n—t = Min{d;+n—i:2 <i < n-1},
then f % g.

Proof. Assume the contrary. Note by Theorem 2.3 that f = g if and
only if f o ¢ = g for some biholomorphic mapping ¢ : (Uy,0) — (U, 0)
with ¢(V) W where U; and U, are open subsets containing the
origin in C%. Now we may assume that ¢(z,y) = (H(z,y), L(z,y)) as
follows:

H=H(z,y)=cz+PBy+Hy + Hy +---
L=L(z,y)=vz+6y+ L2 +Lz+--
where H,, and L,, are homogeneous polynomials of degree n with H,, =
Hn(z7 y) = an,ozn +an—1,12n_ly +-.- +a0,nyn and L, = Ln(z’ y) =
ba02™ +bp—112"ly+---+ bo,ny". Observe that aé — 8y #0. Then
fod(z,y)=(az+py+ Hy+Hs+---)"
+ As(LY(vz+déy+ Lo+ L3 +---)**(az+ Py + Hz + Hs +...)n2
+ cen
+ AiL)(yz + 8y + Ly + Ly +---)*(az+ By + Ho + Hz +---)**
+ --- ‘
+ Apc1(L)Y(yz+ 6y + Lo+ Ly +---)**(az+ Py + Hp + H; + ---)
+(rz+6y+Ly+Ls+--- ) =2"+¢"
Note that 8 =0, Hp = Hy = --- = Hi_, = 0 and a® = 1 since
n<k<aj+n—itfori=2,---,n—-1L. Hk<a;4n—i<k—24+n-—:¢
for some i, then n > 7 + 2. So we may assume that n > 5. Also,
Opy1 >k—1and ap,_o <k —2. Let
m=Min{e; +n—-7:2<i<n-—1} and
t=Min{l:a1+n—-Il=m, <k—-2,2<1<n-3}
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Then there is a positive integer p such that a; + n ~¢t = k + p.
We claim that Hk—-n+1 = 0, Hk_n+2 = L2 = 0, Hk—n+3 = L3 =
0, - ,Hy_pnyp = L, = 0. We are going to prove it by induction on the
integer p. Since a;+n—1: > k+p > k, in the expansion of monomials of
degree k in f o ¢(z,y), nC1(az)*  Hi_ns1+ (12 + 6y)* = y*. That is,
na™ 12" Y ap—nt1,02" "t aron 2 MY+ 0 p—n1y M) +
(yz + 6y)* = y*. Since n > 5, the coefficients of y*~z,y*~22% and
y*~32% are zero, ¥ must be zero and so Hy—p41 = 0. fay+n—i > k+1
for any ¢, then

0 = ,Ci(e2)" ' Hi—pnt2 + :Ci(6y)* 1L,
= 2C1(a2)" Y (ak-n+2,02""" % + ag—ps1225 "y +---
+ a0 k25 72) + £C1(6y)¥ 1 (b2,02 + by 12y + bo 2y7)
in the expansion of monomials of degree k+1 in fo¢(z,y). Sincen > 5,
Ly = 0 and so Hi_p42 = 0. To prove the above claim by induction
on the integer p, assume that if a; +n — ¢ > k + s for any : and some
positive integer s with 1 < s < p, then Hi_nts41 = Lyy1 = 0 with

s +1 < p. Now it is enough to show that Hx_p4s4+2 = Ls42 = 0 with
s+ 2 <p. Then

0 = nCi(a2)" " Hi—nyot2 + kC1(6y)* ' Loye
= nCi(az)"! (ak—n+a+2,0zk—n+a+2 + Gk—n+s+1,1 ghomtetly 4oL
+ 0 k—nts+20" " TF2) + 1 C1(8Y) T (Bas2,02°F? + boyr,12° Ty
+--+ bo,s+2ys+2)-
Notethat n —1> s+2because k—2+n—-t>a;+n—t> k+s. So
Liy2 = Hy—nyopz =0.

Now consider the nonvanishing monomials of degree a;+n—t = k+p
in the expansion of f o ¢(z,y) as follows :

fod(z,y) =(az+ Hi—nipy1 + Hinapsz + )"
+ Az(L)(Sy + Lp+1 + Lp+2 4 )az

(ez+ Hi—pipt1 + He—pipra + -
NI

. )n—2



292 Chunghyuk Kang

+ Ai(L)(8y + Lpt1 + Lpy2 +--- )™
(az + Hk—n+p+1 + Hk—n+p+2 + .- )n—i
+ ces
+ An-1(L)(8y + Lp41 + Lppo + -+ )*?
(az+ Hy pipp1 + Hingpi2+--°)
+ 8y + Lpp1 + Lpya + -+ )%,

Observe that a; +n—¢ > a;+n—t=k+pfori =2,--- ,n—-1
and a; < k — 2. So y* 2" is one of nonvanishing monomials in the
expansion of f o ¢(z,y). Therefore f % g.

PROPOSITION 3.5. Let V = {(z,y) : h = z" +y* 127 +y* = 0} and
W ={(z,9): g = 2" + y* = 0} where j = 1,--- ,n — 1. Assume that
n < k and ged(n,k) = 1. Then h = g if and only if 2§ > n —1.

Proof. We know by Theorem 2.3 that h =~ ¢ if and only if K(h)
is isomorphic to K(g) as a C-algebra. Compute p = dim K(h) and
v = dim K(g) over the complex field C as vector spaces. Then it is
easy to find that v = nk—n—k+3. Now consider the ideal (h, mA(h))
in 2O generated by h and mA(h) as follows:

h=z"+y* 12 4 oF
zh, = nz" 4 jy*~129,
yhy = (k= 1)y* 727 + ky",
yhs = nyz""" +jy*2 7,
zhy = (k — L)y*~ 22941 4 gyF—15.

Then (h,mA(h)) = (2*,y* 129, y*,y2"1, zhy). Now it is enough to
consider two cases:

Case (i): 2 <n—1.
Then zhy = (k — 1)y*~227+ 4 ky*~'2 =0 mod(h, mA(R)).
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So

yzhy = (k= 1)y 127 = kyFz = 0.
22hy = (k- yF229%2 4 kyk—122 = 0.
2Bhy = (k- 1)y* 20 L k18 = 0.

27y = (k= 1)yF 2P 4kl = 0.
2hy = (k= 1)yF 22 = ky*~127 = 0.

Using the above equations, we get p = nk—k—2n+2j+4. But p = v
would imply 25 = n — 1, which is impossible.
Case (ii): n—1<2j (put n—1=j+1with0<1<j).
Then zh, = (k — 1)y*~227%1 4+ ky*~12 = 0 mod(h, mA(h)).
So

yzhy = (k= 1)y* 122 = kyk2 = 0.
22hy = (k= )y* 22542 4 ky* 122 = 0.
23hy = (k= 1)y* 22913 y ky* 122 = 0.

Zj+l-1hy = (k _ l)yk—222j+l-l + kyk—lzl—l =0.

2 b, = (k- 1)y* 2.2 = gy*-1l = 0.

Using the above equations, we get p = nk — n — k + 3. Therefore,
it is enough to show that if 2j > n — 1, then h € mA(h) by The-
orem 2.3. From the ideal mA(h) we have z" = ay*~'2/ = byF =
cy* 2227 (mod(mA(h))) for suitable nonzero constants a,b and c. If
2j > n, then 2" = cy*22%/(mod(mA(h))) implies that z™ belongs to
mA(h), and so b € mA(h). If 2j = n — 1, then 2" = ay* !z =
by* = cy* 22771 = dy** 32971 (mod(mA(h))) for some nonzero con-
stant d. Thus by* = dy**~327-1 and k > 3 imply y* € mA(h) and so
h € mA(h). Thus if 25 > n — 1, then we prove that h = g.

THEOREM 3.6. Let V = {(z,y) : f = 2" + Ay™2" 2 +--- +
Agy* iz 4+ Apay® 2ty =0 and W = {(2,y) 1 g =
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2™ + y* = 0} be germs of analytic subvarieties of a polydisc near the
origin in C? where f is a Weierstrass polynomial and the A; = A;(y)
are nonvanishing holomorphic near y = 0 fori = 2,--- ,n — 1. Assume
that n < k and ged(n, k) =1. Fa; > k—1fori=2,---,n—1 and
aj = k—1 for some j, then f = g if and only if 2(n —1) > n —1 where
I=Max{j:aj=k-1,2<j<n-1}.

Proof. f a; > k for ¢ = 2,---,n — 1, then there is nothing to
prove. Suppose that there is some j such that aj = k — 1. Let
l=Max{j :a; = k—1,2 < j < n-—1}. Then we rewrite f as
= 2"+ by, 2)y* 12" + bi(y, 2)y* = 0 where b (y, z) and bi(y, 2)
are nonvanishing holomorphic functions at the origin in C2. By a non-
singular linear change of coordinates, f is analytically equivalent to
fi = 2" +y*~ 12" 4 i (y, 2)y* = 0 near the origin where cx(y,z) is a
nonvanishing holomorphic function at the origin in C2. So it is enough
to show that f; ~ ¢g. Using the similar techniques as we have used in
the proof of Proposition 3.5, we can prove that fi ~ ¢ if and only if
2n—0)>n—1wherel=Max{j:a;=k—-1,2<j<n-—1}

THEOREM 3.7. Let V = {(2,y) : f = 2™ + Ay®?z" 2 ... +
Agy®2" ™ oo Apqy®™z+y* = 0} and W = {(z,y) : g =
2™ + y* = 0} be germs of analytic subvarieties of a polydisc near the
origin in C? where f is a Weierstrass polynomial and the A; = A;(y)
are nonvanishing holomorphic neary =0 for: = 2,--- ,n —1. Assume
that n < k and ged(n, k) =1. foa;+n—i>kfori =2,--- ,n—1
and as+n—t>Min{a; +n—i:2<i<n-—1} wheneveroy < k—2,
then either f ~ g or f # g.

Proof. 1t is enough to construct a different kind of two examples
satisfying the conclusion of the theorem as follows :
(1) Let f = 21! +55C5y%22° + 25Cay?32% + 25Cry™ 2> + 4.

Then

f = u(z,y)z" + (y +2°)®

~ z'! + y?° near the origin where u(z,y) is a unit in 20.

(2) Let f = 2 + 4227 + y®52 + ¢S
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Then

f=211 +y2327+y25(z+1)
Rﬁzn +y2327+y25

# 2'! + y?® near the origin by Theorem 3.4.

Finally we can apply the previous results to some examples which
are not analytically equivalent to weighted homogeneous polynomials
as follows:

Let V = {(2,4) : f = (2 + y*)° + y27(z% + y*) + 4°z"* = 0} and
W = {(z,9) : g = (2 + y*)° + y°2!! = 0}. We claim that f % g.
Since blowing-up process preserves analytical equivalence, it is enough
to prove that the proper transforms of V and W are not analytically
equivalent after a finite number of blowing-ups. Note that after four
times of blowing-ups, the proper transform of V' is analytically equiv-
alent to {(u,v) : fy = u® + v!% + v'! = 0} and the proper transform
of W is analytically equivalent to {(u,v) : g4 = u® + v!! = 0}. By
Proposition 3.5, fs % g4. Thus f # g.
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