ON THE TYPE OF PLANE CURVE SINGULARITIES ANALYTICALLY EQUIVALENT TO THE EQUATION $z^{n}+y^{k}=0$ WITH $\operatorname{gcd}(n, k)=1$

Chunghyuk Kang

1. Introduction

Let $V=\{(z, y): f(z, y)=0\}$ and $W=\left\{(z, y): g=z^{n}+y^{k}=\right.$ $0\}$ with $\operatorname{gcd}(n, k)=1$ be germs of analytic subvarities of a polydisc near the origin where f has an isolated singular point at the origin. Assume that V and W are topologically equivalent near the origin. Then by a nonsingular linear change of coordinates f can be written as $z^{n}+A_{2} y^{\alpha_{2}} z^{n-2}+\cdots+A_{i} y^{\alpha_{i}} z^{n-i}+\cdots+A_{n-1} y^{\alpha_{n-1}} z+y^{k}$ where the $A_{i}=A_{i}(y)$ are nonvanishing holomorphic near the origin and $\frac{\alpha_{i}}{i}>\frac{k}{n}$ for $i=2, \cdots, n-1$ by [2]. Assume that $n<k$ and $\operatorname{gcd}(n, k)=1$. We are going to prove in each case whether V and W are analytically equivalent near the origin or not as follows: If V and W are analytically equivalent, then denote this relation by $V \approx W$ or $f \approx g$. If not, we write $V \not \approx W$ or $f \not \approx g$.
(1) If $\alpha_{i}+n-i<k$ and $A_{i}(0) \neq 0$ for some i with $2 \leq i \leq n-1$, then $f \not \approx g$.
(2) If $\alpha_{i}+n-i=k$ for some i with $2 \leq i \leq n-1$ and $V \approx W$, then either $A_{i}(0)=0$ for $i=2, \cdots, n-1$ or $A_{i}(0) \neq 0$ for $i=2, \cdots, n-1$. If $A_{n-1}(0) \neq 0$, then $A_{n-i}(0)={ }_{k} C_{i}\left(\frac{1}{k} A_{n-1}(0)\right)^{i}$ for $i=2, \cdots, n-2$.
(3) Suppose that $\alpha_{i}+n-i>k$ for $i=2, \cdots, n-1$ and that there is some t with $2 \leq t \leq n-1$ such that $\alpha_{t}+n-t=\operatorname{Min}\left\{\alpha_{i}+n-i:\right.$ $2 \leq i \leq n-1\}$ and $\alpha_{t} \leq k-2$. Then $f \not \approx g$.
(4) If $\alpha_{i} \geq k-1$ for $i=2, \cdots, n-1$ (which implies $\alpha_{i}+n-i \geq k$) and $\alpha_{j}=k-1$ for some j with $2 \leq j \leq n-1$, then $f \approx g$ if and only if $2(n-l) \geq n-1$ where $l=\operatorname{Max}\left\{j: \alpha_{j}=k-1,2 \leq j \leq n-1\right\}$.

Received August 29, 1991. Revised January 10, 1992.
Supported in part by the Basic Science Research Institute Program, Ministry of Education, 1991, project No.BSRI-90-106.
(5) Assume that $\alpha_{i}+n-i>k$ for $i=2, \cdots, n-1$ and $\alpha_{t}+n-t>$ $\operatorname{Min}\left\{\alpha_{i}+n-i: 2 \leq i \leq n-1\right\}$ whenever $\alpha_{t} \leq k-2$. Then either $f \approx g$ or $f \not \approx g$.

Moreover, it is interesting to apply this result to some examples which are not analytically equivalent to any weighted homogeneous polynomial by using the blowing-up process.

2. Known Preliminaries

Definition 2.1. Let $V=\left\{z \in \mathbf{C}^{n}: f(z)=0\right\}$ and $W=\left\{z \in \mathbf{C}^{n}\right.$: $g(z)=0\}$ be germs of complex anaytic hypersurfaces with isolated singular points at the origin. V and W are said to be topologically equivalent near the origin if there is a germ at the origin of homeomorphisms $\phi:\left(U_{1}, 0\right) \rightarrow\left(U_{2}, 0\right)$ such that $\phi(V)=W$ and $\phi(0)=0$ where U_{1} and U_{2} are open subset containing the origin in \mathbf{C}^{2}. Also, V and W are said to be analytically equivalent near the origin if there is a germ at the origin of biholomorphisms $\psi:\left(U_{1}, 0\right) \rightarrow\left(U_{2}, 0\right)$ such that $\psi(V)=W$ and $\psi(0)=0$ where U_{1} and U_{2} are open subset containing the origin in \mathbf{C}^{2}.

Definition 2.2. The polynomial $f\left(z_{1}, \cdots, z_{n}\right)$ is weighted homogeneous of type $\left(\frac{1}{a_{1}}, \cdots, \frac{1}{a_{n}}\right)$ if there is some positive rational numbers a_{1}, \cdots, a_{n} such that $f\left(t^{a_{1}} z_{1}, \cdots, t^{a_{n}} z_{n}\right)=t f\left(z_{1}, \cdots, z_{n}\right)$.

Let ${ }_{n} \mathcal{O}$ denote the ring of germs of holomorphic functions at the origin in \mathbf{C}^{n}.

Theorem 2.3(Mather-Yau [3] and Shoshitaĭshvili [4]). Suppose that $f\left(z_{1}, \cdots, z_{n}\right)$ has the isolated singular point at the origin. Then the following statements are equivalent.
(i) f is analytically equivalent to a weighted homogeneous polynomial.
(ii) $f \in m \Delta(f)$ where $m \Delta(f)$ is the ideal in ${ }_{n} \mathcal{O}$ generated by $z_{i} \frac{\partial f}{\partial z_{j}}$ for all $i, j=1, \cdots, n$.
(iii) There is a germ at the origin of biholomorphisms $\psi:\left(U_{1}, 0\right) \rightarrow$ $\left(U_{2}, 0\right)$ such that $f \circ \psi=g$ for a weighted homogeneous polynomial g where U_{1} and U_{2} are open neighborhoods of the origin in \mathbf{C}^{n}.
(iv) $K(f)$ is isomorphic to $K(g)$ for a weighted homogeneous polynomial g as a C-algebra where $K(f)={ }_{n} \mathcal{O} /(f, m \Delta(f)), K(g)$ $={ }_{n} \mathcal{O} /(g, m \Delta(g))$ and $(f, m \Delta(f))$ is the ideal in ${ }_{n} \mathcal{O}$ generated by f and $m \Delta(f)$.
Proof. See [3] and [4].
3. On the type of plane curve singularities analytically equivalent to the equation $z^{n}+y^{k}=0$ with $\operatorname{gcd}(n, k)=1$

Theorem 3.1. Let $V=\left\{(z, y): f=z^{n}+A_{2} y^{\alpha_{2}} z^{n-2}+\cdots+\right.$ $\left.A_{i} y^{\alpha_{i}} z^{n-i}+\cdots+A_{n-1} y^{\alpha_{n-1}} z+y^{k}=0\right\}$ and $W=\{(z, y): g=$ $\left.z^{n}+y^{k}=0\right\}$ be germs of analytic subvarieties of a polydisc near the origin in \mathbf{C}^{2} where f and g are Weierstrass polynomials, the $A_{i}=A_{i}(y)$ are nonvanishing holomorphic near $y=0$ for $i=2, \cdots, n-1$. Assume that $n<k$ and $g c d(n, k)=1$. If $\alpha_{i}+n-i<k$ and $A_{i}(0) \neq 0$ for some i with $2 \leq i \leq n-1$, then $f \not \approx g$.

Proof. Note that since f is irreducible in ${ }_{2} \mathcal{O}, \alpha_{i}+n-i>n$. Note by Theorem 2.3 that $f \approx g$ if and only if $f \circ \phi=g$ for some biholomorphic mapping $\phi:\left(U_{1}, 0\right) \rightarrow\left(U_{2}, 0\right)$ with $\phi(V)=W$ where U_{1} and U_{2} are open subsets containing the origin in \mathbf{C}^{2}. Then we may assume that $\phi(z, y)=(H(z, y), L(z, y))$ as follows :

$$
\begin{aligned}
H & =H(z, y)=\alpha z+\beta y+H_{2}+H_{3}+\cdots \quad \text { and } \\
L & =L(z, y)=\gamma z+\delta y+L_{2}+L_{3}+\cdots
\end{aligned}
$$

where H_{n} and L_{n} are homogeneous polynomials of degree n with $H_{n}=$ $H_{n}(z, y)=a_{n, 0} z^{n}+a_{n-1,1} z^{n-1} y+\cdots+a_{0, n} y^{n}$ and $L_{n}=L_{n}(z, y)=$ $b_{n, 0} z^{n}+b_{n-1,1} z^{n-1} y+\cdots+b_{0, n} y^{n}$.

Observe that $\alpha \delta-\beta \gamma \neq 0$. We suppose that

$$
\begin{aligned}
& \quad f \circ \phi(z, y)=\left(\alpha z+\beta y+H_{2}+H_{3}+\cdots\right)^{n} \\
& +A_{2}(L)\left(\gamma z+\delta y+L_{2}+L_{3}+\cdots\right)^{\alpha_{2}}\left(\alpha z+\beta y+H_{2}+H_{3}+\cdots\right)^{n-2} \\
& +\cdots \\
& + \\
& +A_{i}(L)\left(\gamma z+\delta y+L_{2}+L_{3}+\cdots\right)^{\alpha_{i}}\left(\alpha z+\beta y+H_{2}+H_{3}+\cdots\right)^{n-i} \\
& +\cdots \\
& + \\
& +A_{n-1}(L)\left(\gamma z+\delta y+L_{2}+L_{3}+\cdots\right)^{\alpha_{n-1}}\left(\alpha z+\beta y+H_{2}+H_{3}+\cdots\right) \\
& +A_{n}(L)\left(\gamma z+\delta y+L_{2}+L_{3}+\cdots\right)^{k}=z^{n}+y^{k} .
\end{aligned}
$$

Now it is enough to get a contradiction. Let $I=\left\{j: \alpha_{j}+n-j=\right.$ $\left.\operatorname{Min}\left\{\alpha_{i}+n-i: 2 \leq i \leq n-1\right\}\right\}$ and $m=\operatorname{Max} I$. Then $\beta=0$ because $n<k$ and $n<\alpha_{i}+n-i$ for any i. Note that $\alpha \delta-\beta \gamma=\alpha \delta \neq 0$. But $A_{m}(0) \cdot(\delta y)^{\alpha_{m}} \cdot(\alpha z)^{n-m}=A_{m}(0) \delta^{\alpha_{m}} \alpha^{n-m} y^{\alpha_{m}} z^{n-m}$ is the unique one containing the monomial $y^{\alpha_{m}} z^{n-m}$ in the expansion of $f \circ \phi(z, y)$ with $\alpha_{m}+n-m<k$. This would imply that $\alpha \delta=0$. It is impossible.

Before proving Theorem 3.3, we need the following Lemma.
Lemma 3.2. Recall the notation ${ }_{n} C_{k}=\binom{n}{k}=n(n-1) \cdots(n-k+$ 1)/k!. Then

$$
\begin{aligned}
& D=\left|\begin{array}{llll}
{ }_{n} C_{1} & { }_{n+1} C_{1} & \cdots & { }_{n+k-1} C_{1} \\
{ }_{n} C_{2} & { }_{n+1} C_{2} & \cdots & { }_{n+k-1} C_{2} \\
\vdots & \vdots & & \vdots \\
{ }_{n} C_{k} & { }_{n+1} C_{k} & \cdots & { }_{n+k-1} C_{k}
\end{array}\right| \\
& =\left|\begin{array}{lllll}
{ }_{n} C_{1} & { }_{n} C_{0} & 0 & \cdots & 0 \\
{ }_{n} C_{2} & { }_{n} C_{1} & { }_{n} C_{0} & \cdots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
{ }_{n} C_{k-1} & { }_{n} C_{k-2} & { }_{n} C_{k-3} & \cdots & { }_{n} C_{0} \\
{ }_{n} C_{k} & { }_{n} C_{k-1} & { }_{n} C_{k-2} & \cdots & { }_{n} C_{1}
\end{array}\right| \\
& =(-1)^{k(k-1) / 2}\left|\begin{array}{lllll}
0 & \cdots & 0 & & n+k-2 C_{0} \\
0 & \cdots & n+k-1 C_{1} \\
0 & & \vdots & & { }_{n+3} C_{0} \\
n+k-2 & C_{1} & n+k-1 C_{2} \\
\vdots C_{0} & \cdots & { }_{n+k-3} C_{k-3} & n+k-2 C_{k-2} & { }_{n+k-1} C_{k-1} \\
{ }_{n} C_{1} & \cdots & n+k-3 C_{k-2} & n+k-2 C_{k-1} & n+k-1 C_{k}
\end{array}\right| \\
& ={ }_{n+k-1} C_{k} .
\end{aligned}
$$

Proof. To compute D, subtracting ($k-1$)-column from k-column, we have

$$
D=\left|\begin{array}{lllll}
{ }_{n} C_{1} & { }_{n+1} C_{1} & \cdots & { }_{n+k-2} C_{1} & { }_{n+k-2} C_{0} \\
{ }_{n} C_{2} & { }_{n+1} C_{2} & \cdots & { }_{n+k-2} C_{2} & { }_{n+k-2} C_{1} \\
\vdots & \vdots & & \vdots & \vdots \\
{ }_{n} C_{k} & { }_{n+1} C_{k} & \cdots & { }_{n+k-2} C_{k-1} & { }_{n+k-2} C_{k-1}
\end{array}\right|
$$

Applying the same technique to ($k-1$)-column, $(k-2)$-column, \cdots, the second column in order, we get

$$
D=\left|\begin{array}{lllll}
n C_{1} & { }_{n} C_{0} & \cdots & { }_{n+k-3} C_{0} & { }^{n+k-2} C_{0} \\
{ }_{n} C_{2} & { }_{n} C_{1} & \cdots & { }_{n+k-3} C_{1} & { }_{n+k-2} C_{1} \\
\vdots & \vdots & & \vdots & \vdots \\
{ }_{n} C_{k} & { }_{n} C_{k-1} & \cdots & { }_{n+k-3} C_{k-1} & { }_{n+k-2} C_{k-1}
\end{array}\right|
$$

Using the same technique, by induction we get

$$
D=\left|\begin{array}{lllll}
{ }_{n} C_{1} & { }_{n} C_{0} & \cdots & 0 & 0 \\
{ }_{n} C_{2} & { }_{n} C_{1} & \cdots & 0 & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
{ }_{n} C_{k-1} & { }_{n} C_{k-2} & \cdots & { }_{n} C_{1} & { }_{n} C_{0} \\
{ }_{n} C_{k} & { }_{n} C_{k-1} & \cdots & { }_{n} C_{2} & { }_{n} C_{1}
\end{array}\right|
$$

This is the first form which we want.
With respect to the k-th column only, D is linear and so, D can be represented in the following:

$$
\begin{aligned}
D & =\left|\begin{array}{lllll}
{ }_{n} C_{1} & { }_{n} C_{0} & \cdots & 0 & 0 \\
{ }_{n} C_{2} & { }_{n} C_{1} & \cdots & 0 & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
{ }_{n} C_{k-1} & { }_{n} C_{k-2} & \cdots & { }_{n} C_{1} & { }_{n-1} C_{0} \\
{ }_{n} C_{k} & { }_{n} C_{k-1} & \cdots & { }_{n} C_{2} & { }_{n-1} C_{1}
\end{array}\right| \\
& +\left|\begin{array}{llll}
n C_{1} & { }_{n} C_{0} & \cdots & 0 \\
{ }_{n} C_{2} & { }_{n} C_{1} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
{ }_{n} C_{k-2} & { }_{n} C_{k-3} & \cdots & { }_{n} C_{0} \\
{ }_{n} C_{k-1} & { }_{n} C_{k-2} & \cdots & { }_{n} C_{1}
\end{array}\right|
\end{aligned}
$$

$=D_{1}+D_{2}$ where D_{1} is the $k \times k$ matrix and D_{2} is the $(k-1) \times(k-1)$ matrix. Applying the same technique to D_{1} as in the beginning of the proof, then we have

$$
D_{1}=\left|\begin{array}{lllll}
n-1 & D_{1} & { }_{n-1} C_{0} & \cdots & 0 \\
n_{n-1} C_{2} & n-1 C_{1} & \cdots & 0 & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
n_{n-1} C_{k-1} & n-1 C_{k-2} & \cdots & { }_{n-1} C_{1} & { }_{n-1} C_{0} \\
n-1 C_{k} & { }_{n-1} C_{k-1} & \cdots & { }_{n-1} C_{2} & n-1
\end{array}\right|
$$

Next, applying the same method to D_{1} and D_{2} reversely as in the beginning of the proof, then we get

$$
\begin{aligned}
D=D_{1}+D_{2} & =\left|\begin{array}{llll}
n-1 C_{1} & { }_{n} C_{1} & \cdots & { }_{n+k-2} C_{1} \\
n-1 C_{2} & { }_{n} C_{2} & \cdots & { }_{n+k-2} C_{2} \\
\vdots & \vdots & & \vdots \\
n-1 C_{k} & { }_{n} C_{k} & \cdots & { }_{n+k-2} C_{k}
\end{array}\right| \\
& +\left|\begin{array}{llll}
{ }^{n} C_{1} & { }_{n+1} C_{1} & \cdots & { }_{n+k-2} C_{1} \\
{ }_{n} C_{2} & { }_{n+1} C_{2} & \cdots & { }_{n+k-2} C_{2} \\
\vdots & \vdots & & \vdots \\
{ }_{n} C_{k-1} & { }_{n+1} C_{k-1} & \cdots & { }_{n+k-2} C_{k-1}
\end{array}\right|
\end{aligned}
$$

By induction on $n+k$, then $D_{1}={ }_{n+k-2} C_{k}$ and $D_{2}={ }_{n+k-2} C_{k-1}$. Therefore $D={ }_{n+k-1} C_{k}$. Now to express D in another way, subtracting the second column from the first column, the third column from the second column, \cdots, the k-column from ($k-1$)-column in D in order, then we have

$$
D=(-1)^{k}\left|\begin{array}{llll}
{ }^{n} C_{0} & { }^{n+1} C_{0} & \cdots & { }_{n+k-1} C_{1} \\
{ }_{n} C_{1} & { }_{n+1} C_{1} & \cdots & { }_{n+k-1} C_{2} \\
\vdots & \vdots & & \vdots \\
{ }_{n} C_{k-1} & { }_{n+1} C_{k-1} & \cdots & { }_{n+k-1} C_{k}
\end{array}\right|
$$

Using the same process by induction on k, we have the desired result.
Theorem 3.3. Let $V=\left\{(z, y): f=z^{n}+A_{2} y^{k-n+2} z^{n-2}+\cdots+\right.$ $\left.A_{i} y^{k-n+i} z^{n-i}+\cdots+A_{n-1} y^{k-1} z+y^{k}=0\right\}$ and $W=\{(z, y): g=$ $\left.z^{n}+y^{k}=0\right\}$ be germs of analytic subvarieties of a polydisc near the origin in \mathbf{C}^{2} where f and g are Weierstrass polynomials and the $A_{i}=A_{i}(y)$ are holomorphic near $y=0$ for $i=2, \cdots, n-1$. Assume that $n<k$ and $\operatorname{gcd}(n, k)=1$. If $f \approx g$, then either $A_{i}(0)=0$ for all $i=2, \cdots, n-1$ or $A_{i}(0) \neq 0$ for all $i=2, \cdots, n-1$. If $A_{n-1}(0) \neq 0$, then $A_{n-i}(0)={ }_{k} C_{i}\left(\frac{1}{k} A_{n-1}(0)\right)^{i}$ for $i=2, \cdots, n-2$.

Proof. Note by Theorem 2.3 that $f \approx g$ if and only if $f \circ \phi=g$ for some biholomorphic mapping $\phi:\left(U_{1}, 0\right) \rightarrow\left(U_{2}, 0\right)$ with $\phi(V)=W$ where U_{1} and U_{2} are open subsets containing the origin in \mathbf{C}^{2}. Now we may assume that $\phi(z, y)=(H(z, y), L(z, y))$ where $H=H(z, y)=$
$\alpha z+\beta y+H_{2}+H_{3}+\cdots$ and $L=L(z, y)=\gamma z+\delta y+L_{2}+L_{3}+\cdots$, and H_{n} and L_{n} are homogeneous polynomials of degree n with $H_{n}=$ $H_{n}(z, y)=a_{n, 0} z^{n}+a_{n-1,0} z^{n-1} y+\cdots+a_{0, n} y^{n}$ and $L_{n}=L_{n}(z, y)=$ $b_{n, 0} z^{n}+b_{n-1,0} z^{n-1} y+\cdots+b_{0, n} y^{n}$. Then

$$
\begin{aligned}
& f \circ \phi(z, y)=\left(\alpha z+\beta y+H_{2}+H_{3}+\cdots\right)^{n} \\
+ & A_{2}(L)\left(\gamma z+\delta y+L_{2}+L_{3}+\cdots\right)^{k-n+2}\left(\alpha z+\beta y+H_{2}+H_{3}+\cdots\right)^{n-2} \\
+ & \cdots \\
+ & A_{i}(L)\left(\gamma z+\delta y+L_{2}+L_{3}+\cdots\right)^{k-n+i}\left(\alpha z+\beta y+H_{2}+H_{3}+\cdots\right)^{n-i} \\
+ & \\
+ & A_{n-1}(L)\left(\gamma z+\delta y+L_{2}+L_{3}+\cdots\right)^{k-1}\left(\alpha z+\beta y+H_{2}+H_{3}+\cdots\right) \\
+ & \left(\gamma z+\delta y+L_{2}+L_{3}+\cdots\right)^{k}=z^{n}+y^{k}
\end{aligned}
$$

Observe that $\beta=0, H_{2}=H_{3}=\cdots=H_{k-n}=0, \alpha^{n}=1$ and $\delta^{k}=1$ since $n<k$. If $\gamma=0$, then it is easy to show that $A_{i}(0)=0$ for all $i=2, \cdots, n-1$ because $\alpha \delta-\beta \gamma=\alpha \delta \neq 0$. Suppose that $A_{n-i}(0)=0$ for some i with $1 \leq i \leq n-2$. Then consider coefficients of the following monomials $y^{k-i} z^{\bar{i}}, y^{\overline{k-i+1}} z^{i-1}, \cdots, y^{k-2} z^{2}, y^{k-1} z$ in $f \circ \phi(z, y)$: For brevity, put $s_{j}=A_{n-j}(0)$ for $j=1, \cdots, i$.

$$
\begin{align*}
& y^{k-i} z^{i}: s_{i} \delta^{k-i} \alpha^{i}+s_{i-1}\binom{k-i+1}{1} \gamma \delta^{k-i} \alpha^{i-1}+\cdots \tag{1}\\
& +s_{1}\binom{k-1}{i-1} \gamma^{i-1} \delta^{k-i} \alpha+\binom{k}{i} \gamma^{i} \delta^{k-i} \\
& =\delta^{k-i}\left[s_{i-1}\binom{k-i+1}{1} \gamma \alpha^{i-1}+\cdots+s_{1}\binom{k-1}{i-1} \gamma^{i-1} \alpha\right. \\
& \left.+\binom{k}{i} \gamma^{i}\right]=0
\end{align*}
$$

[2]

$$
\begin{aligned}
& y^{k-i+1} z^{i-1}: \delta^{k-i+1}\left[s_{i-1} \alpha^{i-1}+s_{i-2}\binom{k-i+2}{1} \gamma \alpha^{i-2}+\cdots\right. \\
& \left.+s_{1}\binom{k-1}{i-2} \gamma^{i-2} \alpha+\binom{k}{i-1} \gamma^{i-1}\right] \\
& =\delta^{k-i+1} \gamma^{-1}\left[s_{i-1} \gamma \alpha^{i-1}+s_{i-2}\binom{k-i+2}{1} \gamma^{2} \alpha^{i-2}+\cdots\right. \\
& \left.+s_{1}\binom{k-1}{i-2} \gamma^{i-1} \alpha+\binom{k}{i-1} \gamma^{i}\right]=0 .
\end{aligned}
$$

$$
\begin{aligned}
& {[i-1] \quad y^{k-2} z^{2}: \delta^{k-2}\left[s_{2} \alpha^{2}+s_{1}\binom{k-1}{1} \gamma \alpha+\binom{k}{2} \gamma^{2}\right]} \\
& =\delta^{k-2} \gamma^{2-i}\left[s_{2} \gamma^{i-2} \alpha^{2}+s_{1}\binom{k-1}{1} \gamma^{i-1} \alpha+\binom{k}{2} \gamma^{i}\right]=0 . \\
& {[i] \quad y^{k-1} z: \delta^{k-1}\left[s_{1} \alpha+\binom{k}{1} \gamma\right]=\delta^{k-1} \gamma^{1-i}\left[s_{1} \gamma^{i-1} \alpha+\binom{k}{1} \gamma^{i}\right]=0 .}
\end{aligned}
$$

We are going to prove that $\gamma=0$. Suppose not.
Then considering $s_{i-1} \gamma \alpha^{i-1}, s_{i-2} \gamma^{2} \alpha^{i-2}, \cdots, s_{2} \gamma^{i-2} \alpha^{2}, s_{1} \gamma^{i-1} \alpha, \gamma^{i}$ as a solution of the above [i]-homogeneous equations, we get an $i \times i$ square matrix Δ consisting of coefficients of $s_{i-1} \gamma \alpha^{i-1}, s_{i-2} \gamma^{2} \alpha^{i-2}, \cdots$, $s_{2} \gamma^{i-2} \alpha^{2}, s_{1} \gamma^{i-1} \alpha, \gamma^{i}$ in these equations as follows:

$$
\Delta=\left(\begin{array}{cccccc}
\binom{k-i+1}{1} & \binom{k-i+2}{2} & \cdots & \binom{k-2}{i-2} & \binom{k-1}{i-1} & \binom{k}{i} \\
1 & \left(\begin{array}{c}
k-i+2
\end{array}\right) & \cdots & \binom{k-2}{i-3} \\
0 & 1 & & \binom{k-1}{i-2} & \left(\begin{array}{c}
k-2 \\
i-1 \\
i-1
\end{array}\right) \\
\binom{k-1}{i-3} & \binom{k}{k} \\
\vdots & \vdots & & \vdots & \vdots & \vdots \\
0 & 0 & & 1 & \binom{k-1}{1} & \left(\begin{array}{c}
k \\
2
\end{array}\right. \\
0 & 0 & & 0 & 1 & \binom{k}{1}
\end{array}\right)
$$

To compute the determinant $|\Delta|$, subtracting ($i-1$)-column from i column and ($i-2$)-column from ($i-1$)-column and so on, by induction
on i, we get

$$
\begin{aligned}
|\Delta| & =\left(\begin{array}{ccccccc}
\binom{k-i+1}{1} & \binom{k-i+1}{2} & \binom{k-i+1}{3} & \cdots & \binom{k-i+1}{i-2} & \binom{k-i+1}{i-1} & \left(\begin{array}{c}
k-i+1 \\
i \\
i
\end{array}\right. \\
1 & \binom{k-i+1}{1} & \binom{k-i+1}{2} & \cdots & \binom{k-i+1}{i-3} & \binom{k-i+1}{i-2} & \binom{k-i+1}{i-1} \\
0 & 1 & \binom{k-1+1}{i+1} & \cdots & \binom{k-i+1}{i-4} & \binom{k-i+1}{i-3} & \binom{k-i+1}{i-2} \\
\vdots & \vdots & \vdots & & \vdots & \vdots & \\
0 & 0 & 0 & & 1 & \binom{k-i+1}{1} & \left(\begin{array}{c}
k-i+1 \\
2
\end{array}\right. \\
0 & 0 & 0 & 0 & 1 & \binom{k-i+1}{1}
\end{array}\right) \\
& ={ }_{k-i+1+i-1} C_{i}={ }_{k} C_{i} \neq 0
\end{aligned}
$$

by Lemma 3.2.
Since $|\Delta| \neq 0$, we would have $s_{i-1} \gamma \alpha^{i-1}=s_{i-2} \gamma^{2} \alpha^{i-2}=\cdots=$ $s_{1} \gamma^{i-1} \alpha=\gamma^{i}=0$, and so γ would be zero. It is impossible. Thus we proved that $\gamma=0$. Therefore, $A_{i}(0)=0$ for each $i=2, \cdots, n-2$. As a result, either $A_{i}(0)=0$ for $i=2, \cdots, n-2$ or $A_{i}(0) \neq 0$ for $i=2, \cdots, n-2$.

Now we assume that $\gamma \neq 0$. Similarly, consider coefficients of the following monomials $y^{k-i} z^{i}, y^{k-i+1} z^{i-1}, \cdots, y^{k-2} z^{2}, y^{k-1} z$ in $f \circ \phi(z, y)$: Put $s_{j}=A_{n-j}(0)$ for $j=1, \cdots, i$.
[1]

$$
\begin{aligned}
& y^{k-i} z^{i}: \delta^{k-i}\left[s_{i} \alpha^{i}+s_{i-1}\binom{k-i+1}{1} \gamma \alpha^{i-1}+\cdots\right. \\
& \left.+s_{1}\binom{k-1}{i-1} \gamma^{i-1} \alpha+\binom{k}{i} \gamma^{i}\right]=0
\end{aligned}
$$

[2] $\quad y^{k-i+1} z^{i-1}: \delta^{k-i+1} \gamma^{-1}\left[s_{i-1} \gamma \alpha^{i-1}+s_{i-2}\binom{k-i+2}{1} \gamma^{2} \alpha^{i-2}+\cdots\right.$ $\left.+s_{1}\binom{k-1}{i-2} \gamma^{i-1} \alpha+\binom{k}{i-1} \gamma^{i}\right]=0$.
$[i-1] \quad y^{k-2} z^{2}: \delta^{k-2} \gamma^{2-i}\left[s_{2} \gamma^{i-2} \alpha^{2}+s_{1}\binom{k-1}{1} \gamma^{i-1} \alpha+\binom{k}{2} \gamma^{i}\right]=0$.
[i]

$$
y^{k-1} z: \delta^{k-1} \gamma^{1-i}\left[s_{1} \gamma^{i-1} \alpha+\binom{k}{1} \gamma^{i}\right]=0
$$

Note that $s_{i} \neq 0$ because $\gamma \neq 0$. Considering $s_{i} \alpha^{i}, s_{i-1} \gamma \alpha^{i-1}, \cdots$, $s_{2} \gamma^{i-2} \alpha^{2}, s_{1} \gamma^{i-1} \alpha$ as a solution of the above [i]-nonhomogeneous equations, then we get $s_{i} \alpha^{i}=(-1)^{i}|\Delta| \gamma^{i}=(-1)^{i}{ }_{k} C_{i} \gamma^{i}$ by Lemma 3.2. Thus $s_{i}=\left(-\frac{\gamma}{\alpha}\right)^{i}{ }_{k} C_{i}=\left(\frac{1}{k} A_{n-1}(0)\right)^{i}{ }_{k} C_{i}$ for $i=2, \cdots, n-2$.

Theorem 3.4. Let $V=\left\{(z, y): f=z^{n}+A_{2} y^{\alpha_{2}} z^{n-2}+\cdots+\right.$ $\left.A_{i} y^{\alpha_{i}} z^{n-i}+\cdots+A_{n-1} y^{\alpha_{n-1}} z+y^{k}=0\right\}$ and $W=\{(z, y): g=$ $\left.z^{n}+y^{k}=0\right\}$ be germs of analytic subvarieties of a polydisc near the origin in \mathbf{C}^{2} where f is a Weierstrass polynomial and the $A_{i}=A_{i}(y)$ are nonvanishing holomorphic near $y=0$ for $i=2, \cdots, n-1$. Assume that $n<k$ and $g c d(n, k)=1$. If $\alpha_{i}+n-i>k$ for all $i=2, \cdots, n-1$ and $\alpha_{t} \leq k-2$ for some t such that $\alpha_{t}+n-t=\operatorname{Min}\left\{\alpha_{i}+n-i: 2 \leq i \leq n-1\right\}$, then $f \not \approx g$.

Proof. Assume the contrary. Note by Theorem 2.3 that $f \approx g$ if and only if $f \circ \phi=g$ for some biholomorphic mapping $\phi:\left(U_{1}, 0\right) \rightarrow\left(U_{2}, 0\right)$ with $\phi(V)=W$ where U_{1} and U_{2} are open subsets containing the origin in \mathbf{C}^{2}. Now we may assume that $\phi(z, y)=(H(z, y), L(z, y))$ as follows:

$$
\begin{aligned}
H & =H(z, y)=\alpha z+\beta y+H_{2}+H_{3}+\cdots \\
L & =L(z, y)=\gamma z+\delta y+L_{2}+L_{3}+\cdots
\end{aligned}
$$

where H_{n} and L_{n} are homogeneous polynomials of degree n with $H_{n}=$ $H_{n}(z, y)=a_{n, 0} z^{n}+a_{n-1,1} z^{n-1} y+\cdots+a_{0, n} y^{n}$ and $L_{n}=L_{n}(z, y)=$ $b_{n, 0} z^{n}+b_{n-1,1} z^{n-1} y+\cdots+b_{0, n} y^{n}$. Observe that $\alpha \delta-\beta \gamma \neq 0$. Then

$$
\begin{aligned}
& f \circ \phi(z, y)=\left(\alpha z+\beta y+H_{2}+H_{3}+\cdots\right)^{n} \\
+ & A_{2}(L)\left(\gamma z+\delta y+L_{2}+L_{3}+\cdots\right)^{\alpha_{2}}\left(\alpha z+\beta y+H_{2}+H_{3}+\cdots\right)^{n-2} \\
+ & \cdots \\
+ & A_{i}(\mathcal{L})\left(\gamma z+\delta y+L_{2}+L_{3}+\cdots\right)^{\alpha_{i}}\left(\alpha z+\beta y+H_{2}+H_{3}+\cdots\right)^{n-i} \\
+ & \cdots \\
+ & A_{n-1}(L)\left(\gamma z+\delta y+L_{2}+L_{3}+\cdots\right)^{\alpha_{n-1}}\left(\alpha z+\beta y+H_{2}+H_{3}+\cdots\right) \\
+ & \left(\gamma z+\delta y+L_{2}+L_{3}+\cdots\right)^{k}=z^{n}+y^{k}
\end{aligned}
$$

Note that $\beta=0, H_{2}=H_{3}=\cdots=H_{k-n}=0$ and $\alpha^{n}=1$ since $n<k<\alpha_{i}+n-i$ for $i=2, \cdots, n-1$. If $k<\alpha_{i}+n-i \leq k-2+n-i$ for some i, then $n>i+2$. So we may assume that $n \geq 5$. Also, $\alpha_{n-1}>k-1$ and $\alpha_{n-2}<k-2$. Let

$$
\begin{aligned}
m & =\operatorname{Min}\left\{\alpha_{i}+n-i: 2 \leq i \leq n-1\right\} \text { and } \\
t & =\operatorname{Min}\left\{l: \alpha_{l}+n-l=m, \alpha_{l} \leq k-2,2 \leq l \leq n-3\right\}
\end{aligned}
$$

Then there is a positive integer p such that $\alpha_{t}+n-t=k+p$. We claim that $H_{k-n+1}=0, H_{k-n+2}=L_{2}=0, H_{k-n+3}=L_{3}=$ $0, \cdots, H_{k-n+p}=L_{p}=0$. We are going to prove it by induction on the integer p. Since $\alpha_{i}+n-i \geq k+p>k$, in the expansion of monomials of degree k in $f \circ \phi(z, y),{ }_{n} C_{1}(\alpha z)^{n-1} H_{k-n+1}+(\gamma z+\delta y)^{k}=y^{k}$. That is, $n \alpha^{n-1} z^{n-1}\left(a_{k-n+1,0} z^{k-n+1}+a_{k-n, 1} z^{k-n} y+\cdots+a_{0, k-n+1} y^{k-n+1}\right)+$ $(\gamma z+\delta y)^{k}=y^{k}$. Since $n \geq 5$, the coefficients of $y^{k-1} z, y^{k-2} z^{2}$ and $y^{k-3} z^{3}$ are zero, γ must be zero and so $H_{k-n+1}=0$. If $\alpha_{i}+n-i>k+1$ for any i, then

$$
\begin{aligned}
0= & { }_{n} C_{1}(\alpha z)^{n-1} H_{k-n+2}+{ }_{k} C_{1}(\delta y)^{k-1} L_{2} \\
= & { }_{n} C_{1}(\alpha z)^{n-1}\left(a_{k-n+2,0} z^{k-n+2}+a_{k-n+1,1} z^{k-n+1} y+\cdots\right. \\
& \left.+a_{0, k-n+2} y^{k-n+2}\right)+{ }_{k} C_{1}(\delta y)^{k-1}\left(b_{2,0} z^{2}+b_{1,1} z y+b_{0,2} y^{2}\right)
\end{aligned}
$$

in the expansion of monomials of degree $k+1$ in $f \circ \phi(z, y)$. Since $n \geq 5$, $L_{2}=0$ and so $H_{k-n+2}=0$. To prove the above claim by induction on the integer p, assume that if $\left.\alpha_{i}+n-i\right\rangle k+s$ for any i and some positive integer s with $1<s<p$, then $H_{k-n+s+1}=L_{s+1}=0$ with $s+1<p$. Now it is enough to show that $H_{k-n+s+2}=L_{s+2}=0$ with $s+2 \leq p$. Then

$$
\begin{aligned}
0= & { }_{n} C_{1}(\alpha z)^{n-1} H_{k-n+s+2}+{ }_{k} C_{1}(\delta y)^{k-1} L_{s+2} \\
= & { }_{n} C_{1}(\alpha z)^{n-1}\left(a_{k-n+s+2,0} z^{k-n+s+2}+a_{k-n+s+1,1} z^{k-n+s+1} y+\cdots\right. \\
& \left.+a_{0, k-n+s+2} y^{k-n+s+2}\right)+{ }_{k} C_{1}(\delta y)^{k-1}\left(b_{s+2,0} z^{s+2}+b_{s+1,1} z^{s+1} y\right. \\
& \left.+\cdots+b_{0, s+2} y^{s+2}\right) .
\end{aligned}
$$

Note that $n-1>s+2$ because $k-2+n-t \geq \alpha_{t}+n-t>k+s$. So $L_{s+2}=H_{k-n+s+2}=0$.

Now consider the nonvanishing monomials of degree $\alpha_{t}+n-t=k+p$ in the expansion of $f \circ \phi(z, y)$ as follows :

$$
\begin{aligned}
& f \circ \phi(z, y)=\left(\alpha z+H_{k-n+p+1}+H_{k-n+p+2}+\cdots\right)^{n} \\
& +A_{2}(L)\left(\delta y+L_{p+1}+L_{p+2}+\cdots\right)^{\alpha_{2}} \\
& \quad\left(\alpha z+H_{k-n+p+1}+H_{k-n+p+2}+\cdots\right)^{n-2} \\
& +\cdots
\end{aligned}
$$

$$
\begin{aligned}
& +A_{i}(L)\left(\delta y+L_{p+1}+L_{p+2}+\cdots\right)^{\alpha_{i}} \\
& \quad\left(\alpha z+H_{k-n+p+1}+H_{k-n+p+2}+\cdots\right)^{n-i} \\
& +\cdots \\
& +A_{n-1}(L)\left(\delta y+L_{p+1}+L_{p+2}+\cdots\right)^{\alpha_{n-1}} \\
& \quad\left(\alpha z+H_{k-n+p+1}+H_{k-n+p+2}+\cdots\right) \\
& +\left(\delta y+L_{p+1}+L_{p+2}+\cdots\right)^{k} .
\end{aligned}
$$

Observe that $\alpha_{i}+n-i \geq \alpha_{t}+n-t=k+p$ for $i=2, \cdots, n-1$ and $\alpha_{t} \leq k-2$. So $y^{\alpha_{t}} z^{n-t}$ is one of nonvanishing monomials in the expansion of $f \circ \phi(z, y)$. Therefore $f \not \approx g$.

Proposition 3.5. Let $V=\left\{(z, y): h=z^{n}+y^{k-1} z^{j}+y^{k}=0\right\}$ and $W=\left\{(z, y): g=z^{n}+y^{k}=0\right\}$ where $j=1, \cdots, n-1$. Assume that $n<k$ and $\operatorname{gcd}(n, k)=1$. Then $h \approx g$ if and only if $2 j \geq n-1$.

Proof. We know by Theorem 2.3 that $h \approx g$ if and only if $K(h)$ is isomorphic to $K(g)$ as a C-algebra. Compute $\mu=\operatorname{dim} K(h)$ and $\nu=\operatorname{dim} K(g)$ over the complex field \mathbf{C} as vector spaces. Then it is easy to find that $\nu=n k-n-k+3$. Now consider the ideal ($h, m \Delta(h)$) in ${ }_{2} \mathcal{O}$ generated by h and $m \Delta(h)$ as follows:

$$
\begin{aligned}
h & =z^{n}+y^{k-1} z^{j}+y^{k} \\
z h_{z} & =n z^{n}+j y^{k-1} z^{j}, \\
y h_{y} & =(k-1) y^{k-1} z^{j}+k y^{k}, \\
y h_{z} & =n y z^{n-1}+j y^{k} z^{j-1}, \\
z h_{y} & =(k-1) y^{k-2} z^{j+1}+k y^{k-1} z .
\end{aligned}
$$

Then $(h, m \Delta(h))=\left(z^{n}, y^{k-1} z^{j}, y^{k}, y z^{n-1}, z h y\right)$. Now it is enough to consider two cases:

Case (i): $2 j<n-1$.
Then $z h_{y}=(k-1) y^{k-2} z^{j+1}+k y^{k-1} z \equiv 0 \quad \bmod (h, m \Delta(h))$.

So

$$
\begin{aligned}
y z h_{y} & =(k-1) y^{k-1} z^{j+1} \equiv k y^{k} z \equiv 0 . \\
z^{2} h_{y} & =(k-1) y^{k-2} z^{j+2}+k y^{k-1} z^{2} \equiv 0 . \\
z^{3} h_{y} & =(k-1) y^{k-2} z^{j+3}+k y^{k-1} z^{3} \equiv 0 . \\
\vdots & \\
z^{j-1} h_{y} & =(k-1) y^{k-2} z^{2 j-1}+k y^{k-1} z^{j-1} \equiv 0 . \\
z^{j} h_{y} & =(k-1) y^{k-2} z^{2 j} \equiv k y^{k-1} z^{j} \equiv 0 .
\end{aligned}
$$

Using the above equations, we get $\mu=n k-k-2 n+2 j+4$. But $\mu=\nu$ would imply $2 j=n-1$, which is impossible.

Case (ii): $n-1 \leq 2 j$ (put $n-1=j+l$ with $0<l \leq j$).
Then $z h_{y}=(k-1) y^{k-2} z^{j+1}+k y^{k-1} z \equiv 0 \bmod (h, m \Delta(h))$.
So

$$
\begin{aligned}
y z h_{y} & =(k-1) y^{k-1} z^{j+1} \equiv k y^{k} z \equiv 0 . \\
z^{2} h_{y} & =(k-1) y^{k-2} z^{j+2}+k y^{k-1} z^{2} \equiv 0 . \\
z^{3} h_{y} & =(k-1) y^{k-2} z^{j+3}+k y^{k-1} z^{3} \equiv 0 . \\
\vdots & \\
z^{j+l-1} h_{y} & =(k-1) y^{k-2} z^{2 j+l-1}+k y^{k-1} z^{l-1} \equiv 0 . \\
z^{j+l} h_{y} & =(k-1) y^{k-2} z^{2 j+l} \equiv k y^{k-1} z^{l} \equiv 0 .
\end{aligned}
$$

Using the above equations, we get $\mu=n k-n-k+3$. Therefore, it is enough to show that if $2 j \geq n-1$, then $h \in m \Delta(h)$ by Theorem 2.3. From the ideal $m \Delta(h)$ we have $z^{n} \equiv a y^{k-1} z^{j} \equiv b y^{k} \equiv$ $c y^{k-2} z^{2 j}(\bmod (m \Delta(h)))$ for suitable nonzero constants a, b and c. If $2 j \geq n$, then $z^{n} \equiv c y^{k-2} z^{2 j}(\bmod (m \Delta(h)))$ implies that z^{n} belongs to $m \Delta(h)$, and so $h \in m \Delta(h)$. If $2 j=n-1$, then $z^{n} \equiv a y^{k-1} z^{j} \equiv$ $b y^{k} \equiv c y^{k-2} z^{n-1} \equiv d y^{2 k-3} z^{j-1}(\bmod (m \Delta(h)))$ for some nonzero constant d. Thus $b y^{k} \equiv d y^{2 k-3} z^{j-1}$ and $k \geq 3$ imply $y^{k} \in m \Delta(h)$ and so $h \in m \Delta(h)$. Thus if $2 j \geq n-1$, then we prove that $h \approx g$.

Theorem 3.6. Let $V=\left\{(z, y): f=z^{n}+A_{2} y^{\alpha_{2}} z^{n-2}+\cdots+\right.$ $\left.A_{i} y^{\alpha_{i}} z^{n-i}+\cdots+A_{n-1} y^{\alpha_{n-1}} z+y^{k}=0\right\}$ and $W=\{(z, y): g=$
$\left.z^{n}+y^{k}=0\right\}$ be germs of analytic subvarieties of a polydisc near the origin in \mathbf{C}^{2} where f is a Weierstrass polynomial and the $A_{i}=A_{i}(y)$ are nonvanishing holomorphic near $y=0$ for $i=2, \cdots, n-1$. Assume that $n<k$ and $\operatorname{gcd}(n, k)=1$. If $\alpha_{i} \geq k-1$ for $i=2, \cdots, n-1$ and $\alpha_{j}=k-1$ for some j, then $f \approx g$ if and only if $2(n-l) \geq n-1$ where $l=\operatorname{Max}\left\{j: \alpha_{j}=k-1,2 \leq j \leq n-1\right\}$.

Proof. If $\alpha_{i} \geq k$ for $i=2, \cdots, n-1$, then there is nothing to prove. Suppose that there is some j such that $\alpha_{j}=k-1$. Let $l=\operatorname{Max}\left\{j: \alpha_{j}=k-1,2 \leq j \leq n-1\right\}$. Then we rewrite f as $f=z^{n}+b_{l}(y, z) y^{k-1} z^{n-l}+b_{k}(y, z) y^{k}=0$ where $b_{l}(y, z)$ and $b_{k}(y, z)$ are nonvanishing holomorphic functions at the origin in \mathbf{C}^{2}. By a nonsingular linear change of coordinates, f is analytically equivalent to $f_{1}=z^{n}+y^{k-1} z^{n-l}+c_{k}(y, z) y^{k}=0$ near the origin where $c_{k}(y, z)$ is a nonvanishing holomorphic function at the origin in \mathbf{C}^{2}. So it is enough to show that $f_{1} \approx g$. Using the similar techniques as we have used in the proof of Proposition 3.5, we can prove that $f_{1} \approx g$ if and only if $2(n-l) \geq n-1$ where $l=\operatorname{Max}\left\{j: \alpha_{j}=k-1,2 \leq j \leq n-1\right\}$.

Theorem 3.7. Let $V=\left\{(z, y): f=z^{n}+A_{2} y^{\alpha_{2}} z^{n-2}+\cdots+\right.$ $\left.A_{i} y^{\alpha_{i}} z^{n-i}+\cdots+A_{n-1} y^{\alpha_{n-1}} z+y^{k}=0\right\}$ and $W=\{(z, y): g=$ $\left.z^{n}+y^{k}=0\right\}$ be germs of analytic subvarieties of a polydisc near the origin in \mathbf{C}^{2} where f is a Weierstrass polynomial and the $A_{i}=A_{i}(y)$ are nonvanishing holomorphic near $y=0$ for $i=2, \cdots, n-1$. Assume that $n<k$ and $\operatorname{gcd}(n, k)=1$. If $\alpha_{i}+n-i>k$ for $i=2, \cdots, n-1$ and $\alpha_{t}+n-t>\operatorname{Min}\left\{\alpha_{i}+n-i: 2 \leq i \leq n-1\right\}$ whenever $\alpha_{t} \leq k-2$, then either $f \approx g$ or $f \not \approx g$.

Proof. It is enough to construct a different kind of two examples satisfying the conclusion of the theorem as follows :
(1) Let $f=z^{11}+{ }_{25} C_{3} y^{22} z^{9}+{ }_{25} C_{2} y^{23} z^{6}+{ }_{25} C_{1} y^{24} z^{3}+y^{25}$.

Then

$$
\begin{aligned}
f & \approx u(z, y) z^{11}+\left(y+z^{3}\right)^{25} \\
& \approx z^{11}+y^{25} \text { near the origin where } u(z, y) \text { is a unit in }{ }_{2} \mathcal{O}
\end{aligned}
$$

(2) Let $f=z^{11}+y^{23} z^{7}+y^{25} z+y^{25}$.

Then

$$
\begin{aligned}
f & =z^{11}+y^{23} z^{7}+y^{25}(z+1) \\
& \approx z^{11}+y^{23} z^{7}+y^{25} \\
& \not \approx z^{11}+y^{25} \text { near the origin by Theorem 3.4. }
\end{aligned}
$$

Finally we can apply the previous results to some examples which are not analytically equivalent to weighted homogeneous polynomials as follows:

Let $V=\left\{(z, y): f=\left(z^{3}+y^{4}\right)^{5}+y^{10} z^{7}\left(z^{3}+y^{4}\right)+y^{9} z^{11}=0\right\}$ and $W=\left\{(z, y): g=\left(z^{3}+y^{4}\right)^{5}+y^{9} z^{11}=0\right\}$. We claim that $f \not \approx g$. Since blowing-up process preserves analytical equivalence, it is enough to prove that the proper transforms of V and W are not analytically equivalent after a finite number of blowing-ups. Note that after four times of blowing-ups, the proper transform of V is analytically equivalent to $\left\{(u, v): f_{4}=u^{5}+v^{10} u+v^{11}=0\right\}$ and the proper transform of W is analytically equivalent to $\left\{(u, v): g_{4}=u^{5}+v^{11}=0\right\}$. By Proposition 3.5, $f_{4} \not \approx g_{4}$. Thus $f \not \approx g$.

References

1. E. Brieskorn and H. Knörrer, Plane algebraic curves, English edition, Birkhäuser, 1986.
2. C. Kang, Classification of irreducible plane curve singularities, (preprint).
3. J.N. Mather and S.S.-T.Yau, Classification of isolated hypersurface singularities by their moduli algebras, Invent. Math. 69 (1982), 243-251.
4. A.N. Shoshitaǐshvili, Functions with isomorphic Jacobian ideals, Functional Anal. Appl. 10 (1976), 128-133.
5. S.S.-T.Yau, Milnor algebras and equivalence relations among holomorphic functions, Bull. Amer. Math. Soc. 9 (1983), 235-239.

Department of Mathematics
Seoul National University
Seoul 151-742, Korea

