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Sets of Complete Continuity

Jae-Myung Park

Abstract. In this paper, we study some properties of sets of com­
plete continuity.

Moreover, we prove that if the subsets Ci and C, of a Banach 
space X are sets of complete continuity, then so is the set C\ x C, 
in the product space X x X.

Throughout this paper, X is a real Banach space. A subset C of 

X is called a set of complete continuity if for every finite measure 

space (JI, S,/z) and every bounded linear operator S : Li(jlz) -느 X for 

which S(xe//z(B)) belongs to C for each non-null measurable set E, 

the operator S is a Dunford-Pettis operator.

A bounded linear operator S : Xi(/i) —> X is a Dunford-Pettis 

operator if S sends weakly compact sets into norm compact sets.

The average range of a vector measure F : E —> X is defined to be 

the set {F(E)/山JE) : E G > 0}.

It is well-known that any one of the following statements about an 

operator S : 1八(卜) —> X implies all the others [4].

(1) The operator S is a Dunford-Pettis operator.

(2) The restriction of S to 刀i(/z) defines a compact operator from 

Li(/z) to X.

(3) The vector measure F defined for G E by F(E) = S(xe) has 

a relatively norm compact range.

We get the following theorem from the above statements.
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THEOREM 1. Let C be a norm closed absolutely convex bounded 

subset of X.

Then C is a set of complete continuity if and only if for each finite 

measure space (Q, E, and each /i-continuous vector measure F : 

S — X of bounded variation with average range contained in (7, the 

measure F has a relatively norm compact range.

PROOF. Suppose that for each finite measure space (Q,S,/i) and 

each //-continuous vector measure F of bounded variation with aver­

age range contained in C, F has a relatively norm compact range.

Let S : Li(/i) — X be a bounded linear operator with S(xe/P>(Ey) 

€ C for each 乃 6 E. Define the vector measure F by F(E) = S(xe). 

Then it is easy to show that F is a ^-continuous vector measure of 

bounded variation with F(E)/€ C for each E in E. By the 

assumption, F has a relatively norm compact range and hence S is 

a Dunford-Pettis operator. This implies that C is a set of complete 

continuity.

Conversely, suppose that C is a set of complete continuity. Let F be 

any /z-continuous vector measure of bounded variation with average 

range contained in C. Let S : Li (丄i) —> X be a bounded linear operator 

with S(xe) = F(E).
Since S{xeI나(E)) € C, S' is a Dunford-Pettis operator. Hence F 

has a relatively norm compact range.

THEOREM 2. Let C\ and C2 be subsets of X and let C\ C C2- If 

C2 is a set of complete continuity, then so is the set C\.

PROOF. Let (Q, E, /』) be a finite measure space and let S : Zq(/x) — 

X be any bounded linear operator such that S(乂旧/以乃)) € Ci for 

each non-null measurable set E. Since ^(乂日//』(乃)) € 6*2 and C2 is a 

set of complete continuity, S is a Dunford-Pettis operator. Hence Ci 

is a set of complete continuity.
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THEOREM 3. Let C\ and C2 be subsets of X. If C\ and C2 are sets 

of complete continuity, then so is the set x C2 in the product space 

X xX.

PROOF. Let (f>, S, 아) be a finite measure space and let S : 1八(卜) —> 

X x X be any bounded linear operator for which S(xe//z(B)) € Ci x 

C*2 for each non-null measurable set E. Then Si = P10S : Li(/i) — X 

and S2 = P2 令 S : — X are bounded linear operators such

that Si(y흐//z(E)) G Ci and S^Xe/仏E}) € C2, where F\ and P2 are 

projections from X x X to X defined by Pi(x^y) = P2{x^y) = 이,

respectively.

Since Ci and C2 are sets of complete continuity, S\ and S2 are 

Dunford-Pettis operators. If VT is a weakly compact subset of Zq, then 

S(W) is a relatively norm compact set since Si(W) and S2(W) are 

relatively norm compact sets. Hence S is a Dunford-Pettis operator. 

This implies that Ci x C2 is a set of complete continuity.
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