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Radicals of fixed subrings under Jordan automorphisms

KANG-Joo MIN

ABSTRACT. Let R be an associative ring and let G be a finite group
of Jordan automorphisms of R. Let R be the set of elements in R
fixed by all ¢ € G.

In this paper we will study the relationship between the Levitzki
radical of R and R as that a Jordan ring. We also show that if R
is a P.I. algebra, then the algebraicity of RS implies the algebraicity
of R.

Let R be an associative ring. By an automorphism of R, we will
mean an ordinary automorphism of R as an associative ring. We let
Aut(R) denote the group of all automorphisms of R. If A is an additive
subgroup of R, A is a (quadratic) Jordan subring of R if A4 is closed
under squares (that is, 22 € A if z € A) and under the quadratic

operator U, = yzy. Any Jordan subring A necessarily satisfies
@) zy+yx € A whenever =z,y € A.

If R has no 2-torsion(i.e. 2a = 0 implies a = 0 for every a € R), then
the additive subgroup A with the condition (J) is a Jordan subring.

A mapping ¢ : R — R’ of rings R and R’ is a Jordan homomor-
phism if ¢ preserves the structure of R as a Jordan ring; that is, ¢
is additive, ¢(z?) = ¢(z)? all = € R, and ¢(zyz) = ¢(z)d(y)d(z), all
z, y € R. A Jordan automorphism of R is simply a Jordan homo-

morphism which is also one to one and onto; we let Aut;(R) denote
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the group of all Jordan automorphisms of R. Let G be a subgroup
of Auty(R). For g € G and r € R, r’ means the image of r under g.
The fixed ring of R under G is R® = {r e R|r?9 =r for all g € G}.
Clearly RC is a Jordan subring of R.

Now say that G is finite with |G| = n. For z € R, the trace of

T is trg(z) = ) z9. If there is no ambiguity about which group is
9€G
involved, we simply write trg(z) = tr(z). Note that tr(z) € RS.

A mapping * : R — R is called an involution if (1) a** = a,

(2) (a +b)* = a* + b*, (3) (ad)* = b*a* for all a, b € R.

When R has an involution *, and G = {e, *} where e is the identity
of G, we say that G is generated by involution *. In this situation,
RC = {z € G | z* = z} = SR, the symmetric elements in R.

If I is an ideal of R, we say that I is G-invariant if IY < I, for
all ¢ € G. When I is G-invariant, R = R/I has an induced group of
automorphisms, given as follows: for ¢ € G, define § by (z + I)? =
z9 4+ 1.

Let K be the kernel of the mapping ¢ — §, and let G = G/K.
Then G is a group of automorphisms of R. Clearly RG C I_ZG, where
RS denotes the image of RS in R.

THEOREM 1. Let ¢ : R — R’ be a Jordan homomorphism of R
onto a prime ring R'. Then ¢ is either a homomorphism or an anti-

homomorphism [5].

COROLLARY 2. Let ¢ be a Jordan automorphism of R and let P
be a prime ideal of R. Then P? is a prime ideal of R. Moreover, the

prime ring R/P and R/P? are either isomorphic or anti-isomorphic

8].

COROLLARY 3. Let R be a prime ring, and G a group of Jordan
automorphisms of R. Let H be the subgroup of G consisting of all
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automorphisms. If H # G, then [G : H] = 2. Moreover, G/H induces
an involution * on the associative ring R¥ as followings:

Choose g € G, g ¢ H, and let z* = 29, for any + € R¥. The
involution is independent of the choice of ¢, and the set of symmetric

elements Spr of R under * is precisely the set RC.[8]

The Levitzki radical of R, which we shall denote by L(R) is defined
as the sum of all locally nilpotent ideals of R and R is Levitzki-semi-
simple (L-semisimple) if L(R) = 0.

It is well-known that the Levitzki radical L(R) of an associative
ring R is the intersection of all the prime ideals P of R for which R/P
is Levitzki-semi-simple [4].

The Levitzki radical of a Jordan ring A, which we shall denote by
L(A), is defined as the sum all locally solvable ideals of A and A is
Levitzki-semi-simple if L(A) = 0.

It is also known that the Levitzki radical L(J) of a Jordan ring
J is the intersection of all prime ideals P, of J for which J/P, is

Levitzki-semi-simple [10].

LEMMA 4. (Bergman and Isaacs). Let G be finite group of auto-
morphisms acting on an associative ring R such that R has no |G|-
torsion. Then if R® (or more generally tr(R)) is nilpotent, then R is
nilpotent.

THEOREM 5. (Beidar). Let G be a finite group of automorphisms

acting on an associative ring R such that |G| is a bijection on R.
Then L(R®) = L(R) N RS.

We are now ready to prove one of our main theorems.

THEOREM 6. Let R be an associative ring and let G be a group -
of Jordan automorphisms of R. Assume that |G| is a bijection on R,

and RC is locally nilpotent. Then R is locally nilpotent.
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PROOF. We proceed by induction on |G]|.

If n =1, then R = R® and there is nothing to prove.

Thus, assume that for any group K of Jordan automorphisms with
|K| < |G|, the theorem is true. To show that R is locally nilpotent,
that is, L(R) = R, we show that there is no proper prime ideal P such
that R/P is Levitzki-semi-simple. Now assume to the contrary that
there is a proper prime ideal P such that R/P is Levitzki-semi-simple.

We first assume that P is G-invariant, that is,

PICP for ge€a@G.

Let R= R/P. R® C RS = RS/P N R®. Thus L(R") = L(R®) =
RG. We may therefore reduce to the case when R is Levitzki-semi-
simple and R is prime. Now since R is prime, every Jordan auto-
morphism is either an automorphism or an anti-automorphism by
Theorem 1.

Let H be the subgroup of G consisting of automorphisms. If H = G,
then by Theorem 5, we have R® = L(R%) = R® n L(R) = (0). If
RC = (0), then by Lemma 4, R is nilpotent. Thus R = L(R) = (0).
If H is a proper subgroup of G, then H is a subgroup of index 2.
By Theorem 5, L(R¥) = L(R) N R¥. The fixed ring R¥ is equipped
with the involution induced by the action of G/H by Corollary 3. Let
Sgr be the symmetric elements in R¥. Actually in this case the fixed
subring RS of G is just Sgr. So by M. Rich [9], we have

L(R®) = R% = L(Sgn) = Spu N L(R") = R° N L(R) = (0).

But this implies that by Lemma 4, R is nilpotent. L(R) = R = (0).

We may therefore assume that P is not G-invariant. Let I = (] P?.
9€G
Then I is G-invariant.
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I is a Levitzki-semi-simple ideal of R, that is R/I is Levitzki-
semi-simple. As in the previous case, after passing to R = R/I, we
may assume that R is Levitzki-semi-simple with (). P = (0). Let
orb P = {P? | g € G} and m be the smallest positive integer such that,

for any choice of m distinct members of orb P, say P, P,,..., P,, we

have ﬁ P; =(0). Clearly m < n. lf m =1, then P = (0).
=1
This says that P is G- mvarlant a contradiction.

- We may assume that m > 1. Now by the minimality of m, there
exist m — 1 distinct members Py, P,,..., P,_; of orb P such that V =

n P; #(0). Let K = {g € G| permutes P, P,,...,Pp1}.If K =G,
=1
we have a contradiction since G is transitiveon orbP and m—1 < m.

Thus K is a proper subgroup of G. Since |K| divides |G|, | K] is a
bijection on R. In fact, |K| is a bijection on V. For, clearly V has no
| K|-torsion and R/V is semiprime. |K| is a bijection on R/V.

Indeed |K|R/V = R/V and |K|r € V implies |K|rR C V and
r|K|Rr =rRr C V.

Hence r € V and R/V is |K|-torsion free. Thus |K|V = V and K is
a bijection on V. Now V is a K-invariant ideal of R. Let Anng(V) =
{r € R|Vr =(0)}. Since V is an ideal in R, Anng(V) is a two-sided
ideal in R. Let J = ﬂ Annpg(V')?. Since V is a semiprime ideal in

R, VNAmgp(V) = (0) and so VNJ = (0). For, VN Anng(V) is a
nilpotent ideal in R. For any z € V, trg(z) = trx(z) + c¢(z) where

c(z) = ) 9.
9¢K
Since V is K-invariant, trx(z) € V and trg(z) € VK. If g ¢ K,

then for some P, P/ ¢ {Pl,...,Pm_l}. Thus 29 € P/ and 29V =
Va? = (0) since 29V C P’N(P,N---N Pp_1) = (0) by the minimality
of m. Thus ¢(z) € Anng(V). Since c(ac)h = ¢(z) for any h € K,
c(z) € J and ¢(z) € JX.

Therefore we have trg(y), c¢(z) = 0. Now we prove that the fixed
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subring V¥ of V under the action of K is (Jordan) locally nilpotent.
Denote (trg(z1),...,tre(zm)) and (trx(z1),...,trx(zm)) the (Jor-
dan) subrings of R and V¥ respectively, generated by {trg(z1),...,
trg(zm)} and {trx(z1),...,trx(zm)} for z,,...,2, € V, then, for

any positive integer m and nonnegative integers qi,...,gm, we have
m m m
H trg(z;)" = H tri(z;)" + H c(z)¥
=1 =1 =1
m m
Hence [] trg(z;)% = 0 implies [] trg(z;)* = 0since VN J = 0.
=1 i=1
Now since RC is locally nilpotent, (trg(z1),...,tre(zm)) is (Jor-
dan) nilpotent for every zi,...,z, € V and hence (trx(zi),...,

trik(zm)) is (Jordan) nilpotent. Since | K| is a bijectionon V, trg (V) =
VK. Thus VX is locally nilpotent. By induction hypothesis, we have
L(V) = V # (0). Hence R is not Levitzki semi-simple. This is a
contradiction.

Therefore there is no proper prime ideal P such that R/P is Lev-

itzki semi-simple. Hence R is locally nilpotent.
LEMMA 7. IfbRb is locally nilpotent, then bR is locally nilpotent.

PROOF. Let (b%ry,b?ry,...,b%r,) be the subring of R generated by
b*ry,...,
b%r,,. Then for any positive integers m and ¢i,...,qm, ﬁ(b"’n ) =
b(br1b),. .., (bryb)?m-1br,,. Hence the local nilpotenc3;=c1>f bRb im-
plies that of bR.

With the help of Lemma 7 we get one of our main results.

LEMMA 8. Let R be an associative ring. Let G be a group of Jordan
automorphisms of R and |G| be a bijection on R.
Then (1) if R is Levitzki semi-simple, then RS is Levitzki semi-

simple.
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(2) L(R®) = R® N L(R).

PROOF. (1) Let b € L(R®). Then bR®b = (bRb)® C L(R®). So
bRCb is locally nilpotent and hence bRb is locally nilpotent by Theo-
rem 6.

Now by Lemma 7, b?R is locally nilpotent. So >R N L(R) = (0).
Since 5% = 0 for all b € L(R®) and R is semiprime, by Lemma 3.18,
L(R®) = (0).

(2) Since L(R) N RE is a locally nilpotent ideal of R®, the inclusion
L(R) N RS C L(RS) is obvious. Now for other inclusion we need to
show that L(R®) C L(R).

For any prime ideal P of R for which R/P is Levitzki semi-simple,

(N P?¢ is a G-invariant semiprime ideal in R. Let R = R/ (| P4.

9€G B 9€G
Then R is Levitzki semi-simple and R =RC = RC/R°n N P9 =
9€G

RG/P N RC. Since R is Levitzki semi-simple R = RS/P N RS is
Levitzki semi-simple. Hence L(R®) C P N RS for all prime ideal P
for which R/P is Levitzki semi-simple. Therefore L(R®) C L(R)N R®
and so L(R®) = R° N L(R).

We consider the transferring of the algebraicity from R® to R.
Let A be an associative algebra over a field ®. N. Jacobson [6]
defined the algebraic kernel as the maximal algebraic ideal which con-

tains every algebraic ideal in A.

THEOREM 9. (Kharchenko). Let R be an associative algebra which
is P.I. R is a ring with involution *. Let S be the set of all symmetric
elements of R. If S is algebraic over ®. Then R is algebraic over ®.

ul

THEOREM 10. (Armendariz). Let R be an associative P.I. algebra
over ® and G be a finite group of automorphisms of R such that |G|



82 KANG-JOO MIN

induces a bijection on R. If R® is an algebraic algebra over ®, then R

is an algebraic algebra over ®. [1]

THEOREM 11. Let R be an associative P.I. algebra over a field
® and G a group of Jordan automorphisms of R such that |G| is a
bijection on R. Then if R® is algebraic over ®, then R is algebraic

over P.

PROOF. We proceed by induction on |G|.

If |G| = 1, then R = R® and we are done. Suppose that the the-
orem is true for any groups K < Auty;(R) with |K| < |G|. Now
assume to the contrary that R is not algebraic over ®. Then there
exists ¢ € R which is transcendental over ®. Let P be a maximal
ideal with respect to the property P N ®[z] = (0). Let S = {I |
I is a two-sided ideal in R,I N ®[z] = (0)}. By Zorn’s lemma, such a
maximal ideal P exists.

We note that ®[z] is an integral domain. We first prove that P
is a prime ideal in R. Let A and B be two-sided ideals in R such
that A C Pand B C P. Then A+ P # P and B+ P # P: Since
(A+ P)N®[z] # (0) and (B + P) N ®[z] # (0), there exists f(z) # 0,
g(z) # 0 in ®[z] such that f(z) € A+ P and g(z) € B 4+ P. Thus
0 # f(z)g9(z) € (A+P)(B+P)=AB+ P.

Hence AB C P. Therefore P is a prime ideal in R. We claim that
R/ P has zero algebraic kernel.

If not, we have a nonzero algebraic ideal I/P of R/P. Thus I N
®[z] # (0) by the maximality of P. Take up 0 # f(z) € I N ®[z].
Then f(z) + P is an algebraic element in R/P. There exists not all
zero elements ag,a—1,...,a; in ® such that aof(z) +a; f(z)""1+-- -+
ai-1 f(z)+a; € PNg[z] and so aof(z)' +a1 f(z) "+ - 4 ai-1 f(z)+a; =
0. We claim that ag = a; = --- = a;—; = a; = 0. We proceed this by
induction on t. When t = 1, let f(z) = i bzt with b; € ® and b" # 0.

i=1
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Then ag (Z b;:z:i) +a; = 0. Thus agb, = 0. Hence ap = 0 and a; = 0.
=0
Suppose that this true for ¢t — 1. From

0=aof(z)' +--- + a1 f(z) + a

n t n
= ag (Z biwi) +-+a (Z bi:vi) + ataebl, =0

1=0 1=0

and hence ap = 0. Thus we have

n t-1 n

0=a (Z bixi) +ota (Z bi:v’) + a;
i=1 i=0

By induction hypothesis, a; = --- = a;1 = a; = 0 and so ap = a; =

coe=a; = 0.

This is a contradiction to the fact that f(z) # 0.

Therefore R/P has zero algebraic kernel. Now to proceed the in-
duction process, we divide the following two cases. First we consider
the case that P is G-invariant. Let R = R/P. Then R® = RS and
R is a prime P.I. algebra. By Theorem 1. § is an automorphism or
anti-automorphism for all ¢ € G. By Theorem 9 and 10 R is alge-
braic over ®. But since R/P has zero algebraic kernel, R = P and

so R = (0). This is a contradiction. We may therefore assume that

P is not G-invariant. Let R = R/ (| P?. Then since R/P has zero
teG
algebraic kernel, P contains the algebraic kernel. Since R/P =& R/9P

or R/PJ is anti-isomorphic to R/PY for each ¢ € G, P? contains
the algebraic kernel of R for each ¢ € G. Hence () P? contains

9€G
the algebraic kernel of R. Thus R/ (| P? has zero algebraic kernel.
9€G
We may assume that R has zero algebraic kernel and () P? = (0).
9€G

Let orbP = {P9 | g € g}, and let m be the smallest positive in-

teger such that for any choice of m distinct members of orb P, say
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P,P,...,P,, we have ﬁ P; = (0). Clearly m < n. If m = 1, then
=1

P = (0). This says that P is G-invariant, a contradiction. We may
therefore assume that m > 1. Let V = P,N---N P,_1 # (0). Let
K = {g € G | g permutes Py, P,...,Pp_1}, then K # G.

Thus V is K-invariant and | K| induces a bijection on V. We claim
that VX is algebraic. Let 2 € V and trg(z) = trg(z) + ¢(z) where

c(z) = Y z9. As the proof of Theorem 6 V,(z) = ¢(z)V = (0) for all
9¢K
z € V. Since RS is algebraic over ® and trg(z) € RC, there exists

ag,ay,...,a, € ®, not all zero such that
ao(trg(z))" + ar(trg(z))* ' + -+ + @noa(tre(e)) + an =0
aoltrx ()" + ¢(z)"] + a1[(trx(2)" " + ()" ']+
oot an_ftrr(z) + e(z)] +ao=0
aotr(z)" + artr(z)" ™' + -+ + apoatrg(z) + an + aoc(z)”
+a1e(z)" ™ + -+ anore(z) =0

But as in the proof of Theorem 6
aotr(z)* + artrg(z)" ' + -+ + apatrr(z) +a, €V
and

ao(c(z))* + are(z)" ™ + -+ ap_ic(z) € T = m Ann(V').
9€G

Since V N J = (0),
aotrr(z)" + aytrg(z)" + - + apatri(z) + an = 0.

Thus VK = trgV is algebraic over . By induction on |G|, V is an
algebraic ideal in R, V # (0). This is a contradiction. This proves the

theorem.
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