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QUOTIENT MAPPINGS, HELLY EXTENSIONS,

HAHN-BANACH EXTENSIONS, TIETZE

EXTENSIONS, LIPSCHITZ EXTENSIONS,

AND BEST APPROXIMATION

SUNG Ho PARK

1. Introduction

In [6], authors established interesting connections between Helly ex
tensions, Hahn-Banach extensions, Tietze extensions, and Lipschitz ex
tensions, and best approximations. In this paper, we want to recover
those results by using the inverse mapping 'PM of the restriction of the
quotient mapping to the kernel of the metric projection PM when M
is a proximinal subspace of a nonned linear space X.

In section 2, we will give general fonnula which relates the metric
projection PM to the mapping 'PM. Using this formula, we can easily
relate continuity and selection properties of the (set-valued) metric
projection with the analogous properties of 'P M.

In section 3, we can relate 'P M with the Helly extension mapping,
and continuity and selection properties of the metric projection with
the analogous properties of the Helly extension mapping. We recover
the results of Deutsch, Li, and Mabizela [6J.

In section 4, M and X specialized to M 1. and X*, respectively.
We observe a relation between 'PM and the Hahn-Banach extension
mapping. In this case, results of Phelp [10], Lindenstrauss [8J, Fakoury
[7], Deutsch, Li, and Mabizela [6], and Deutsch, Li, and Park [5] are
recovered.

In section 5, X is specialized to Co(T) and M is the closed ideal
of functions vanishing on a given compact subset S of T. We observe
a relation between 'P M and the Tietze extension mapping. Results of
Deutsch, Li, and Mabizela [6] are recovered.
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In section 6, X is specialized to the normed linear space of all Hilbert
space valued Lipschitz functions of order 0, Lipa(T), on a metric space
T, and M is the subspace consisting of all such functions which vanish
on a prescribed subset S of T. We observe a relation between "PM and
the Lipschitz extension mapping. Using this formula, we recover the
results of Deutsch, Li, and Mabizela [6].

2. Quotient mapping
In this section, let M be a proximinal subspace of a normed linear

space X, and let X/M denote the quotient space equipped with the
norm IIx + MII = d(x,M). Let QM : X --+ X/M be the quotient
mapping and let

pii(O) = {x EX I IIQM(x) 11 = IIxll}·
PROPOSITION 2.1 [1]. For a linearsubspace M of the nonned linear

space X, the fonowing statements are equivalent:
1. M is proximinal.
2. Wehave

X = M +Pji(O) = {m+x I m E M, x E PA:i(O)}.

3. M is closed and for the quotient mapping QM : X --+ X/M
we have

QM(PM1(O» = X/M.

(In other words, QMlpMl(O) maps PM1(O) onto X/M.)
THEOREM 2.2 [11]. If M is a closed subspace of X, then for every

x EX,

PM(X) = x - (QMlpMl(O»-l 0 QM(X)

= x - (QMlpMl(O»-l(x + M).

Proof·

yE (QMlpAi1(o»-1(x + M)

{:::::} m = x - yE M and lIyll = d(x,M)

{:::::} y = x - m .for some m E M and IIx - mll = d(x, M)

{:::::} y E x - PM(x).
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DEFINITION 2.3 [11]. Let M be a proximinal subspace of a nonned
linear space X. Define a set-valued mapping 'PM : X/M -+ 2pAi

1
(O)

by 'PM(X + M) = x - PM(X) for each x + M E X/M. Then 'PM is
well-defined. Moreover, 'PM(X +M) = (QMlpAi1(o»-I(X +M) for each
x + M E X/M and 'PM(x + M) is nonempty bounded, closed, and
convex subset of PMI(O).

LEMMA 2.4. Let M be aproximinal subspace of X, Yi +M E X/M
(i = 1,2) and Xl E X satisfies Xl +M = YI +M. Then there exists X2 E
X such that X2 +M = Y2+M and IIXI -x211 = II(YI +M)-(Y2 +M)II·

Before establishing the convention between certain continuity prop
erties of PM with those of 'PM, we recall the relevant definitions. If Y
is a metric space, A C Y, and e > 0, denote the e-neighborhood of A
by Be(A) = {y E Y Id(y, A) < e}. If A = 0, we define Be(0) = 0.

DEFINITION 2.5. Let Y be a metric space, F : X -+ 2Y , and Xo E
X. Then F is called:

(1) upper semicontinuous (u.s.c.) at Xo if for any open set V with
F(xo) CV, there exists a neighborhood U of Xo such that F(x) C V
for each X E U;

(2) lower semicontinuous (l.s.c.) at Xo if for any open set V with
F(xo)nV i=- 0, there exists a neighborhood U of Xo such that F(x )nV i=
ofor each x E U;

(3) upper Hausdorff semicontinuous (u.H.s.c.) at Xo iffor any e > 0,
there exists a neighborhood U of Xo such that F(x) C Be(F(xo» for
eachxEU;

(4) lower hausdorff semicontinuous (l.H.s.c.) at Xo if for any e> 0,
there exists a neighborhood U of Xo such that F(xo) C Be(F(x» for
each x E U.

LEMMA 2.6 [3]. Let M be proximinal, Xo E X, and T = U, 1, u.H.,
1.H. Then PM is T.S.C. at Xo if and only if I - PM is T.S.C. at xo.

THEOREM 2.7 [11]. Let M be proximinal, Xo E X, and let T = U,

1,1.H., u.H. Then PM is T .s.c. at Xo if and only if 'PM is T .s.c. at Xo + M.

The next theorem shows that the existence of continuous, Lipschitz
continuous, or linear selections for PM is equivalent to the analogous
property for 'PM.
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Recall that H is a Hausdorff metric on H(X) where H(X) is the
collection of all closed, bounded and convex subsets of X if for any A,
B in H(X), H(A, B) = max{suPaEA dCa, B), sUPbEB d(b, An.

THEOREM 2.8 [9]. Let M be a proximinal subspace ofX. Then the
fonowing statements are equivalent:

(1) PM is Lipscmtz continuous (resp. linear).
(2) <PM is Lipscmtz continuous (resp. linear).

THEOREM 2.9. Let M be a proximinal subspace of X. Then
(1) PM has a continuous (resp. linear) selection if and only if <PM

has a continuous (resp. linear) selection.
(2) PM has a linear selection ifand only if<PM has a linear selection

with norm one.
(3) PM has a Lipscbitz (resp. pointwise Lipscbitz) continuous se

lection which is additive modulo M if and only if <PM has a Lipscbitz
(resp. pointwise Lipscbitz) continuous selection.

Proof. (1) If PM has a continuous selection, then it has a contin
uous selection p which is also homogeneous and additive modulo M
[4; Theorem 3.4]. Definee on X/M by e(x + M) = x - p(x). Then
e is well-defined since if x + M = y + M, then m := x - yE M and
x - p(x) = y + m - p(y + m) = y - p(y). Moreover, by Theorem 2.2,
e is a selection for <PM. Now if x + M and y + M are in X/M, then
Lemma 2.4 implies that there exists z E X such that z + M = y + M
and IIx - zll = lI(x + M) - (y + M)II. Then

lIe(x + M) - e(y + M)II = IIx - p(x) - (y - p(y»1I

= IIx - p(x) - (z - p(z» 11

::; IIx - zll + IIp(x) - p(z)1I

~ lI(x + M) - (y + M)II + IIp(x) - p(z)lI·

Since p is continuous at x, given any e > 0, choose 0 < 6 < e such that
11 x - z 11 < 6 implies IIp(x) - p(z) 11 < e. Thus, if y E X is chosen so that
!I(x + M) - (y+ M)II < 6, then IIx - zll < 6 so that lIe(x +M) - e(y+
M)II < 2e. This proves that e is continuous at x + M.

Conversely, suppose that <PM has a continuous selection e. Define
p on X by p(x) = x - e(x + M). Then p is a selection for PM by
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Theorem 2.2. Given £ > 0 and x EX, choose 0 < 8 < £ so that
lIe(x+M)-e(y+M)lI < £ whenever lI(x+M)-(y+M)lI < 8. Thus
if IIx - yll < 8, then lI(x + M) - (y + M)II ::; IIx - yll < 8 so that

lIP(x) - P(y)1I ::; IIx - yll + lIe(x + M) - e(y + M)II < 8 +£ < 2£.

Thus p is continuous at x.
The proof that PM has a linear selection if and only if r.pM has a

linear selection is similar.
(2) By part (1), it suffices to verify that if p is a linear selection for

PM, then e(x + M) = x - p(x) defines a linear selection for 'PM with
norm one. But lIe(x + M)II = IIx - p(x)1I = d(x,M) = IIx + MII for
each x EX. Thus e has norm one.

(3) Suppose that p is a pointwise Lipschitz continuous selection for
PM which is additive modulo M. Then, just as in the proof of (1),
the function e defined in X/M by e(x + M) = x - p(x) is a selection
for 'PM. Moreover, given x + M, Lemma 2.4 implies that for each
y + M in X/M, there exists z E X such that z + M = y + M and
II(x + M) - (y + M)II = Ilx - zll. Thus

Ile(x + M) - e(y + M)II = Ile(x +M) - e(z +M)II

= IIx - p(x) - (z - p(z))1I

::; Ilx - zll + IIp(x) - p(z)1I

::; Ilx - zll + A(x)lI x - zll
= (1 +A(x))llx - zll
= (1 + A(x»II(x + M) - (y +M)II.

Then e is pointwise Lipschitz continuous at x + M with Lipschitz con
stant 1 + A(X).

Conversely, let e be a pointwise Lipschitz continuous selection for
!.pM. Defining p on X by p(x) = x - e(x + M), we see that p is a
selection for PM such that for every x E X and m EM,

p(x + m) = x + m - e(x + M) = p(x) + m.

That is, p is additive modulo M. Then

IIp(x) - p(y) 11 ::; IIx - yll + lIe(x + M) - e(y + M)II

::; IIx - yll + A(x)ll(x + M) - (y + M)II

::; (1 + ..\(x»lIx - yll·
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This shows that p is pointwise Lipschitz continuous at x with Lipschitz
constant 1 + A(x).

The proof of the global Lipschitz properties now follows immedi
ately since in this case the Lipschitz constants are independent of the
particular points.

COROLLARY 2.10. Let M be a proximinal subspace of X which is
complemented. Then PM has a Lipscbitz (resp. pointwise Lipscbitz)
continuous selection if and only if epM has a Lipscbitz (resp. pointwise
Lipschitz) continuous selection.

Proof. In [4; Theorem 3.5}, it was shown that, when M is comple
mented, PM has a (pointwise) Lipschitz continuous selection if and
only if PM has one which is also homogeneous and additive modulo
M. An appeal to theorem 2.9 completes the proof.

LEMMA 2.11 [6}. Let X,Y, and Z benormed linear space, F: X-+
2Y , let i : X -+ Z be a linear isomorphism from X onto Z, and suppose
G: Z -+ 2Y is defined Go i = F; i.e., G(i(x» = F(x), x EX. Then:

(1) F is T.S.C. at Xo if and only if G is T.S.C. at i(xo). (Here
T = u, 1, u.H, I.H.)

(2) F is Lipscbitz continuous (resp. linear) if and only if G is Lip
scbitz continuous (l'esp. linear).

(3) F has a continuous (linear, Lipscbitz) selection if and only if G
has one of the same type.

(4) If i is an isometry, then F has a linear selection with norm p if
and only if G does.

3. Helly Extensions

In this section, let M be a proximinal subspace of a normed linear
space X, and let M.!. denote the dual cone or annihilator of M in the
dual space X*; that is,

M.!. = {x* E X* : x*(y) = 0 for all y EM}.

Further, let J : X -+ X** denote the canonical embedding of X into
its second dual space X** :J(x) = X, where x(x*) = x*(x), x* E X*.
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DEFINITION 3.1. The set-valued. mapping EMol(x**IMol)
X**IMol -+ 2x defined. by

EMol(x**IMol) = {y EX: filMJ. =x**IMJ.' lIylI = IIx**IMJ.II}

is called. the Belly extension mapping relative to M.L.

LEMMA 3.2. .Fbr any x EX,
(1) IIXIMollI = d(x, M).
(2) EMol(xIMJ.) = {y E X Ix - YEM, lIyll = d(x, M)}.
(3) I{)M(X +M) = EMol(xIMol).

Proof. In [6], we can find the proofs of (1) and (2).
(3)

yE I{)M(X + M) <=> QM(Y) = x + M and Y E Pil(O)

<=> x - yE M and llyll = d(x, M)

<=> y E EMol(xIMol).

COROLLARY 3.4 [6]. Let M be a proximinal subspace of X. Then
(1) For each x EX,

PM(X) = x - EMol(xIMol).

(2) PM is T.S.C. at x if and only if EMol is T.S.C. at XIMol. (Here
T = u, I, u.H., or I.H)

(3) PM is Lipschitz contmous (resp. linear) if and only if EMol is
Lipschitz continuous (reap. linear).

(4) PM has a continuous (resp. Lipschitz continuous, linear) selec
tion if and only if EMol has a continuous (resp. Lipschitz continuous,
linear) selection.

(5) PM has a linear selection ifand only ifEMol has a linear selection
with norm one.

Proof. Note that for x E X, we have

d(x,M) = IIXIMollI.

The mapping i : X/M -t XIMol defined by i(x + M) = XIMol is an
(linear) isometry and by Lemma 3.2, I{)M = EMol 0 i. It follows from
Theorems 2.8 and 2.9, Lemma 2.11, and Lemma 3.2.
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4. Hahn-Banach Extensions
In this section we replace X by X* and M by M..L in section 2 and

thereby deduce results relating approximative properties of M..L with
properties of extending continuous linear functionals on M to all of X.

DEFINITION 4.1. For a subspace of X and m* E M*, let NM(m*)
denote the set of all Hahn-Banach extensions of m*; that is,

NM(m*) = {x* E X*: X*IM = m*, IIx*II = IIm*I/}.

By Hahn-Banach theorem, NM : M* ~ 2X -\{0}.

LEMMA 4.2. Let f be a o'(X*, X)-c1osed linear subspace ofX* and
f E X*. Then cpr(f +r) = N.1.rUI.1.r)·

Proof. Sinced f is a u(X*, X)-closed linear subspace of X*, f is
proximinal in X*. Then

9 E cprU + ~) ~ 9 E Pi1(O) and f - 9 E f

~ f - 9 E f and IIgll = dU, f)

~ f/.1.r = gl.1.r and 11911 = dU, f)

~ fl.1.r =gl.1.r and 11911 = IIfl.1.rll = dU, f)

~ 9 E N.1.rUI.1.r)·

COROLLARY 4.3 [6]. Let M be a closed subspace of X. Then:
(1) For each x* E X*,

PM.1.(x*) = x* - N.1.CM .1.)(x*I.1.(M.1.)

= x* - NM(x*IM)

(2) PM.1. is T.S.C. at x* if and only if N M is T.S.C. at X*/M. (Here
T = u, l,u.H, or l.H)

(3) PM.1. is Lipscmtz continuous (resp. linear) if and only if NM is
Lipscmtz continuous (resp. linear).

(4) PM.1. has a continuous (resp. Lipschitz continuous, linear) selec
tion if and only if N M has a continuous (resp. Lipschitz continuous,
linear) selection.
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(5) PM.l has a linear selection if and only ifN M has a linear selection
with noon one.

Proof. Note that for each x* E X*, we have

The mapping i : X* /Ml.. -t X*IM is an (linear) isometry and, by
Lemma 4.2, 'PM = N M 0 i. It follows from Theorems 2.8 and 2.9,
Lemma 2.11 and Lemma 4.2.

5. Tietze Extensions
In this section we specialize the results of section 2 by taking X =

Co(T), SeT a compact subset, and M = {f E Co(T) : fls = D}. In
this way we deduce connections between approximative properties of
M and Tietze extensions of functions in C(S) to functions in Co(T).

Let T be a locally compact Hausdorff space and let Co(T) be the
linear space of all real continuous functions f on T "vanshing at infin
ity"; that is, {t ET: If(t)l2: c} is compact for each c > D. Endowed
with the supremum norm, Co(T) is a Banach space. Fix any compact
subset S of T, and define M = Ms:= {g E Co(T) : g/s = D}. Then M
is a closed subspace in Co(T).

DEFINITION 5.1. The Tietze extension mapping Ts : C(S) -t 2Co (T)

is defined by

Ts(J) = {F E Co(T) : Fls = f, IIFII = IIfll}·
By the Tietze extension theorem, Ts(J) i= 0 for every f E C(S).

LEMMA 5.2. For each f E Co(T),
(1) Ilflsll = dU, M). (5)
(2) 'PM(j + M) = TsUls).

Proof. (2)

9 E 'PM(J + M) {=:} f - gEM and 9 E PM1(O)

{=:} fls = gls and IIgll = IIflsll = dU, M)

{=:} 9 E Ts(Jls)
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COROLLARY 5.3 [5],[6].
(1) For each f E Co(T),

PM(f) = f - Ts(fls).
In particular, M is proximinal.

(2) PM is r .s.c. at f if and only if Ts is r.s.c. at fls. (Here r =u,
i,u.H., or l.H.)

(3) PM is Lipschitz continuous (resp. linear) if and only if Ts is
Lipschitz continuous (resp. linear).

(4) PM has a linear selection ifand only ifTs has a linear selection.

Prool. Note that for each I E X = Co(T), we have

d(f,M) = IIflsl/.
The mapping i : Co(T)/M -+ C(S) defined by i(f + M) = lis is an
(linear) isometry and by Lemma 5,2,

'PM = Tsoi.
It follows from Theorems 2.8 and 2.9, Lemma 2.11 and Lemma 5.2.

6. Lipschitz Extensions
In this section the results of section 2 are specialized to the case

when X is the set of all Lipschitz functions on a metric space T and M
is the subspace of those functions vanishing on a prescribed subset S
on T. In this case, we deduce a connection between the approximative
properties of M with the set of all Lipschitz extensions of Lipschitz
functions on S to all of T.

DEFINITION 6.1. Let (T, d) be a metric space, H a Hilbert space,
and 0 < Q ~ 1. Fora given nonempty subset S of T, a function
I: S -+ H is said to satisfy a Lipschitz (or Lipschitz-Holder) condition.
of order Cl: on S if

Ilfll = sup {1I/(S) - f(t)1I . s t E S S-I.. t} < 00da,S d(s,t)O!·" r .

I is called bounded on S provided

II/l1s := sup{lI/(s)1I : sE S} < 00.

The set of all bounded Lipschitz functions of order Cl: on S will be
denoted by LipO!(S). We endow LipO!(S) with the norm IIfl/da+s :=

I//l/da,S + II/I/s.
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DEFINITION 6.2. A Lipschitz (or Lipschitz-Holder) extension of lE
Lipcr(S) is any F E Lipcr(T) such that Fls = I and I!FlIdQ+T :=
I!/lIdQ+s. The Lipschitz extension mapping Ls : Lipcr(S) -+ 2LipQ (T)

is defined by

LsU) = {F E LiPa(T) : F is a Lipschitz extension of n.
Fix any subset S of T and define

M = Ms := {f E Lipcr(T) : lis = O}.

Then M is a closed subspace in Lipcr(T).

LEMMA 6.3 [6]. For each I E Lipcr(T),

LEMMA 6.4. For each I E Lipcr(T),

c.pMU + M) = LsUls).

Proof. By Lemma 6.3,

9 E c.pMU + M) {:=> 1- gEM and 9 E PAi(O)

{:=> lIs = 91s and 119!1dQ +T = !I/11dQ +s
{:=> 9 E LsUls).

THEOREM 6.5 [6J. (1) For each I E Lipcr(T),

In particular, M is proximinal.
(2) PM is T.S.C. at I if and only if Ls is T.S.C. at lis. (Here T = U,

1, u.H., or l.H.)
(3) PM is Lipscbitz continuous (resp. linear) if and only if Ls is

Lipscbitz continuous (resp. linear).
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(4) PM has a continuous (resp. linear) selection if and only if L s
has a continuous (resp. linear) selection.

Proof. Note that for each f E Lipa(T), we have

d(j, M) = I/fl/da+s.
The mapping i : Lipa(T)/M -t Lipa(S) defined by i(j +M) = fls is
an (linear) isometry and, by Lemma 6.4,

'PM=Lsoi.

It follows from Theorems 2.8 and 2.9, Lemma 2.11 and Lemma 5.4.
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