JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 5, June 1992

Radicals of fixed subrings under Jordan automorphisms

KANG-JOO MIN

ABSTRACT. Let R be an associative ring and let G be a finite group of Jordan automorphisms of R. Let R^G be the set of elements in R fixed by all $g \in G$.

In this paper we will study the relationship between the Levitzki radical of R^G and R as that a Jordan ring. We also show that if R is a P.I. algebra, then the algebraicity of R^G implies the algebraicity of R.

Let R be an associative ring. By an automorphism of R, we will mean an ordinary automorphism of R as an associative ring. We let $\operatorname{Aut}(R)$ denote the group of all automorphisms of R. If A is an additive subgroup of R, A is a (quadratic) Jordan subring of R if A is closed under squares (that is, $x^2 \in A$ if $x \in A$) and under the quadratic operator $xU_y = yxy$. Any Jordan subring A necessarily satisfies

(J) $xy + yx \in A$ whenever $x, y \in A$.

If R has no 2-torsion (i.e. 2a = 0 implies a = 0 for every $a \in R$), then the additive subgroup A with the condition (J) is a Jordan subring.

A mapping $\phi : R \to R'$ of rings R and R' is a Jordan homomorphism if ϕ preserves the structure of R as a Jordan ring; that is, ϕ is additive, $\phi(x^2) = \phi(x)^2$ all $x \in R$, and $\phi(xyx) = \phi(x)\phi(y)\phi(x)$, all $x, y \in R$. A Jordan automorphism of R is simply a Jordan homomorphism which is also one to one and onto; we let $\operatorname{Aut}_J(R)$ denote

Received by the editors on April 25, 1992.

¹⁹⁸⁰ Mathematics subject classifications: Primary 16N20.

KANG-JOO MIN

the group of all Jordan automorphisms of R. Let G be a subgroup of $\operatorname{Aut}_J(R)$. For $g \in G$ and $r \in R$, r^g means the image of r under g. The fixed ring of R under G is $R^G = \{r \in R \mid r^g = r \text{ for all } g \in G\}$. Clearly R^G is a Jordan subring of R.

Now say that G is finite with |G| = n. For $x \in R$, the trace of x is $tr_G(x) = \sum_{g \in G} x^g$. If there is no ambiguity about which group is involved, we simply write $tr_G(x) = tr(x)$. Note that $tr(x) \in R^G$.

A mapping $*: R \to R$ is called an involution if (1) $a^{**} = a$,

(2) $(a + b)^* = a^* + b^*$, (3) $(ab)^* = b^*a^*$ for all $a, b \in R$.

When R has an involution *, and $G = \{e, *\}$ where e is the identity of G, we say that G is generated by involution *. In this situation, $R^G = \{x \in G \mid x^* = x\} = S_R$, the symmetric elements in R.

If I is an ideal of R, we say that I is G-invariant if $I^g \leq I$, for all $g \in G$. When I is G-invariant, R = R/I has an induced group of automorphisms, given as follows: for $g \in G$, define \bar{g} by $(x + I)^{\bar{g}} = x^g + I$.

Let K be the kernel of the mapping $g \to \overline{g}$, and let $\overline{G} = G/K$. Then \overline{G} is a group of automorphisms of R. Clearly $R^{\overline{G}} \subseteq \overline{R}^{\overline{G}}$, where $R^{\overline{G}}$ denotes the image of $R^{\overline{G}}$ in \overline{R} .

THEOREM 1. Let $\phi : R \to R'$ be a Jordan homomorphism of R onto a prime ring R'. Then ϕ is either a homomorphism or an anti-homomorphism [5].

COROLLARY 2. Let ϕ be a Jordan automorphism of R and let P be a prime ideal of R. Then P^{ϕ} is a prime ideal of R. Moreover, the prime ring R/P and R/P^{ϕ} are either isomorphic or anti-isomorphic [8].

COROLLARY 3. Let R be a prime ring, and G a group of Jordan automorphisms of R. Let H be the subgroup of G consisting of all automorphisms. If $H \neq G$, then [G:H] = 2. Moreover, G/H induces an involution * on the associative ring R^H as followings:

Choose $g \in G$, $g \notin H$, and let $x^* = x^g$, for any $x \in R^H$. The involution is independent of the choice of g, and the set of symmetric elements S_{R^H} of R^H under * is precisely the set R^G .[8]

The Levitzki radical of R, which we shall denote by L(R) is defined as the sum of all locally nilpotent ideals of R and R is Levitzki-semisimple (*L*-semisimple) if L(R) = 0.

It is well-known that the Levitzki radical L(R) of an associative ring R is the intersection of all the prime ideals P of R for which R/Pis Levitzki-semi-simple [4].

The Levitzki radical of a Jordan ring A, which we shall denote by L(A), is defined as the sum all locally solvable ideals of A and A is Levitzki-semi-simple if L(A) = 0.

It is also known that the Levitzki radical L(J) of a Jordan ring J is the intersection of all prime ideals P_{α} of J for which J/P_{α} is Levitzki-semi-simple [10].

LEMMA 4. (Bergman and Isaacs). Let G be finite group of automorphisms acting on an associative ring R such that R has no |G|torsion. Then if R^G (or more generally tr(R)) is nilpotent, then R is nilpotent.

THEOREM 5. (Beidar). Let G be a finite group of automorphisms acting on an associative ring R such that |G| is a bijection on R.

Then $L(\mathbb{R}^G) = L(\mathbb{R}) \cap \mathbb{R}^G$.

We are now ready to prove one of our main theorems.

THEOREM 6. Let R be an associative ring and let G be a group of Jordan automorphisms of R. Assume that |G| is a bijection on R, and R^G is locally nilpotent. Then R is locally nilpotent.

KANG-JOO MIN

PROOF. We proceed by induction on |G|.

If n = 1, then $R = R^G$ and there is nothing to prove.

Thus, assume that for any group K of Jordan automorphisms with |K| < |G|, the theorem is true. To show that R is locally nilpotent, that is, L(R) = R, we show that there is no proper prime ideal P such that R/P is Levitzki-semi-simple. Now assume to the contrary that there is a proper prime ideal P such that R/P is Levitzki-semi-simple. We first assume that P is G-invariant, that is,

$$P^g \subseteq P \quad \text{for} \quad g \in G.$$

Let $\overline{R} = R/P$. $\overline{R}^{\overline{G}} \subseteq R^{\overline{G}} \cong R^G/P \cap R^G$. Thus $L(\overline{R}^{\overline{G}}) = L(R^{\overline{G}}) = R^{\overline{G}}$. We may therefore reduce to the case when R is Levitzki-semisimple and R is prime. Now since R is prime, every Jordan automorphism is either an automorphism or an anti-automorphism by Theorem 1.

Let *H* be the subgroup of *G* consisting of automorphisms. If H = G, then by Theorem 5, we have $R^G = L(R^G) = R^G \cap L(R) = (0)$. If $R^G = (0)$, then by Lemma 4, *R* is nilpotent. Thus R = L(R) = (0). If *H* is a proper subgroup of *G*, then *H* is a subgroup of index 2. By Theorem 5, $L(R^H) = L(R) \cap R^H$. The fixed ring R^H is equipped with the involution induced by the action of G/H by Corollary 3. Let S_{R^H} be the symmetric elements in R^H . Actually in this case the fixed subring R^G of *G* is just S_{R^H} . So by M. Rich [9], we have

$$L(R^G) = R^G = L(S_{R^H}) = S_{R^H} \cap L(R^H) = R^G \cap L(R) = (0).$$

But this implies that by Lemma 4, R is nilpotent. L(R) = R = (0). We may therefore assume that P is not G-invariant. Let $I = \bigcap_{g \in G} P^g$. Then I is G-invariant. *I* is a Levitzki-semi-simple ideal of *R*, that is R/I is Levitzkisemi-simple. As in the previous case, after passing to $\overline{R} = R/I$, we may assume that *R* is Levitzki-semi-simple with $\bigcap_{g \in G} P^g = (0)$. Let orb $P = \{P^g \mid g \in G\}$ and *m* be the smallest positive integer such that, for any choice of *m* distinct members of orb *P*, say P_1, P_2, \ldots, P_m , we have $\bigcap_{i=1}^{m} P_i = (0)$. Clearly $m \leq n$. If m = 1, then P = (0).

This says that P is G-invariant, a contradiction.

We may assume that m > 1. Now by the minimality of m, there exist m-1 distinct members $P_1, P_2, \ldots, P_{m-1}$ of orb P such that $V = \bigcap_{i=1}^{m} P_i \neq (0)$. Let $K = \{g \in G \mid \text{ permutes } P_1, P_2, \ldots, P_{m-1}\}$. If K = G, we have a contradiction since G is transitive on orb P and m-1 < m.

Thus K is a proper subgroup of G. Since |K| divides |G|, |K| is a bijection on R. In fact, |K| is a bijection on V. For, clearly V has no |K|-torsion and R/V is semiprime. |K| is a bijection on R/V.

Indeed |K|R/V = R/V and $|K|r \in V$ implies $|K|rR \subseteq V$ and $r|K|Rr = rRr \subseteq V$.

Hence $r \in V$ and R/V is |K|-torsion free. Thus |K|V = V and K is a bijection on V. Now V is a K-invariant ideal of R. Let $\operatorname{Ann}_R(V) =$ $\{r \in R \mid Vr = (0)\}$. Since V is an ideal in R, $\operatorname{Ann}_R(V)$ is a two-sided ideal in R. Let $J = \bigcap_{g \in G} \operatorname{Ann}_R(V)^g$. Since V is a semiprime ideal in $R, V \cap \operatorname{Ann}_R(V) = (0)$ and so $V \cap J = (0)$. For, $V \cap \operatorname{Ann}_R(V)$ is a nilpotent ideal in R. For any $x \in V$, $tr_G(x) = tr_K(x) + c(x)$ where $c(x) = \sum_{g \notin K} x^g$.

Since V is K-invariant, $tr_K(x) \in V$ and $tr_K(x) \in V^K$. If $g \notin K$, then for some P_i , $P_i^g \notin \{P_1, \ldots, P_{m-1}\}$. Thus $x^g \in P_i^g$ and $x^g V = Vx^g = (0)$ since $x^g V \subseteq P_i^g \cap (P_1 \cap \cdots \cap P_{m-1}) = (0)$ by the minimality of m. Thus $c(x) \in Ann_R(V)$. Since $c(x)^h = c(x)$ for any $h \in K$, $c(x) \in J$ and $c(x) \in J^K$.

Therefore we have $tr_K(y)$, c(x) = 0. Now we prove that the fixed

KANG-JOO MIN

subring V^K of V under the action of K is (Jordan) locally nilpotent. Denote $\langle tr_G(x_1), \ldots, tr_G(x_m) \rangle$ and $\langle tr_K(x_1), \ldots, tr_K(x_m) \rangle$ the (Jordan) subrings of R^G and V^K , respectively, generated by $\{tr_G(x_1), \ldots, tr_G(x_m)\}$ and $\{tr_K(x_1), \ldots, tr_K(x_m)\}$ for $x_1, \ldots, x_m \in V$, then, for any positive integer m and nonnegative integers q_1, \ldots, q_m , we have

$$\prod_{i=1}^{m} tr_G(x_i)^{q_i} = \prod_{i=1}^{m} tr_K(x_i)^{q_i} + \prod_{i=1}^{m} c(x_i)^{q_i}$$

Hence $\prod_{i=1}^{m} tr_G(x_i)^{q_i} = 0$ implies $\prod_{i=1}^{m} tr_K(x_i)^{q_i} = 0$ since $V \cap J = 0$. Now since R^G is locally nilpotent, $\langle tr_G(x_1), \ldots, tr_G(x_m) \rangle$ is (Jor-

Now since R^G is locally nilpotent, $\langle tr_G(x_1), \ldots, tr_G(x_m) \rangle$ is (Jordan) nilpotent for every $x_1, \ldots, x_m \in V$ and hence $\langle tr_K(x_1), \ldots, tr_K(x_m) \rangle$ is (Jordan) nilpotent. Since |K| is a bijection on V, $tr_K(V) = V^K$. Thus V^K is locally nilpotent. By induction hypothesis, we have $L(V) = V \neq (0)$. Hence R is not Levitzki semi-simple. This is a contradiction.

Therefore there is no proper prime ideal P such that R/P is Levitzki semi-simple. Hence R is locally nilpotent.

LEMMA 7. If bRb is locally nilpotent, then b^2R is locally nilpotent.

PROOF. Let $\langle b^2 r_1, b^2 r_2, \ldots, b^2 r_n \rangle$ be the subring of R generated by $b^2 r_1, \ldots, b^2 r_n \rangle$

 $b^2 r_n$. Then for any positive integers m and q_1, \ldots, q_m , $\prod_{i=1}^m (b^2 r_1)^{q_i} = b(br_1b)^{q_1}, \ldots, (br_mb)^{q_{m-1}}br_m$. Hence the local nilpotency of bRb implies that of $b^2 R$.

With the help of Lemma 7 we get one of our main results.

LEMMA 8. Let R be an associative ring. Let G be a group of Jordan automorphisms of R and |G| be a bijection on R.

Then (1) if R is Levitzki semi-simple, then R^G is Levitzki semi-simple.

(2) $L(R^G) = R^G \cap L(R)$.

PROOF. (1) Let $b \in L(\mathbb{R}^G)$. Then $b\mathbb{R}^G b = (b\mathbb{R}b)^G \subseteq L(\mathbb{R}^G)$. So $b\mathbb{R}^G b$ is locally nilpotent and hence $b\mathbb{R}b$ is locally nilpotent by Theorem 6.

Now by Lemma 7, $b^2 R$ is locally nilpotent. So $b^2 R \cap L(R) = (0)$. Since $b^2 = 0$ for all $b \in L(R^G)$ and R is semiprime, by Lemma 3.18, $L(R^G) = (0)$.

(2) Since $L(R) \cap R^G$ is a locally nilpotent ideal of R^G , the inclusion $L(R) \cap R^G \subseteq L(R^G)$ is obvious. Now for other inclusion we need to show that $L(R^G) \subseteq L(R)$.

For any prime ideal P of R for which R/P is Levitzki semi-simple, $\bigcap_{g \in G} P^g$ is a G-invariant semiprime ideal in R. Let $\overline{R} = R/\bigcap_{g \in G} P^g$. Then \overline{R} is Levitzki semi-simple and $\overline{R}^{\overline{G}} = R^{\overline{G}} = R^G/R^G \cap \bigcap_{g \in G} P^g \cong R^G/P \cap R^G$. Since \overline{R} is Levitzki semi-simple $R^{\overline{G}} \cong R^G/P \cap R^G$ is Levitzki semi-simple. Hence $L(R^G) \subseteq P \cap R^G$ for all prime ideal Pfor which R/P is Levitzki semi-simple. Therefore $L(R^G) \subseteq L(R) \cap R^G$ and so $L(R^G) = R^G \cap L(R)$.

We consider the transferring of the algebraicity from R^G to R.

Let A be an associative algebra over a field Φ . N. Jacobson [6] defined the algebraic kernel as the maximal algebraic ideal which contains every algebraic ideal in A.

THEOREM 9. (Kharchenko). Let R be an associative algebra which is P.I. R is a ring with involution *. Let S be the set of all symmetric elements of R. If S is algebraic over Φ . Then R is algebraic over Φ . [7].

THEOREM 10. (Armendariz). Let R be an associative P.I. algebra over Φ and G be a finite group of automorphisms of R such that |G| induces a bijection on R. If R^G is an algebraic algebra over Φ , then R is an algebraic algebra over Φ . [1]

THEOREM 11. Let R be an associative P.I. algebra over a field Φ and G a group of Jordan automorphisms of R such that |G| is a bijection on R. Then if R^G is algebraic over Φ , then R is algebraic over Φ .

PROOF. We proceed by induction on |G|.

If |G| = 1, then $R = R^G$ and we are done. Suppose that the theorem is true for any groups $K \leq \operatorname{Aut}_J(R)$ with |K| < |G|. Now assume to the contrary that R is not algebraic over Φ . Then there exists $x \in R$ which is transcendental over Φ . Let P be a maximal ideal with respect to the property $P \cap \Phi[x] = (0)$. Let $S = \{I \mid I$ is a two-sided ideal in $R, I \cap \Phi[x] = (0)$. By Zorn's lemma, such a maximal ideal P exists.

We note that $\Phi[x]$ is an integral domain. We first prove that Pis a prime ideal in R. Let A and B be two-sided ideals in R such that $A \subseteq P$ and $B \subseteq P$. Then $A + P \neq P$ and $B + P \neq P$: Since $(A+P) \cap \Phi[x] \neq (0)$ and $(B+P) \cap \Phi[x] \neq (0)$, there exists $f(x) \neq 0$, $g(x) \neq 0$ in $\Phi[x]$ such that $f(x) \in A + P$ and $g(x) \in B + P$. Thus $0 \neq f(x)g(x) \in (A+P)(B+P) = AB + P$.

Hence $AB \subseteq P$. Therefore P is a prime ideal in R. We claim that R/P has zero algebraic kernel.

If not, we have a nonzero algebraic ideal I/P of R/P. Thus $I \cap \Phi[x] \neq (0)$ by the maximality of P. Take up $0 \neq f(x) \in I \cap \Phi[x]$. Then f(x) + P is an algebraic element in R/P. There exists not all zero elements $a_0, a-1, \ldots, a_t$ in Φ such that $a_0 f(x)^t + a_1 f(x)^{t-1} + \cdots + a_{t-1} f(x) + a_t \in P \cap \phi[x]$ and so $a_0 f(x)^t + a_1 f(x)^{t-1} + \cdots + a_{t-1} f(x) + a_t = 0$. We claim that $a_0 = a_1 = \cdots = a_{t-1} = a_t = 0$. We proceed this by induction on t. When t = 1, let $f(x) = \sum_{i=1}^n b_i x^i$ with $b_i \in \Phi$ and $b^n \neq 0$. Then $a_0\left(\sum_{i=0}^n b_i x^i\right) + a_1 = 0$. Thus $a_0 b_n = 0$. Hence $a_0 = 0$ and $a_1 = 0$. Suppose that this true for t - 1. From

$$0 = a_0 f(x)^t + \dots + a_{t-1} f(x) + a_t$$

= $a_0 \left(\sum_{i=0}^n b_i x^i\right)^t + \dots + a_{t-1} \left(\sum_{i=0}^n b_i x^i\right) + a^t a_0 b_n^t = 0$

and hence $a_0 = 0$. Thus we have

$$0 = a_1 \left(\sum_{i=1}^n b_i x^i \right)^{t-1} + \dots + a_{t-1} \left(\sum_{i=0}^n b_i x^i \right) + a_t$$

By induction hypothesis, $a_1 = \cdots = a_{t-1} = a_t = 0$ and so $a_0 = a_1 = \cdots = a_t = 0$.

This is a contradiction to the fact that $f(x) \neq 0$.

Therefore R/P has zero algebraic kernel. Now to proceed the induction process, we divide the following two cases. First we consider the case that P is G-invariant. Let $\overline{R} = R/P$. Then $\overline{R}^{\tilde{G}} = R^{\tilde{G}}$ and \overline{R} is a prime P.I. algebra. By Theorem 1. \overline{g} is an automorphism or anti-automorphism for all $g \in G$. By Theorem 9 and 10 R is algebraic over Φ . But since R/P has zero algebraic kernel, R = P and so $\overline{R} = (0)$. This is a contradiction. We may therefore assume that P is not G-invariant. Let $\overline{R} = R/\bigcap_{t\in G} P^g$. Then since R/P has zero algebraic kernel, $P \simeq R/^g P$ or R/P^g is anti-isomorphic to R/P^g for each $g \in G$, P^g contains the algebraic kernel of R for each $g \in G$. Hence $\bigcap_{g\in G} P^g$ contains the algebraic kernel of R. Thus $R/\bigcap_{g\in G} P^g$ has zero algebraic kernel. We may assume that R has zero algebraic kernel and $\bigcap_{g\in G} P^g = (0)$. Let orb $P = \{P^g \mid g \in g\}$, and let m be the smallest positive integer such that for any choice of m distinct members of orb P, say

 P_1, P_2, \ldots, P_m , we have $\bigcap_{i=1}^m P_i = (0)$. Clearly $m \le n$. If m = 1, then P = (0). This says that P is G-invariant, a contradiction. We may therefore assume that m > 1. Let $V = P_1 \cap \cdots \cap P_{m-1} \ne (0)$. Let $K = \{g \in G \mid g \text{ permutes } P_1, P_2, \ldots, P_{m-1}\}$, then $K \ne G$.

Thus V is K-invariant and |K| induces a bijection on V. We claim that V^K is algebraic. Let $x \in V$ and $tr_G(x) = tr_K(x) + c(x)$ where $c(x) = \sum_{g \notin K} x^g$. As the proof of Theorem 6 $V_c(x) = c(x)V = (0)$ for all $x \in V$. Since R^G is algebraic over Φ and $tr_G(x) \in R^G$, there exists $a_0, a_1, \ldots, a_n \in \Phi$, not all zero such that

$$a_{0}(tr_{G}(x))^{n} + a_{1}(tr_{G}(x))^{n-1} + \dots + a_{n-1}(tr_{G}(x)) + a_{n} = 0$$

$$a_{0}[tr_{K}(x)^{n} + c(x)^{n}] + a_{1}[(tr_{K}(x)^{n-1} + c(x)^{n-1}] + \dots + a_{n-1}[tr_{K}(x) + c(x)] + a_{0} = 0$$

$$a_{0}tr_{K}(x)^{n} + a_{1}tr_{K}(x)^{n-1} + \dots + a_{n-1}tr_{K}(x) + a_{n} + a_{0c}(x)^{n} + a_{1c}(x)^{n-1} + \dots + a_{n-1}c(x) = 0$$

But as in the proof of Theorem 6

$$a_0 tr_K(x)^n + a_1 tr_K(x)^{n-1} + \dots + a_{n-1} tr_K(x) + a_n \in V$$

and

$$a_0(c(x))^n + a_1c(x)^{n-1} + \cdots + a_{n-1}c(x) \in J = \bigcap_{g \in G} \operatorname{Ann}(V)^g.$$

Since $V \cap J = (0)$,

$$a_0 tr_K(x)^n + a_1 tr_K(x)^{n-1} + \cdots + a_{n-1} tr_K(x) + a_n = 0.$$

Thus $V^K = tr_K V$ is algebraic over Φ . By induction on |G|, V is an algebraic ideal in $R, V \neq (0)$. This is a contradiction. This proves the theorem.

REFERENCES

- [1] E.P. Armendariz, Groups acting on polynomial identity algebras, unpublished.
- [2] K.I. Beider, Rings of invariants for the action of a finite group of automorphisms of a ring, Uspehi Math. Nauk.(Russian) 32 (1977), 159-160.
- [3] G. M. Bergman and I.M. Isaacs, Rings with fixed point free group actions, Proc. London Math. Soc. 27 (1973), 69-87.
- [4] N. M. Divinsky, *Rings and Radicals*, Univ. of Toronto Press, Tronto, 1965.
- [5] I. N. Herstein, Topics in Ring theory, University of Chicago Press, 1969.
- [6] N. Jacobson, Structure of Rings, Amer. Math. Soc., Colloq. Publ. 37, Revised edition, 1964.
- [7] V. K. Kharchenko, Generalized identities with automorphisms, Algebra and Logic (transl.) 14 (1976), 132-148.
- [8] W. S. Martindale and S. Montgomery, Fixed elements of Jordan automorphisms, Pacific J. Math. 72 (1977), 181-196.
- [9] Michael Rich, The Levitzki radical in associative and Jordan rings, J. Algebra 40 (1076), 97–104.
- [10] C. Tsai, The Levitzki radical in Jordan rings, Amer. Math. Soc. 24 (1970), 119-123.

Department of Mathematics Chungnam National University Taejon, 305-764, Korea