On The Diophantine equation $A^{4}+B^{4}+a^{2} C^{4}=D^{4}$

S. Hahn and Y. Oh

Generalizing the Fermat's last conjecture, Euler made a conjecture that the Diophantine equation

$$
A_{1}^{N}+A_{2}^{N}+\cdots+A_{N-1}^{N}=A_{N}^{N}
$$

has no solution in positive integers if N is greater than 3. After two centuries, for $N=5$, a first counterexample was found by a through computer search. It was

$$
27^{5}+84^{5}+110^{5}+133^{5}=144^{5}
$$

And this was the only known counterexample until recently. In 1988, Noam Elkies found a counterexample for the Diophantine equation

$$
A^{4}+B^{4}+C^{4}=D^{4}
$$

Actually he found infinitely many counterexamples. One of the solutions is

$$
2682440^{4}+15365639^{4}+18796760^{4}=20615673^{4}
$$

Let a be a positive integer. In this paper we want to study the Diophantine equation

$$
\begin{equation*}
A^{4}+B^{4}+a^{2} C^{4}=D^{4} \tag{1}
\end{equation*}
$$

Received by the editors on April 20, 1992.
1980 Mathematics subject classifications: Primary 11D.
of the title. Here we may assume that a is square-free. Our method is a slight generalization of Elkies' original ideas. First consider the surface

$$
\begin{equation*}
r^{4}+s^{4}+a^{2} t^{2}=1 \tag{2}
\end{equation*}
$$

by dividing the original equation by D^{4}. Let's change the variables by $r=x+y, s=x-y$. Don Zagier observed the following identity

$$
1-r^{4}-s^{4}=P^{2}-2 Q R
$$

where

$$
P=4 x^{2}-1, Q=y^{2}+3 x^{2}+2 x, R=y^{2}+3 x^{2}-2 x .
$$

(There is a misprint in Elkies' paper, where y in Q and R should be changed to y^{2}.) If we let $Q=0$, then $1-r^{4}-s^{4}$ is a perfect square. Applying to this identity the automorphism group of the ternary quadratic form $P^{2}-2 Q R$, one obtain infinitely many conics $Q=0$ on which $1-r^{4}-s^{4}$ is a perfect square. And the surface is given as a pencil of conics parametrized by u :

$$
\begin{equation*}
\left(u^{2}+2\right) y^{2}=-\left(3 u^{2}-8 u+6\right) x^{2}-2\left(u^{2}-2\right)-2 u \tag{3.1}
\end{equation*}
$$

$$
\begin{equation*}
\left(u^{2}+2\right) a t=4\left(u^{2}-2\right) x^{2}+8 u x+\left(2-u^{2}\right) \tag{3.2}
\end{equation*}
$$

The involution $u \mapsto 2 / u$ changes (r, s, t, x, y) by ($-s,-r,-t,-x, y$). So we may take u to be of the form $u=2 m / n$ with m and n relatively prime integers, $m \geq 0$ and n odd. Then the parametrization is written as :
(4.1) $\left(2 m^{2}+n^{2}\right) y^{2}=-\left(6 m^{2}-8 m n+3 n^{2}\right) x^{2}-2\left(2 m^{2}-n^{2}\right) x-2 m n$,

$$
\begin{equation*}
\left(2 m^{2}+n^{2}\right) a t=4\left(2 m^{2}-n^{2}\right) x^{2}+8 m n x+\left(n^{2}-2 m^{2}\right) \tag{4.2}
\end{equation*}
$$

Now we want to find some $u=2 m / n$ for which the conic (4.1) has infinitely many solutions. For an integer k define $S(k)=$ the largest positive integer whose square divides k. Also define $R(k)=k / S^{2}(k)$. For the conic (4.1) to have infinitely many rational points it is necessary and sufficient that both

$$
R\left(2 m^{2}+n^{2}\right), R\left(2 m^{2}-4 m n+n^{2}\right)
$$

are products of primes congruent to $1 \bmod 8$.

Let's take an example of Elkies, with $(m, n)=(2,1)$. Then from the conic $9 y^{2}=-11 x^{2}-14 x-4$ we get a solution $(x, y)=(-1 / 2,1 / 6)$ and the parametrizations

$$
\begin{gathered}
(x, y)=\left(-\frac{k^{2}+2 k+17}{2 k^{2}+22},-\frac{k^{2}+6 k-11}{6 k^{2}+66}\right) \\
(r, s, a t)=\left(\frac{2 k^{2}+6 k+20}{3 k^{2}+33}, \frac{k^{2}+31}{3 k^{2}+33}, \frac{4\left(2 k^{4}-3 k^{3}+28 k^{2}-75 k+80\right)}{\left(3 k^{2}+33\right)^{2}}\right)
\end{gathered}
$$

For the Diophantine equation (1) to have a solution, t has to be a square. So $a\left(2 k^{4}-3 k^{3}+28 k^{2}-75 k+80\right)$ must be a square. Hence we are led to find rational solutions of the elliptic curve

$$
E / \mathbf{Q}: Y^{2}=a\left(2 X^{4}-3 X^{3}+28 X^{2}-75 X+80\right)
$$

As an example let $a=47$. Then $E(\mathbf{Q})$ has a point $P=(X, Y)=$ $(7,470)$. From this we get a solution $(8,4,1,9)$ of the equation

$$
A^{4}+B^{4}+2209 C^{4}=D^{4}
$$

From this solution we can try to find other solutions. This is done exactly by the addition law on the elliptic curve E / \mathbf{Q} since each point
of $E(\mathbf{Q})$ gives a solution of the equation (1). One easy way to do this is let $Y=b X^{2}+c X+d$ and find the coefficients b, c, and d so that the intersection of this parabola with the elliptic curve has a triple multiple point at P. By this way one get

$$
196912^{4}+180236^{4}+2209 \cdot 9677^{4}=225333^{4}
$$

which corresponds to $2 P$. If we proceed one more time, we get

$$
\begin{aligned}
& A=252707094595264540016375712906802893045560 \\
& B=343037068935165073916656386276766167227764 \\
& C=23268803137301936018595771056280554781001 \\
& D=369165298000443486766488071765026996555665
\end{aligned}
$$

Note that if the rank of $E(\mathbf{Q})$ is positive then we get infinitely many solutions.

For the surface $r^{4}+s^{4}+a^{2} t^{4}=1$, we get the parametrization
(5.1) $\left(2 m^{2}+n^{2}\right) y^{2}=-\left(6 m^{2}-8 m n+3 n^{2}\right) x^{2}-2\left(2 m^{2}-n^{2}\right) x-2 m n$,

$$
\begin{equation*}
\pm\left(2 m^{2}+n^{2}\right) a t^{2}=4\left(2 m^{2}-n^{2}\right) x^{2}+8 m n x+\left(n^{2}-2 m^{2}\right) . \tag{5.2}
\end{equation*}
$$

By completing the square the second conic (5.2) reduces to the standard form

$$
\begin{equation*}
X^{2}+\alpha Y^{2}+\beta Z^{2}=0 \tag{6}
\end{equation*}
$$

where

$$
\begin{aligned}
& \alpha= \pm R\left(\left(2 m^{2}-n^{2}\right)\left(2 m^{2}+n^{2}\right) a\right), \\
& \beta=-R\left(\left(2 m^{2}-2 m n+n^{2}\right)\left(2 m^{2}+2 m n+n^{2}\right)\right),
\end{aligned}
$$

$$
X=\left(-2 m^{2}+n^{2}\right)+4 m n x, Y=\gamma t, Z=2 x \delta
$$

and

$$
\begin{aligned}
& \gamma=S\left(\left(2 m^{2}-n^{2}\right)\left(2 m^{2}+n^{2}\right) a\right) \\
& \delta=S\left(\left(2 m^{2}-2 m n+n^{2}\right)\left(2 m^{2}+2 m n+n^{2}\right)\right)
\end{aligned}
$$

This equation (6) has infinitely many integer solutions if and only if $-\alpha$ is a square modulo β and $-\beta$ is a square modulo α. For simplicity suppose that a is prime to

$$
\left(2 m^{2}-n^{2}\right)\left(2 m^{2}+n^{2}\right)\left(2 m^{2}-2 m n+n^{2}\right)\left(2 m^{2}+2 m n+n^{2}\right)
$$

Then the first condition is that $\mp\left(4 m^{4}-n^{4}\right) a$ is a square modulo $R\left(2 m^{2}-2 m n+n^{2}\right)$ and $R\left(2 m^{2}+2 m n+n^{2}\right)$. The second condition is that $4 m^{4}+n^{4}$ is a square modulo $R\left(2 m^{2}-n^{2}\right)$ and $R\left(2 m^{2}+n^{2}\right)$ and a. Note the congruences

$$
\left(4 m^{4}-n^{4}\right) a \equiv 8 m^{4} a \equiv-2 n^{4} a \bmod \left(2 m^{2} \pm 2 m n+n^{2}\right)
$$

So $2 a$ and $-2 a$ must both be the quadratic residues of each prime factor of

$$
R\left(2 m^{2} \pm 2 m n+n^{2}\right)
$$

Also note the congruences

$$
4 m^{4}+n^{4} \equiv 2 n^{4} \equiv-(2 m n)^{2} \bmod \left(2 m^{2}+n^{2}\right)
$$

So -1 and 2 must both be quadratic residues of each prime factor of $R\left(2 m^{2}+n^{2}\right)$. And

$$
4 m^{4}+n^{4} \equiv(2 m n)^{2} \bmod \left(2 m^{2}-n^{2}\right)
$$

So the second conic (5.2) has infinetely many rational points if and only if each prime divisor p of $R\left(2 m^{2}-2 m n+n^{2}\right)$ satisfies $p \equiv 1 \bmod 4$ and

$$
\left(\frac{2 a}{p}\right)=1
$$

each prime divisor of $R\left(2 m^{2}+n^{2}\right)$ is congruent to $1 \bmod 8$, and for each prime divisor p of a

$$
\left(\frac{4 m^{4}+n^{4}}{p}\right)=1
$$

Here ($/ p$) denotes the Legendre symbol. All this can be used to reduce the search range of possible $u=2 m / n$ but eventually one has to find a non-trivial rational point on some elliptic curve. We tried to find a non-trivial torsion point of an elliptic curve which gives a counterexample to Euler's conjecture, but without success.

In fact Demjanenko already found a two parameter family of solutions for (1) with $a=1$. And in his parametrization, one has to find rational points on the following elliptic curve, for some rational number k, where

$$
\begin{gathered}
E / \mathbf{Q}: Y^{2}=8(1+k)^{6} X^{4} \\
+4\left(1-10 k-56 k^{2}-96 k^{3}-60 k^{4}+20 k^{5}+48 k^{6}+24 k^{7}+4 k^{8}\right) X^{3} \\
+8 k\left(-1+14 k+44 k^{2}+18 k^{3}-66 k^{4}-106 k^{5}-60 k^{6}-12 k^{7}\right) X^{2} \\
+4\left(1+2 k-32 k^{3}-28 k^{4}+124 k^{5}+256 k^{6}+200 k^{7}+52 k^{8}\right) X \\
+4 k\left(-2-2 k+6 k^{3}-24 k^{4}-94 k^{5}-104 k^{6}-48 k^{7}\right) .
\end{gathered}
$$

However it looks difficult to find a counterexample to Euler's conjecture because the degree of k is eight.

References

[1] N. Elkies, On $A^{4}+B^{4}+C^{4}=D^{4}$, Math. Comp. Vol. 51 No. 184 (1988), 825-835.
[2] V. Demjanenko, L. Euler's conjecture, Acta. Arith. Vol. 25 (1973-74), 127-135 (Russian).
[3] K. Ireland and M. Rosen, A classical introduction to modern number theory, 2nd ed., Springer-Verlag, 1990.

Department of Mathematics
KAIST
Taejon, 305-701, Korea

