Radicals of fixed subrings under Jordan automorphisms

Kang-Joo Min

Abstract

Let R be an associative ring and let G be a finite group of Jordan automorphisms of R. Let R^{G} be the set of elements in R fixed by all $g \in G$.

In this paper we will study the relationship between the Levitzki radical of R^{G} and R as that a Jordan ring. We also show that if R is a P.I. algebra, then the algebraicity of R^{G} implies the algebraicity of R.

Let R be an associative ring. By an automorphism of R, we will mean an ordinary automorphism of R as an associative ring. We let $\operatorname{Aut}(R)$ denote the group of all automorphisms of R. If A is an additive subgroup of R, A is a (quadratic) Jordan subring of R if A is closed under squares (that is, $x^{2} \in A$ if $x \in A$) and under the quadratic operator $x U_{y}=y x y$. Any Jordan subring A necessarily satisfies

$$
\begin{equation*}
x y+y x \in A \quad \text { whenever } \quad x, y \in A . \tag{J}
\end{equation*}
$$

If R has no 2 -torsion(i.e. $2 a=0$ implies $a=0$ for every $a \in R$), then the additive subgroup A with the condition (J) is a Jordan subring.

A mapping $\phi: R \rightarrow R^{\prime}$ of rings R and R^{\prime} is a Jordan homomorphism if ϕ preserves the structure of R as a Jordan ring; that is, ϕ is additive, $\phi\left(x^{2}\right)=\phi(x)^{2}$ all $x \in R$, and $\phi(x y x)=\phi(x) \phi(y) \phi(x)$, all $x, y \in R$. A Jordan automorphism of R is simply a Jordan homomorphism which is also one to one and onto; we let $\operatorname{Aut}_{J}(R)$ denote

1980 Mathematics subject classifications: Primary 16N20.
the group of all Jordan automorphisms of R. Let G be a subgroup of $\operatorname{Aut}_{J}(R)$. For $g \in G$ and $r \in R, r^{g}$ means the image of r under g. The fixed ring of R under G is $R^{G}=\left\{r \in R \mid r^{g}=r\right.$ for all $\left.g \in G\right\}$. Clearly R^{G} is a Jordan subring of R.

Now say that G is finite with $|G|=n$. For $x \in R$, the trace of x is $\operatorname{tr}_{G}(x)=\sum_{g \in G} x^{g}$. If there is no ambiguity about which group is involved, we simply write $\operatorname{tr}_{G}(x)=\operatorname{tr}(x)$. Note that $\operatorname{tr}(x) \in R^{G}$.

A mapping $*: R \rightarrow R$ is called an involution if (1) $a^{* *}=a$,
(2) $(a+b)^{*}=a^{*}+b^{*},(3)(a b)^{*}=b^{*} a^{*}$ for all $a, b \in R$.

When R has an involution $*$, and $G=\{e, *\}$ where e is the identity of G, we say that G is generated by involution $*$. In this situation, $R^{G}=\left\{x \in G \mid x^{*}=x\right\}=S_{R}$, the symmetric elements in R.

If I is an ideal of R, we say that I is G-invariant if $I^{g} \leq I$, for all $g \in G$. When I is G-invariant, $R=R / I$ has an induced group of automorphisms, given as follows: for $g \in G$, define \bar{g} by $(x+I)^{\bar{g}}=$ $x^{g}+I$.

Let K be the kernel of the mapping $g \rightarrow \bar{g}$, and let $\bar{G}=G / K$. Then \bar{G} is a group of automorphisms of R. Clearly $R^{\bar{G}} \subseteq \bar{R}^{\bar{G}}$, where $R^{\bar{G}}$ denotes the image of R^{G} in \bar{R}.

Theorem 1. Let $\phi: R \rightarrow R^{\prime}$ be a Jordan homomorphism of R onto a prime ring R^{\prime}. Then ϕ is either a homomorphism or an antihomomorphism [5].

Corollary 2. Let ϕ be a Jordan automorphism of R and let P be a prime ideal of R. Then P^{ϕ} is a prime ideal of R. Moreover, the prime ring R / P and R / P^{ϕ} are either isomorphic or anti-isomorphic [8].

Corollary 3. Let R be a prime ring, and G a group of Jordan automorphisms of R. Let H be the subgroup of G consisting of all
automorphisms. If $H \neq G$, then $[G: H]=2$. Moreover, G / H induces an involution $*$ on the associative ring R^{H} as followings:

Choose $g \in G, g \notin H$, and let $x^{*}=x^{g}$, for any $x \in R^{H}$. The involution is independent of the choice of g, and the set of symmetric elements $S_{R^{H}}$ of R^{H} under * is precisely the set R^{G}.[8]

The Levitzki radical of R, which we shall denote by $L(R)$ is defined as the sum of all locally nilpotent ideals of R and R is Levitzki-semisimple (L-semisimple) if $L(R)=0$.

It is well-known that the Levitzki radical $L(R)$ of an associative ring R is the intersection of all the prime ideals P of R for which R / P is Levitzki-semi-simple [4].

The Levitzki radical of a Jordan ring A, which we shall denote by $L(A)$, is defined as the sum all locally solvable ideals of A and A is Levitzki-semi-simple if $L(A)=0$.

It is also known that the Levitzki radical $L(J)$ of a Jordan ring J is the intersection of all prime ideals P_{α} of J for which J / P_{α} is Levitzki-semi-simple [10].

Lemma 4. (Bergman and Isaacs). Let G be finite group of automorphisms acting on an associative ring R such that R has no $|G|-$ torsion. Then if R^{G} (or more generally $\operatorname{tr}(R)$) is nilpotent, then R is nilpotent.

Theorem 5. (Beidar). Let G be a finite group of automorphisms acting on an associative ring R such that $|G|$ is a bijection on R.

Then $L\left(R^{G}\right)=L(R) \cap R^{G}$.
We are now ready to prove one of our main theorems.
Theorem 6. Let R be an associative ring and let G be a group of Jordan automorphisms of R. Assume that $|G|$ is a bijection on R, and R^{G} is locally nilpotent. Then R is locally nilpotent.

Proof. We proceed by induction on $|G|$.
If $n=1$, then $R=R^{G}$ and there is nothing to prove.
Thus, assume that for any group K of Jordan automorphisms with $|K|<|G|$, the theorem is true. To show that R is locally nilpotent, that is, $L(R)=R$, we show that there is no proper prime ideal P such that R / P is Levitzki-semi-simple. Now assume to the contrary that there is a proper prime ideal P such that R / P is Levitzki-semi-simple. We first assume that P is G-invariant, that is,

$$
P^{g} \subseteq P \quad \text { for } \quad g \in G
$$

Let $\bar{R}=R / P . \bar{R}^{\bar{G}} \subseteq R^{\bar{G}} \cong R^{G} / P \cap R^{G}$. Thus $L\left(\bar{R}^{\bar{G}}\right)=L\left(R^{\bar{G}}\right)=$ $R^{\bar{G}}$. We may therefore reduce to the case when R is Levitzki-semisimple and R is prime. Now since R is prime, every Jordan automorphism is either an automorphism or an anti-automorphism by Theorem 1.

Let H be the subgroup of G consisting of automorphisms. If $H=G$, then by Theorem 5, we have $R^{G}=L\left(R^{G}\right)=R^{G} \cap L(R)=(0)$. If $R^{G}=(0)$, then by Lemma $4, R$ is nilpotent. Thus $R=L(R)=(0)$. If H is a proper subgroup of G, then H is a subgroup of index 2 . By Theorem $5, L\left(R^{H}\right)=L(R) \cap R^{H}$. The fixed ring R^{H} is equipped with the involution induced by the action of G / H by Corollary 3 . Let $S_{R^{H}}$ be the symmetric elements in R^{H}. Actually in this case the fixed subring R^{G} of G is just $S_{R^{H}}$. So by M. Rich [9], we have

$$
L\left(R^{G}\right)=R^{G}=L\left(S_{R^{H}}\right)=S_{R^{H}} \cap L\left(R^{H}\right)=R^{G} \cap L(R)=(0) .
$$

But this implies that by Lemma $4, R$ is nilpotent. $L(R)=R=(0)$.
We may therefore assume that P is not G-invariant. Let $I=\bigcap_{g \in G} P^{g}$. Then I is G-invariant.
I is a Levitzki-semi-simple ideal of R, that is R / I is Levitzki-semi-simple. As in the previous case, after passing to $\bar{R}=R / I$, we may assume that R is Levitzki-semi-simple with $\bigcap_{g \in G} P^{g}=(0)$. Let $\operatorname{orb} P=\left\{P^{g} \mid g \in G\right\}$ and m be the smallest positive integer such that, for any choice of m distinct members of orb P, say $P_{1}, P_{2}, \ldots, P_{m}$, we have $\bigcap_{i=1}^{m} P_{i}=(0)$. Clearly $m \leq n$. If $m=1$, then $P=(0)$.

This says that P is G-invariant, a contradiction.
We may assume that $m>1$. Now by the minimality of m, there exist $m-1$ distinct members $P_{1}, P_{2}, \ldots, P_{m-1}$ of orb P such that $V=$ $\bigcap_{i=1}^{m} P_{i} \neq(0)$. Let $K=\left\{g \in G \mid\right.$ permutes $\left.P_{1}, P_{2}, \ldots, P_{m-1}\right\}$. If $K=G$, we have a contradiction since G is transitive on orb P and $m-1<m$.

Thus K is a proper subgroup of G. Since $|K|$ divides $|G|,|K|$ is a bijection on R. In fact, $|K|$ is a bijection on V. For, clearly V has no $|K|$-torsion and R / V is semiprime. $|K|$ is a bijection on R / V.

Indeed $|K| R / V=R / V$ and $|K| r \in V$ implies $|K| r R \subseteq V$ and $r|K| R r=r R r \subseteq V$.

Hence $r \in V$ and R / V is $|K|$-torsion free. Thus $|K| V=V$ and K is a bijection on V. Now V is a K-invariant ideal of R. Let $\operatorname{Ann}_{R}(V)=$ $\{r \in R \mid V r=(0)\}$. Since V is an ideal in $R, \operatorname{Ann}_{R}(V)$ is a two-sided ideal in R. Let $J=\bigcap_{g \in G} \operatorname{Ann}_{R}(V)^{g}$. Since V is a semiprime ideal in $R, V \cap \operatorname{Ann}_{R}(V)=(0)$ and so $V \cap J=(0)$. For, $V \cap \operatorname{Ann}_{R}(V)$ is a nilpotent ideal in R. For any $x \in V, \operatorname{tr}_{G}(x)=\operatorname{tr}_{K}(x)+c(x)$ where $c(x)=\sum_{g \notin K} x^{g}$.

Since V is K-invariant, $\operatorname{tr}_{K}(x) \in V$ and $\operatorname{tr}_{K}(x) \in V^{K}$. If $g \notin K$, then for some $P_{i}, P_{i}^{g} \notin\left\{P_{1}, \ldots, P_{m-1}\right\}$. Thus $x^{g} \in P_{i}^{g}$ and $x^{g} V=$ $V x^{g}=(0)$ since $x^{g} V \subseteq P_{i}^{g} \cap\left(P_{1} \cap \cdots \cap P_{m-1}\right)=(0)$ by the minimality of m. Thus $c(x) \in \operatorname{Ann}_{R}(V)$. Since $c(x)^{h}=c(x)$ for any $h \in K$, $c(x) \in J$ and $c(x) \in J^{K}$.

Therefore we have $\operatorname{tr}_{K}(y), c(x)=0$. Now we prove that the fixed
subring V^{K} of V under the action of K is (Jordan) locally nilpotent. Denote $\left\langle\operatorname{tr}_{G}\left(x_{1}\right), \ldots, \operatorname{tr}_{G}\left(x_{m}\right)\right\rangle$ and $\left\langle\operatorname{tr}_{K}\left(x_{1}\right), \ldots, \operatorname{tr}_{K}\left(x_{m}\right)\right\rangle$ the (Jordan) subrings of R^{G} and V^{K}, respectively, generated by $\left\{\operatorname{tr}_{G}\left(x_{1}\right), \ldots\right.$, $\left.\operatorname{tr}_{G}\left(x_{m}\right)\right\}$ and $\left\{\operatorname{tr}_{K}\left(x_{1}\right), \ldots, \operatorname{tr}_{K}\left(x_{m}\right)\right\}$ for $x_{1}, \ldots, x_{m} \in V$, then, for any positive integer m and nonnegative integers q_{1}, \ldots, q_{m}, we have

$$
\prod_{i=1}^{m} \operatorname{tr}_{G}\left(x_{i}\right)^{q_{i}}=\prod_{i=1}^{m} \operatorname{tr} r_{K}\left(x_{i}\right)^{q_{i}}+\prod_{i=1}^{m} c\left(x_{i}\right)^{q_{i}}
$$

Hence $\prod_{i=1}^{m} \operatorname{tr}_{G}\left(x_{i}\right)^{q_{i}}=0$ implies $\prod_{i=1}^{m} t r_{K}\left(\dot{x_{i}}\right)^{q_{i}}=0$ since $V \cap J=0$.
Now since R^{G} is locally nilpotent, $\left\langle\operatorname{tr}_{G}\left(x_{1}\right), \ldots, \operatorname{tr}_{G}\left(x_{m}\right)\right\rangle$ is (Jordan) nilpotent for every $x_{1}, \ldots, x_{m} \in V$ and hence $\left\langle\operatorname{tr}_{K}\left(x_{1}\right), \ldots\right.$, $\left.t r_{K}\left(x_{m}\right)\right\rangle$ is (Jordan) nilpotent. Since $|K|$ is a bijection on $V, \operatorname{tr}_{K}(V)=$ V^{K}. Thus V^{K} is locally nilpotent. By induction hypothesis, we have $L(V)=V \neq(0)$. Hence R is not Levitzki semi-simple. This is a contradiction.

Therefore there is no proper prime ideal P such that R / P is Levitzki semi-simple. Hence R is locally nilpotent.

Lemma 7. If $b R b$ is locally nilpotent, then $b^{2} R$ is locally nilpotent.
Proof. Let $\left\langle b^{2} r_{1}, b^{2} r_{2}, \ldots, b^{2} r_{n}\right\rangle$ be the subring of R generated by $b^{2} r_{1}, \ldots$,
$b^{2} r_{n}$. Then for any positive integers m and $q_{1}, \ldots, q_{m}, \prod_{i=1}^{m}\left(b^{2} r_{1}\right)^{q_{i}}=$ $b\left(b r_{1} b\right)^{q_{1}}, \ldots,\left(b r_{m} b\right)^{q_{m-1}} b r_{m}$. Hence the local nilpotency of $b R b$ implies that of $b^{2} R$.

With the help of Lemma 7 we get one of our main results.
Lemma 8. Let R be an associative ring. Let G be a group of Jordan automorphisms of R and $|G|$ be a bijection on R.

Then (1) if R is Levitzki semi-simple, then R^{G} is Levitzki semisimple.
(2) $L\left(R^{G}\right)=R^{G} \cap L(R)$.

Proof. (1) Let $b \in L\left(R^{G}\right)$. Then $b R^{G} b=(b R b)^{G} \subseteq L\left(R^{G}\right)$. So $b R^{G} b$ is locally nilpotent and hence $b R b$ is locally nilpotent by Theorem 6.

Now by Lemma $7, b^{2} R$ is locally nilpotent. So $b^{2} R \cap L(R)=(0)$. Since $b^{2}=0$ for all $b \in L\left(R^{G}\right)$ and R is semiprime, by Lemma 3.18, $L\left(R^{G}\right)=(0)$.
(2) Since $L(R) \cap R^{G}$ is a locally nilpotent ideal of R^{G}, the inclusion $L(R) \cap R^{G} \subseteq L\left(R^{G}\right)$ is obvious. Now for other inclusion we need to show that $L\left(R^{G}\right) \subseteq L(R)$.

For any prime ideal P of R for which R / P is Levitzki semi-simple, $\bigcap_{g \in G} P^{g}$ is a G-invariant semiprime ideal in R. Let $\bar{R}=R / \bigcap_{g \in G} P^{g}$. Then \bar{R} is Levitzki semi-simple and $\bar{R}^{\bar{G}}=R^{\bar{G}}=R^{G} / R^{G} \cap \bigcap_{g \in G} P^{g} \cong$ $R^{G} / P \cap R^{G}$. Since \bar{R} is Levitzki semi-simple $R^{\bar{G}} \cong R^{G} / P \cap R^{G}$ is Levitzki semi-simple. Hence $L\left(R^{G}\right) \subseteq P \cap R^{G}$ for all prime ideal P for which R / P is Levitzki semi-simple. Therefore $L\left(R^{G}\right) \subseteq L(R) \cap R^{G}$ and so $L\left(R^{G}\right)=R^{G} \cap L(R)$.

We consider the transferring of the algebraicity from R^{G} to R.
Let A be an associative algebra over a field Φ. N. Jacobson [6] defined the algebraic kernel as the maximal algebraic ideal which contains every algebraic ideal in A.

Theorem 9. (Kharchenko). Let R be an associative algebra which is P.I. R is a ring with involution *. Let S be the set of all symmetric elements of R. If S is algebraic over Φ. Then R is algebraic over Φ. [7].

Theorem 10. (Armendariz). Let R be an associative P.I. algebra over Φ and G be a finite group of automorphisms of R such that $|G|$
induces a bijection on R. If R^{G} is an algebraic algebra over Φ, then R is an algebraic algebra over Φ. [1]

Theorem 11. Let R be an associative P.I. algebra over a field Φ and G a group of Jordan automorphisms of R such that $|G|$ is a bijection on R. Then if R^{G} is algebraic over Φ, then R is algebraic over $\boldsymbol{\Phi}$.

Proof. We proceed by induction on $|G|$.
If $|G|=1$, then $R=R^{G}$ and we are done. Suppose that the theorem is true for any groups $K \leq \operatorname{Aut}_{J}(R)$ with $|K|<|G|$. Now assume to the contrary that R is not algebraic over Φ. Then there exists $x \in R$ which is transcendental over Φ. Let P be a maximal ideal with respect to the property $P \cap \Phi[x]=(0)$. Let $S=\{I \mid$ I is a two-sided ideal in $R, I \cap \Phi[x]=(0)\}$. By Zorn's lemma, such a maximal ideal P exists.

We note that $\Phi[x]$ is an integral domain. We first prove that P is a prime ideal in R. Let A and B be two-sided ideals in R such that $A \subseteq P$ and $B \subseteq P$. Then $A+P \neq P$ and $B+P \neq P$: Since $(A+P) \cap \Phi[x] \neq(0)$ and $(B+P) \cap \Phi[x] \neq(0)$, there exists $f(x) \neq 0$, $g(x) \neq 0$ in $\Phi[x]$ such that $f(x) \in A+P$ and $g(x) \in B+P$. Thus $0 \neq f(x) g(x) \in(A+P)(B+P)=A B+P$.

Hence $A B \subseteq P$. Therefore P is a prime ideal in R. We claim that R / P has zero algebraic kernel.

If not, we have a nonzero algebraic ideal I / P of R / P. Thus $I \cap$ $\Phi[x] \neq(0)$ by the maximality of P. Take up $0 \neq f(x) \in I \cap \Phi[x]$. Then $f(x)+P$ is an algebraic element in R / P. There exists not all zero elements $a_{0}, a-1, \ldots, a_{t}$ in Φ such that $a_{0} f(x)^{t}+a_{1} f(x)^{t-1}+\cdots+$ $a_{t-1} f(x)+a_{t} \in P \cap \phi[x]$ and so $a_{0} f(x)^{t}+a_{1} f(x)^{t-1}+\cdots+a_{t-1} f(x)+a_{t}=$ 0 . We claim that $a_{0}=a_{1}=\cdots=a_{t-1}=a_{t}=0$. We proceed this by induction on t. When $t=1$, let $f(x)=\sum_{i=1}^{n} b_{i} x^{i}$ with $b_{i} \in \Phi$ and $b^{n} \neq 0$.

Then $a_{0}\left(\sum_{i=0}^{n} b_{i} x^{i}\right)+a_{1}=0$. Thus $a_{0} b_{n}=0$. Hence $a_{0}=0$ and $a_{1}=0$. Suppose that this true for $t-1$. From

$$
\begin{aligned}
0 & =a_{0} f(x)^{t}+\cdots+a_{t-1} f(x)+a_{t} \\
& =a_{0}\left(\sum_{i=0}^{n} b_{i} x^{i}\right)^{t}+\cdots+a_{t-1}\left(\sum_{i=0}^{n} b_{i} x^{i}\right)+a^{t} a_{0} b_{n}^{t}=0
\end{aligned}
$$

and hence $a_{0}=0$. Thus we have

$$
0=a_{1}\left(\sum_{i=1}^{n} b_{i} x^{i}\right)^{t-1}+\cdots+a_{t-1}\left(\sum_{i=0}^{n} b_{i} x^{i}\right)+a_{t}
$$

By induction hypothesis, $a_{1}=\cdots=a_{t-1}=a_{t}=0$ and so $a_{0}=a_{1}=$ $\cdots=a_{t}=0$.

This is a contradiction to the fact that $f(x) \neq 0$.
Therefore R / P has zero algebraic kernel. Now to proceed the induction process, we divide the following two cases. First we consider the case that P is G-invariant. Let $\bar{R}=R / P$. Then $\bar{R}^{\bar{G}}=R^{\bar{G}}$ and \bar{R} is a prime P.I. algebra. By Theorem 1. \bar{g} is an automorphism or anti-automorphism for all $g \in G$. By Theorem 9 and $10 R$ is algebraic over Φ. But since R / P has zero algebraic kernel, $R=P$ and so $\bar{R}=(0)$. This is a contradiction. We may therefore assume that P is not G-invariant. Let $\bar{R}=R / \bigcap_{t \in G} P^{g}$. Then since R / P has zero algebraic kernel, P contains the algebraic kernel. Since $R / P \cong R /{ }^{g} P$ or R / P^{g} is anti-isomorphic to R / P^{g} for each $g \in G, P^{g}$ contains the algebraic kernel of R for each $g \in G$. Hence $\bigcap_{g \in G} P^{g}$ contains the algebraic kernel of R. Thus $R / \bigcap_{g \in G} P^{g}$ has zero algebraic kernel. We may assume that R has zero algebraic kernel and $\bigcap_{g \in G} P^{g}=(0)$. Let orb $P=\left\{P^{g} \mid g \in g\right\}$, and let m be the smallest positive integer such that for any choice of m distinct members of orb P, say
$P_{1}, P_{2}, \ldots, P_{m}$, we have $\bigcap_{i=1}^{m} P_{i}=(0)$. Clearly $m \leq n$. If $m=1$, then $P=(0)$. This says that P is G-invariant, a contradiction. We may therefore assume that $m>1$. Let $V=P_{1} \cap \cdots \cap P_{m-1} \neq(0)$. Let $K=\left\{g \in G \mid g\right.$ permutes $\left.P_{1}, P_{2}, \ldots, P_{m-1}\right\}$, then $K \neq G$.

Thus V is K-invariant and $|K|$ induces a bijection on V. We claim that V^{K} is algebraic. Let $x \in V$ and $\operatorname{tr}_{G}(x)=t r_{K}(x)+c(x)$ where $c(x)=\sum_{g \notin K} x^{g}$. As the proof of Theorem $6 V_{c}(x)=c(x) V=(0)$ for all $x \in V$. Since R^{G} is algebraic over Φ and $\operatorname{tr}_{G}(x) \in R^{G}$, there exists $a_{0}, a_{1}, \ldots, a_{n} \in \Phi$, not all zero such that

$$
\begin{aligned}
& a_{0}\left(\operatorname{tr}_{G}(x)\right)^{n}+a_{1}\left(\operatorname{tr}_{G}(x)\right)^{n-1}+\cdots+a_{n-1}\left(\operatorname{tr}_{G}(x)\right)+a_{n}=0 \\
& a_{0}\left[t r_{K}(x)^{n}+c(x)^{n}\right]+a_{1}\left[\left(\operatorname{tr}_{K}(x)^{n-1}+c(x)^{n-1}\right]+\right. \\
& \quad \cdots+a_{n-1}\left[t r_{K}(x)+c(x)\right]+a_{0}=0 \\
& a_{0} t r_{K}(x)^{n}+a_{1} t r_{K}(x)^{n-1}+\cdots+a_{n-1} \operatorname{tr} r_{K}(x)+a_{n}+a_{0 c}(x)^{n} \\
& \quad+a_{1 c}(x)^{n-1}+\cdots+a_{n-1} c(x)=0
\end{aligned}
$$

But as in the proof of Theorem 6

$$
a_{0} \operatorname{tr}_{K}(x)^{n}+a_{1} \operatorname{tr}_{K}(x)^{n-1}+\cdots+a_{n-1} \operatorname{tr}_{K}(x)+a_{n} \in V
$$

and

$$
a_{0}(c(x))^{n}+a_{1} c(x)^{n-1}+\cdots+a_{n-1} c(x) \in J=\bigcap_{g \in G} \operatorname{Ann}(V)^{g}
$$

Since $V \cap J=(0)$,

$$
a_{0} \operatorname{tr}_{K}(x)^{n}+a_{1} \operatorname{tr}_{K}(x)^{n-1}+\cdots+a_{n-1} t r_{K}(x)+a_{n}=0 .
$$

Thus $V^{K}=\operatorname{tr}_{K} V$ is algebraic over Φ. By induction on $|G|, V$ is an algebraic ideal in $R, V \neq(0)$. This is a contradiction. This proves the theorem.

References

[1] E.P. Armendariz, Groups acting on polynomial identity algebras, unpublished.
[2] K.I. Beider, Rings of invariants for the action of a finite group of automorphisms of a ring, Uspehi Math. Nauk.(Russian) 32 (1977), 159-160.
[3] G. M. Bergman and I.M. Isaacs, Rings with fixed point free group actions, Proc. London Math. Soc. 27 (1973), 69-87.
[4] N. M. Divinsky, Rings and Radicals, Univ. of Toronto Press, Tronto, 1965.
[5] I. N. Herstein, Topics in Ring theory, University of Chicago Press, 1969.
[6] N. Jacobson, Structure of Rings, Amer. Math. Soc., Colloq. Publ. 37, Revised edition, 1964.
[7] V. K. Kharchenko, Generalized identities with automorphisms, Algebra and Logic (transl.) 14 (1976), 132-148.
[8] W. S. Martindale and S. Montgomery, Fixed elements of Jordan automorphisms, Pacific J. Math. 72 (1977), 181-196.
[9] Michael Rich, The Levitzki radical in associative and Jordan rings, J. Algebra 40 (1076), 97-104.
[10] C. Tsai, The Levitzki radical in Jordan rings, Amer. Math. Soc. 24 (1970), 119-123.

Department of Mathematics
Chungnam National University
Taejon, 305-764, Korea

