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QUOTIENT MAPPINGS, HELLY EXTENSIONS,
HAHN-BANACH EXTENSIONS, TIETZE
EXTENSIONS, LIPSCHITZ EXTENSIONS,

AND BEST APPROXIMATION

SUNG HO PARK

1. Introduction

In [6], authors established interesting connections between Helly ex-
tensions, Hahn-Banach extensions, Tietze extensions, and Lipschitz ex-
tensions, and best approximations. In this paper, we want to recover
those results by using the inverse mapping @ of the restriction of the
quotient mapping to the kernel of the metric projection Pys when M
is a proximinal subspace of a normed linear space X.

In section 2, we will give general formula which relates the metric
projection Py to the mapping ¢ps. Using this formula, we can easily
relate continuity and selection properties of the (set-valued) metric
projection with the analogous properties of ¢ .

In section 3, we can relate ¢ps with the Helly extension mapping,
and continuity and selection properties of the metric projection with
the analogous properties of the Helly extension mapping. We recover
the results of Deutsch, Li, and Mabizela [6].

In section 4, M and X specialized to M+ and X*, respectively.
We observe a relation between ¢pr and the Hahn-Banach extension
mapping. In this case, results of Phelp [10], Lindenstrauss [8], Fakoury
[7], Deutsch, Li, and Mabizela [6], and Deutsch, Li, and Park {5] are
recovered. '

In section 5, X is specialized to Cy(T) and M is the closed ideal
of functions vanishing on a given compact subset S of T. We observe
a relation between @) and the Tietze extension mapping. Results of
Deutsch, Li, and Mabizela {6] are recovered.
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In section 6, X is specialized to the normed linear space of all Hilbert
space valued Lipschitz functions of order a, Lipy(T'), on a metric space
T, and M is the subspace consisting of all such functions which vanish
on a prescribed subset S of T. We observe a relation between ¢ and
the Lipschitz extension mapping. Using this formula, we recover the
results of Deutsch, Li, and Mabizela [6].

2. Quotient mapping

In this section, let M be a proximinal subspace of a normed linear
space X, and let X/M denote the quotient space equipped with the
norm ||z + M| = d(z,M). Let Qum : X — X/M be the quotient
mapping and let

P (0)={z € X | [Qu()|l = ll=I}.

- PROPOSITION-2.1 [1]. For a linear subspace M of the normed linear

space X, the following statements are eqmvalent

1. M is proximinal.
2. We have

X =M+ Py (0)={m+z | me M, zc Py (0)}

3. M is closed and for the quotient mapping Qp : X — X/M
we have

Qu(P(0) = X/M.
(In other words, Q Ml pgl(o) HaPS P'(0) onto X/M.)
THEOREM 2.2 [11]. i M is a closed subspace of X, then for every
zeX,
Pu(z) = 2 - (@t s ) ™ 0 Qi (@)
=T — ‘(QMIPE‘I(O))-J(Z + M).
Proof.
ye (QMIP;,‘(o))—l(‘” + M)
& m=z—y €M and ||y|| = d(z, M)
<= y =z —m for some m € M and ||z — m|| = d(z, M)
< y € z — Py(z).
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DEFINITION 2.3 [11]. Let M be a proximinal subspace of a normed
linear space X. Define a set-valued mapping pu : X/M — 2Pu’©
by pm(z + M) = z — Py(z) for each z + M € X/M. Then pu is
well-defined. Moreover, pup(z+ M) = (QMlp;lx(o))“l(z + M) for each

r+ M € X/M and pum(z + M) is nonempty bounded, closed, and
convex subset of Py, (0).

LEMMA 2.4. Let M be a proximinal subspace of X, y; + M € X/M
(:=1,2) and z, € X satisfiesz;+M = y; +M. Then there exists x3 €
X such that 2, + M =y, + M and ||z, — 23| = [|(y1 + M) —(y2 + M)

Before establishing the convention between certain continuity prop-
erties of Pys with those of ¢y, we recall the relevant definitions. If Y
is a metric space, A C Y, and € > 0, denote the e-neighborhood of A
by B.(A) = {y € Y |d(y,A) < €}. If A =0, we define B.(8) = 0.

DEFINITION 2.5. Let Y be a metric space, F: X — 2Y, and z¢ €
X. Then F is called:

(1) upper semicontinuous (u.s.c.) at z¢ if for any open set V with
F(z¢) C V, there exists a neighborhood U of z¢ such that F(z) CV
for each z € U;

(2) lower semicontinuous (l.s.c.) at z if for any open set V with
F(z¢)NV # @, there exists a neighborhood U of zq such that F(z)NV #
@ for each z € U;

(3) upper Hausdorff semicontinuous (u.H.s.c.) at z¢ if for any € > 0,
there exists a neighborhood U of z¢ such that F(z) C Be(F(zg)) for
each r ¢ U; .

(4) lower hausdorff semicontinuous (L.H.s.c.) at zo if for any € > 0,
there exists a neighborhood U of z¢ such that F(z¢) C B.(F(z)) for
each z € U.

LEMMA 2.6 [3]. Let M be proximinal, zo € X, and 7 = u, I, u.H.,
LH. Then Py is T.s.c. at z¢ if and only if I — Py is 7.s.c. at zo.

THEOREM 2.7 [11]. Let M be proximinal, zo € X, and let T = u,
L1LH., u.H. Then Py is T7.s.c. at ¢ if and only if ppy is T.5.c. at zo+M.

The next theorem shows that the existence of continuous, Lipschitz
continuous, or linear selections for Pys is equivalent to the analogous

property for ¢ar.
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Recall that H is a Hausdorff metric on H(X) where H(X) is the
collection of all closed, bounded and convex subsets of X if for any A,
B in H(‘X)7 H(A7 B) = ma‘x{supaGA d(a7 B), SUPycp d(b7 A)}'

THEOREM 2.8 [9]. Let M be a proximinal subspace of X. Then the
following statements are equivalent:

(1) Pas is Lipschitz continuous (resp. linear).

(2) ¢m is Lipschitz continuous (resp. linear).

THEOREM 2.9. Let M be a proximinal subspace of X. Then

(1) Pas bas a continuous (resp. linear) selection if and only if o
has a continuous (resp. linear) selection.

(2) Pu has a linear selection if and only if oy has a linear selection
with norm one. ' '

(3) Py has a Lipschitz (resp. pointwise Lipschitz) continuous se-
lection which is additive modulo M if and only if pa has a Lipschitz
(resp. pointwise Lipschitz) continuous selection.

Proof. (1) I Py has a continuous selection, then it has a contin-
uous selection p which is also homogeneous and additive modulo M
[4; Theorem 3.4]. Define e on X/M by e(z + M) = z — p(z). Then
e is well-defined since if c + M =y + M, then m :=z —y € M and
z —p(z) =y + m — p(y + m) = y — p(y). Moreover, by Theorem 2.2,
e is a selection for ¢ps. Now if z + M and y + M are in X/M, then
Lemma 2.4 implies that there exists 2 € X such that z+ M =y+ M
and o — 2]| = |[(z + M) — (y + M)||. Then

lle(z + M) — e(y + M)|| = ||z — p(z) — (y — p(¥))]l
= ||lz — p(z) — (z — p(2))l|
< llz = 2|l + [lp(=) — p(2)|l
< (= + M) - (y + M)|| + |Ip(z) — p(2)]].

Since p is continuous at , given any ¢ > 0, choose 0 < § < € such that
|z — z|] < 6 implies ||p(z) — p(z)|| < €. Thus, if y € X is chosen so that
|(z + M) — (y+ M)|| < &, then ||z — z|| < é so that ||e(z+ M) —e(y+
M)|| < 2¢. This proves that e is continuous at = + M.

Conversely, suppose that ¢ has a continuous selection e. Define
pon X by p(z) = z — e(x + M). Then p is a selection for Py by
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Theorem 2.2. Given ¢ > 0 and ¢ € X, choose 0 < § < ¢ so that
lle(z + M) — e(y + M)|| < € whenever [[(z+ M) —(y+ M)|| < 6. Thus
if ||z — y]| < 6, then ||(z + M) — (y + M)|| < ||z — y|| < & so that

le(z) — ol < llz — yll + lle(e + M) — e(y+ M)|| <6+ € < 2e.

Thus p is continuous at .

The proof that Pps has a linear selection if and only if pps has a
linear selection is similar.

(2) By part (1), it suffices to verify that if p is a linear selection for
Py, then e(z + M) = z — p(z) defines a linear selection for ¢ with
norm one. But |le(z + M)| = ||z — p(z)|| = d(z, M) = ||z + M]|| for
each z € X. Thus e has norm one.

(3) Suppose that p is a pointwise Lipschitz continuous selection for
Py which is additive modulo M. Then, just as in the proof of (1),
the function e defined in X/M by e(z + M) = z — p(z) is a selection
for ¢pr. Moreover, given z + M, Lemma 2.4 implies that for each
y+ M in X/M, there exists 2 € X such that 2+ M = y + M and
I(z + M) — (y + M)|| = ||z — 2||. Thus

lle(z + M) — e(y + M)|| = [le(z + M) — e(z + M|

= |lz - p(z) — (2 — p(2))]|

< lle = 2l + llp(=) — p(2)

< lle - 2l + A=)llz — 2|

=14+ A=)z - 2|

=1+ @)=+ M) - (y+ M)||.
Then e is pointwise Lipschitz continuous at z + M with Lipschitz con-
stant 1+ A(z).

Conversely, let e be a pointwise Lipschitz continuous selection for
wum. Defining p on X by p(z) = = — e(z + M), we see that p is a
selection for Py such that for every z € X and m € M,

plz+m)=z+m—e(z+ M)=p(z)+m.
That is, p is additive modulo M. Then
lp(z) — P < llz — yll + lle(z + M) — e(y + M)
<lle—yll+ 2@z + M) — (v + M)||
<A+ M@z -yl
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This shows that p is pointwise Lipschitz continuous at & with Lipschitz
constant 1+ A(z).

The proof of the global Lipschitz properties now follows immedi-
ately since in this case the Lipschitz constants are independent of the
particular points.

COROLLARY 2.10. Let M be a proximinal subspace of X which is
complemented. Then Py has a Lipschitz (resp. pointwise Lipschitz)
continuous selection if and only if oy has a Lipschitz (resp. pointwise
Lipschitz) continuous selection.

Proof. In [4; Theorem 3.5], it was shown that, when M is comple-
mented, Py has a (pointwise) Lipschitz continuous selection if and
only if Py has one which is also homogeneous and additive modulo
M. An appeal to theorem 2.9 completes the proof. ,

LEMMA 2.11 [6]. Let X,Y, and Z be normed linear space, F : X —
2Y, let i : X — Z be a linear isomorphism from X onto Z, and suppose
G :Z — 2Y is defined Goi = F; ie., G(i(z)) = F(zx), = € X. Then:

(1) F is t.s.c. at zo if and only if G is T.s.c. at i(ze). (Here
T=u,l,uHLH.)

(2) F is Lipschitz continuous (resp. linear) if and only if G is Lip-
schitz continuous (resp. linear).

(3) F has a continuous (linear, Lipschitz) selection if and only if G
has one of the same type.

(4) Ki is an isometry, then F has a linear selection with norm p if
and only if G does.

3. Helly Extensions

In this section, let M be a proximinal subspace of a normed linear
space X, and let M denote the dual cone or annihilator of M in the
dual space X*; that is,

Mt = {z* € X*:2*(y) =0 for all y € M}.

Further, let J : X — X™** denote the canonical embedding of X into
its second dual space X**: J(z) = %, where #(z*) = z*(z), z* € X*.



Quotient mappings, extensions, and best approximation 245

DEFINITION 3.1. The set-valued mapping Ejpz.(z**| ML)
X**|,,. — 2% defined by

Eps(a™]pn) ={y € X 14|30 = 2[00, ol = l|l2**] 50 I}
is called the Helly extension mapping relative to ML,

LEMMA 3.2. For any z € X,

(1) 12] gl = d(=, M).

(2) Ems(#]yn) ={ye X |z —y e M, |ly|| = d(z, M)}.

(3) wm(z + M) = Epa(2],,.).

Proof. In [6], we can find the proofs of (1) and (2).

3

¥ € pm(z + M) <= Qu(y) =z + M and y € P5;'(0)

&>z —y €M and |ly|| = d(z, M)

<> y € Eya(2|,,,)

COROLLARY 3.4 [6]. Let M be a proximinal subspace of X. Then
(1) Foreachz € X,
Pu(2) = © - Eppa (800

(2) Pap is T.s.c. at z if and only if Epgs is 7.s.c. at #|po. (Here
T=u,l,uH., orl.H)

(3) Pa is Lipschitz continous (resp. linear) if and only if Epqs is
Lipschitz continuous (resp. linear).

(4) Py has a continuous (resp. Lipschitz continuous, linear) selec-
tion if and only if Ejy1 has a continuous (resp. Lipschitz continuous,
linear) selection.

(5) Pu has a linear selection if and only if Epy1 has a linear selection
with norm one.

Proof. Note that for z € X, we have
d(z, M) = [|£] .|l

The mapping ¢ : X/M — X'IM_,_ defined by i(z + M) = f:‘MJ_ is an
(linear) isometry and by Lemma 3.2, op = Eps 0. It follows from
Theorems 2.8 and 2.9, Lemma 2.11, and Lemma 3.2.
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4. Hahn-Banach Extensions

In this section we replace X by X* and M by M+ in section 2 and
thereby deduce results relating approximative properties of M+ with
properties of extending continuous linear functionals on M to all of X.

DEFINITION 4.1. For a subspace of X and m* € M*, let Nay(m*)
denote the set of all Hahn-Banach extensions of m*; that is,

Nu(m®) ={z” € X* : 2%|y =m”, ||z"|| = [m*|]}.

By Hahn-Banach theorem, Nys : M* — 2X7\{0}.
LEMMA 4.2. Let T be a o(X*, X)-closed linear subspace of X* and
f € X*. Then or(f +T) = Nup(f|.p)-

Proof. Sinced T is a o(X™*, X)-closed linear subspace of X*, I is
proximinal in X*. Then

geer(f+T)<=>ge€P'(0)and f—gel
<> f—g €T and ||g|| = d(f,T)
< flup = glp and |lgll = d(£,T) |
<= flip = glup and |lgll = || f].pll = d(£,T)
<> g € Nup(f|.p)

COROLLARY 4.3 [6]. Let M be a closed subspace of X. Then:
(1) For each z* € X*,

Pyi(z*)=2* - N'L(M‘L)(z*l.L(M.L))

=" — Nyu(="n)

(2) Pypgr is T.s.c. at z* if and only if Npy is 7.s.c. at z*|p. (Here
7 =u, Lu.H, or LH)

(3) Py is Lipschitz continuous (resp. linear) if and only if Ny is
Lipschitz continuous (resp. linear).

(4) Pygs has a continuous (resp. Lipschitz continuous, linear) selec-
tion if and only if Ny has a continuous (resp. Lipschitz continuous,
linear) selection.
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(5) Pyt has a linear selection if and only if Ny has a linear selection
with norm one.

Proof. Note that for each z* € X*, we have
d(z*, M) = ||z*|mll-

The mapping 7 : X*/ML — X*|p is an (linear) isometry and, by
Lemma 4.2, opr = Np oi. It follows from Theorems 2.8 and 2.9,
Lemma 2.11 and Lemma 4.2.

5. Tietze Extensions

In this section we specialize the results of section 2 by taking X =
Co(T), S C T a compact subset, and M = {f € Co(T): fls =0}. In
this way we deduce connections between approximative properties of
M and Tietze extensions of functions in C(S) to functions in Co(T).

Let T be a locally compact Hausdorff space and let Co(T') be the
linear space of all real continuous functions f on T “vanshing at infin-
ity”; that is, {t € T : | f(t)| > €} is compact for each ¢ > 0. Endowed
with the supremum norm, Cy(T) is a Banach space. Fix any compact
subset S of T, and define M = Mg := {g € Co(T) : g|s = 0}. Then M
is a closed subspace in Cyo(T).

DEFINITION 5.1. The Tietze extension mapping Ts : C(§) — 2€e(D)
is defined by

Ts(f) ={F € Co(T): Fls = f, |Fll = [l lI}-

By the Tietze extension theorem, Ts(f) # 0 for every f € C(S).

LEMMA 5.2. For each f € Cy(T),
(1) I flsll = d(f, M). [5]
(2) em(f + M) = Ts(f|s)-

Proof. (2)
g€ pu(f+M) < f—ge Mand g € Py (0)
<= fls = g|s and ||g|| = || fIsl| = d(f, M)
<> g € Ts(f|s)
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COROLLARY 5.3 [5],16].
(1) For each f € Co(T),
Pyu(f) = f - Ts(fls)-

In particular, M is proximinal.

(2) Py is T.s.c. atflfandonlylfTszsrsc at f|s. (Heret = u,
LuH., or 1LH.)

(3) Pyt is Lipschitz continuous (resp. linear) if and only if Ts is
Lipschitz continuous (resp. linear).

(4) Pps has a linear selection if and only if Ts has a linear selection.

Proof. Note that for each f € X = Co(T), we have

d(f, M) = | flsl-
The mapping ¢ : Co(T)/M — C(S) defined by z(f + M) = flsisan
(linear) isometry and by Lemma 5.2,
M= Ts o1,
It follows from Theorems 2.8 and 2.9, Lemma 2.11 and Lemma 5.2.

6. Lipschitz Extensions

In this section the results of section 2 are specialized to the case
when X is the set of all Lipschitz functions on a metric space T and M
is the subspace of those functions vanishing on a prescribed subset S
on T. In this case, we deduce a connection between the approximative
properties of M with the set of a.ll Lipschitz extensions of Lipschitz
functions on S to all of T.

DEFINITION 6.1. Let (T,d) be a metric space, H a Hilbert space,
and 0 < o < 1. For a given nonempty subset S of T, a function
f:S — H is said to satisfy a Lipschitz (or Lipschitz-Hélder) condition
of order a on S if

| fllae,s = sup{”f—(;()sft){fi" tes, s# t}
f is called bounded on S provided

Iflls == sup{||f(s)]| : s € 5} < co.
The set of all bounded Lipschitz functions of order a on S will be
denoted by Lipo(S). We endow Lipo(S) with the norm ||f|lge+s =
|l flia=,s + I flls-
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DEFINITION 6.2. A Lipschitz (or Lipschitz-Hélder) extension of f €
Lipa(S) is any F € Lipo(T) such that Fl|s = f and [{FljgayT :=
| flla=+s- The Lipschitz extension mapping Ls : Lips(S) — 2LiP=(T)
is defined by

Ls(f) = {F € Lipo(T) : F is a Lipschitz extension of f}.

Fix any subset S of T and define
M = Mg := {f € Lipo(T) : f|ls = 0}.

Then M is a closed subspace in Lipo(T).
LEMMA 6.3 [6]. For each f € Lips(T),

d(f, M) = ||flla=+s-
LEMMA 6.4. For each f € Lipo(T),

om(f + M) = Ls(fls)-

Proof. By Lemma 6.3,

g€ om(f+M) < f—ge M and g€ P, (0)
<= fls = gls and ||gllae 4T = | flla=ts
<= g € Ls(f|s)-

THEOREM 6.5 [6]. (1) For each f € Lipa(T),

Py(f) = f — Ls(fls)-

In particular, M is proximinal.

(2) Py is T.s.c. at f if and only if Lg is 7.s.c. at f|s. (Here T = u,
I, uH., or LH.)

(3) Pum is Lipschitz continuous (resp. linear) if and only if Lg is
Lipschitz continuous (resp. linear).
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(4) Py has a continuous (resp. linear) selection if and only if Lg
has a continuous (resp. linear) selection.

Proof. Note that for each f € Lipo(T'), we have

d(f, M) = [|flla=+s:
The mapping ¢ : Lipa(T)/M — Lip,(S) defined by i(f + M) = fls is
an (linear) isometry and, by Lemma 6.4,

M= LS o1.
It follows from Theorems 2.8 and 2.9, Lemma 2.11 and Lemma. 5.4.
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