Sets of Complete Continuity

JAE-MYUNG PARK

ABSTRACT. In this paper, we study some properties of sets of complete continuity.

Moreover, we prove that if the subsets C_1 and C_2 of a Banach space X are sets of complete continuity, then so is the set $C_1 \times C_2$ in the product space $X \times X$.

Throughout this paper, X is a real Banach space. A subset C of X is called a *set of complete continuity* if for every finite measure space (Ω, Σ, μ) and every bounded linear operator $S: L_1(\mu) \to X$ for which $S(\chi_E/\mu(E))$ belongs to C for each non-null measurable set E, the operator S is a Dunford-Pettis operator.

A bounded linear operator $S: L_1(\mu) \to X$ is a *Dunford-Pettis* operator if S sends weakly compact sets into norm compact sets.

The average range of a vector measure $F: \Sigma \to X$ is defined to be the set $\{F(E)/\mu(E): E \in \Sigma, \mu(E) > 0\}$.

It is well-known that any one of the following statements about an operator $S: L_1(\mu) \to X$ implies all the others [4].

- (1) The operator S is a Dunford-Pettis operator.
- (2) The restriction of S to $L_1(\mu)$ defines a compact operator from $L_1(\mu)$ to X.
- (3) The vector measure F defined for $E \in \Sigma$ by $F(E) = S(\chi_E)$ has a relatively norm compact range.

We get the following theorem from the above statements.

Received by the editors on May 17, 1992. 1980 Mathematics subject classifications: Primary 28B05.

THEOREM 1. Let C be a norm closed absolutely convex bounded subset of X.

Then C is a set of complete continuity if and only if for each finite measure space (Ω, Σ, μ) and each μ -continuous vector measure $F: \Sigma \to X$ of bounded variation with average range contained in C, the measure F has a relatively norm compact range.

PROOF. Suppose that for each finite measure space (Ω, Σ, μ) and each μ -continuous vector measure F of bounded variation with average range contained in C, F has a relatively norm compact range.

Let $S: L_1(\mu) \to X$ be a bounded linear operator with $S(\chi_E/\mu(E))$ $\in C$ for each $E \in \Sigma$. Define the vector measure F by $F(E) = S(\chi_E)$. Then it is easy to show that F is a μ -continuous vector measure of bounded variation with $F(E)/\mu(E) \in C$ for each E in Σ . By the assumption, F has a relatively norm compact range and hence S is a Dunford-Pettis operator. This implies that C is a set of complete continuity.

Conversely, suppose that C is a set of complete continuity. Let F be any μ -continuous vector measure of bounded variation with average range contained in C. Let $S: L_1(\mu) \to X$ be a bounded linear operator with $S(\chi_E) = F(E)$.

Since $S(\chi_E/\mu(E)) \in C$, S is a Dunford-Pettis operator. Hence F has a relatively norm compact range.

THEOREM 2. Let C_1 and C_2 be subsets of X and let $C_1 \subset C_2$. If C_2 is a set of complete continuity, then so is the set C_1 .

PROOF. Let (Ω, Σ, μ) be a finite measure space and let $S: L_1(\mu) \to X$ be any bounded linear operator such that $S(\chi_E/\mu(E)) \in C_1$ for each non-null measurable set E. Since $S(\chi_E/\mu(E)) \in C_2$ and C_2 is a set of complete continuity, S is a Dunford-Pettis operator. Hence C_1 is a set of complete continuity.

THEOREM 3. Let C_1 and C_2 be subsets of X. If C_1 and C_2 are sets of complete continuity, then so is the set $C_1 \times C_2$ in the product space $X \times X$.

PROOF. Let (Ω, Σ, μ) be a finite measure space and let $S: L_1(\mu) \to X \times X$ be any bounded linear operator for which $S(\chi_E/\mu(E)) \in C_1 \times C_2$ for each non-null measurable set E. Then $S_1 = P_1 \circ S: L_1(\mu) \to X$ and $S_2 = P_2 \circ S: L_1(\mu) \to X$ are bounded linear operators such that $S_1(\chi_E/\mu(E)) \in C_1$ and $S_2(\chi_E/\mu(E)) \in C_2$, where P_1 and P_2 are projections from $X \times X$ to X defined by $P_1(x,y) = x$, $P_2(x,y) = y$, respectively.

Since C_1 and C_2 are sets of complete continuity, S_1 and S_2 are Dunford-Pettis operators. If W is a weakly compact subset of L_1 , then S(W) is a relatively norm compact set since $S_1(W)$ and $S_2(W)$ are relatively norm compact sets. Hence S is a Dunford-Pettis operator. This implies that $C_1 \times C_2$ is a set of complete continuity.

REFERENCES

- [1] J. Bourgain, D.H. Fremlin & M. Talagrand, Poinwise compact sets of Baire-measurable functions, Amer. J. Math. 100 (1978), 845-886.
- [2] J. Diestel & J.J. Uhl, Jr., Vector measures, Math. Surveys 15, Amer. Math. Soc., Providence, 1977.
- [3] K. Musial, The weak Radon-Nikodym property in Banach spaces, Studia Math. 64 (1978), 151-174.
- [4] L.H. Riddle, E. Saab & J.J. Uhl, Jr., Sets with the Weak Radon-Nikodym Property in Dual Banach Spaces, Indiana Univ. Math. Journal 32 (1983), 527-541.
- [5] G. Stegall, The Radon-Nikodym Property in conjugate Banach Spaces, Trans. Amer. Math. Soc. 264 (1981), 507-519.

Department of Mathematics Chungnam National University Taejon, 305-764, Korea