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Sets of Complete Continuity

JAE-MYUNG PARK

ABSTRACT. In this paper, we study some properties of sets of com-
plete continuity.

Moreover, we prove that if the subsets C; and C; of a Banach
space X are sets of complete continuity, then so is the set C; x Cy
in the product space X x X.

Throughout this paper, X is a real Banach space. A subset C of
X is called a set of complete continuity if for every finite measure
space (2, X, ) and every bounded linear operator S : Ly(p) — X for
which S(xg/p(E)) belongs to C for each non-null measurable set E,
the operator S is a Dunford-Pettis operator.

A bounded linear operator S : Li(p) — X is a Dunford-Pettis
operator if S sends weakly compact sets into norm compact sets.

The average range of a vector measure F' : ¥ — X is defined to be
the set {F(E)/u(E): E € Z,u(E) > 0}.

It is well-known that any one of the following statements about an
operator S : Ly(u) — X implies all the others [4].

(1) The operator S is a Dunford-Pettis operator.

(2) The restriction of S to Ly(u) defines a compact operator from
Li(p) to X.

(3) The vector measure F defined for E € ¥ by F(E) = S(xg) has
a relatively norm compact range.

We get the following theorem from the above statements.
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THEOREM 1. Let C be a norm closed absolutely convex bounded
subset of X.

Then C is a set of complete continuity if and only if for each finite
measure space (2,3, u) and each p-continuous vector measure F :
¥ — X of bounded variation with average range contained in C, the
measure F' has a relatively norm compact range.

PROOF. Suppose that for each finite measure space (2, X, ) and
each p-continuous vector measure F' of bounded variation with aver-
age range contained in C, F has a relatively norm compact range.

Let S: L;(u) — X be a bounded linear operator with S(xg/u(E))
€ C for each E € 5. Define the vector measure F by F(E) = S(xE)-
Then it is easy to show that F' is a p-continuous vector measure of
bounded variation with F(E)/u(E) € C for each E in . By the
assumption, F' has a relatively norm compact range and hence S is
a Dunford-Pettis operator. This implies that C is a set of complete
continuity. '

Conversely, suppose that C is a set of complete continuity. Let F' be
any p-continuous vector measure of bounded variation with average
range contained in C. Let S : L;(¢) — X be a bounded linear operator
with S(xg) = F(E).

Since S(xg/p(E)) € C, S is a Dunford-Pettis operator. Hence F

has a relatively norm compact range.

THEOREM 2. Let C; and C5 be subsets of X and let C, C C,. If

C, is a set of complete continuity, then so is the set C;.

PROOF. Let (2, %, ) be a finite measure space and let S : Ly(u) —
X be any bounded linear operator such that S(xg/u(E)) € C; for
each non-null measurable set E. Since S(xg/u(E)) € Cy and C; is a
set of complete continuity, S is a Dunford-Pettis operator. Hence C}

is a set of complete continuity.
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THEOREM 3. Let C; and C; be subsets of X. If C; and C, are sets
of complete continuity, then so is the set C, x C; in the product space

X x X.

PROOF. Let (2, X, 1) be a finite measure space and let S : L, () —
X x X be any bounded linear operator for which S(xg/u(E)) € Cy x
C) for each non-null measurable set E. Then §; = PoS : Li(p) - X
and S = P,o S : Lij(u) — X are bounded linear operators such
that S1(xe/u(E)) € C and So(xe/u(E)) € Co, where P, and P, are
projections from X x X to X defined by Pi(z,y) = z, Pe(z,y) = v,
respectively.

Since C); and C; are sets of complete continuity, S; and S, are
Dunford-Pettis operators. If W is a weakly compact subset of L;, then
S(W) is a relatively norm compact set since S1(W) and Sy(W) are
relatively norm compact sets. Hence S is a Dunford-Pettis operator.

This implies that C; x C; is a set of complete continuity.
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