The J. of MIS
Research
Vol.2, No.2, Dec 1992

85

A9 dlojejHo|Ag] oju| 2| A3}

> 4
EREE R

A Practical Approach to Semantics in Deductive Databases

A deductive database consists of collection of stored facts and deductive rules. It can
answer queries based on logical deduction from the stored facts and gemeral rules. A
deductive database has both a declarative meaningsemantics) and a Drocedural
meaning. The declarative semantics of a deductive database provides a definition of the
meaning of the program in a manner which is independent of procedural consider-

ations, context-free, and easy to manipulate, exchange and reason about.

This paper investigates various declarative semantics of deductive databases, dicusses

related computational issues, and suggests another declarative semantics for deductive

databases which is more practical than others.

[. Introduction

A relational database(RD) is a collection of

tables filled with data supplemented with the’

capability to manipulate its contents and to
answer questions about the data. Any que-

stion expressed 1n an appropriate query langu-

age can be answered. If a set of elements
satisfying the query exists n the tables then
the answer is true; otherwise the answer is
false. So an RD assumes that the database
contains complete information about a context
and anything not in the database 1s assumed

to be false. To be useful, an RD must be

+ This paper was partly supported by Korea Research Foundation.

* 24T B9 s,

86

maintained in a consistent and complete
manner., Also, an RD must respond to queries
In a manner intended by the user.

Although the concept of RD has been
proved to be useful, the capabilities of RD are
severely limited by their inability to handle
deductive information. RD cannot deduce new
information from facts already present in the
database and from deductive rules which are
known and can be included in the database. A
deductive database(DD), which generalizes
RD, consists of collection of stored facts
(extensional database) and deductive rules
database). DD

queries based on logical deduction from the

(intentional can answer
stored facts and general rules.

Logic programming refers to high level
languages, like Prolog, based on classical
logic. Because classical logic has a procedural
Interpretation in which a logical statement is
interpreted as a definition of a procedure, it
can be an effective programming language.
Logic programming is very appealing because
first order language which is machine
intelligible, instead of natural language can be
used as a specification of the problem domain.
Furthermore the correctness of a logic
program can be proved by classical logic|
Kowalski, 1982]. A logic program is virtually
the same as a deductive database in a sense
that both consist of logical assertions and the
same interpreter or compiler can be used to
answer a query in a DD or to perform a user
command in a logic program. Thus, we will
treat deductive databases and logic programs

as indistinguishable in this sense.

A program(logic program or database
program) has both a declarative meaning
(semantics) and a procedural meaning. The
declarative semantics of a program provides a
definition of the meaning of the program in a
manner which 1s independent of procedural
considerations, context-free, and easy to
manipulate, exchange and reason about.
Procedural semantics of a program, on the
other hand, usually is given by providing a
procedural mechanism that is capable of
providing answers to queries[Przymusinski,
1989].

Finding a suitable declarative semantics Is
one of the most important problem in
deductive database and logic programming.
This problem 1is originated from the
declarative semantics for negation in logic
programming. The form of negation currently
used in logic programming and deductive
databases 1s different from negation iIn
classical logic. Because of inefficiency of
negation in classical logic, Negation as Failure
(NF) 1s used in logic programming and
deductive databases. In this rule, if every
attempt to prove a positive ground literal p
fails then its negation -p 1s assumed to be
true. Declarative semantics for this metarule,
called a program completion approach, have
been suggested by many researchers| Reiter,
1978; Clark, 1978; Fitting, 1985; Kunen,
1987].

Another approach to the semantics of
deductive database is called a model theoretic
approach. In this approach, a certain model of

the original program is presumed to be the

intended meaning of the program, the one
that the programmer and program users have
in mind. Various models have been suggested
to be the intended meaning of the program. In
this paper, we investigate these models and
suggest a new model which is easy to find
and understand as a semantics for deductive
databases.

This paper is organized as follows:

Next section introduces the definition of
programs and related terminoclogies, section 3
mvestigate various model theories which have
been suggested as an appropriate meaning of
deductive databases. In section 4, we suggest
another model as a semantics for deductive

databases and conclude the paper in section 5.

. Definition of a Program

This section introduces the syntax of a
program and conditions of logical variables,
The set of symbols used in a program
contains predicate, constant and function
symbols. In addition, it 1s assumed to contain
connectives(,, m,«-), punctuation symbols and
a countably infinite set of vartables(X, Y, 7,
-}, A term is defined to be a variable or a
constant. An atom is an expression of the
form p{t, -, t,), where p is a predicate
symbol and t,, -+, t, are terms. An atom or its
negation is a literal. An expression is ground
if 1t does not contain any variables. The set of
all ground atoms in a program is the
Herbrand base of the program and the set of

all the ground terms is the Herbrand universe

87

of the program. By a program we mean a
finite set of clauses of the form

A<l -, L.

where n>0, A is an atom and L, -, L, are
literals. It is also assumed that all variables
are universally quantified. Literals L, are
called premises, A is called the head, and L,
-, L 1s called the body of the clause in which

commas are to be Interpreted conjunction

connectives.
Programl;

supply (X, Y)<subpart(Y, Z), supply(X, Z).
subpart(X, Y)«subp(X, Y).

subpart(Y, Z)Y«subp(X,Z}, subpart(Y, X).
supply(sl, pl).

supply(sl, p2).

subp(p3, pl).

subp(p5, p3).

The first rule means that if Y is a subpart
of Z and X supplies Z then X supplies Y. The
second and third rules mean that if X is a
subpart of Z and Y 1s a subpart of X then Y
is a subpart of Z. The remaining facts mean
that s1 supplies part pl and p2 and p3 and pb
are subpart of pl and p3 respectively. Note
that subpart relation is a transitive closure of
subp relation.

If P is a program then it is always possible
to decompose P into two disjunctive subsets
P. and P, of the extensional and intentional
parts of the program. In the above example,
the first three rules are intentional part of the
program and last four rules are extentional

part of the program. The intentional part P, is

88

usually assumed to be relatively small and
fairly static and it represents the deductive
component of the database. The extensional
part P, 1s relatively large, subject to changes
and represents the relational component of
the database[Reiter, 1984]. For the conven-
ence’ of analysis, we assume that a program
contams fimte number of objects without
functions(Datalog).

A program consisting exclusively of Horn
Clauses In which no negative literals appear
will be called a Defimte Horn Clause Program
(or Positive Program). If a Horn Clause
Program contains one or more negative
literals, than we will call it a Horn Clause
Program with Negation(or General Program)
to emphasize the presence of negative

literals).

1. Model Theory and Fixed Point

An Herbrand interpretation I of a program
P is an assignment of truth values to all
ground atoms in the Herbrand base of P.
Because the set of true ground atoms in a
Herbrand interpretation is a subset of the
Herbrand base, any 2-valued Herbrand
interpretation can he viewed as a subset of
the Herbrand base. Also, set inclusion is a
partial order on a set of Herbrand interpre-
tations. A Herbrand interpretation I in which
all clauses in a program are true is called a
Herbrand model of the program. If a ground
atom is true in every model of a program then
is a logical consequence of the program. In

this paper we consider only Herbrand inter-

pretations and Herbrand models for a pro-
gram because any ground conclusion from a
program should be in Herbrand base of the
program. So, when we mention an interpre-
tation or model it means a Herbrand interpre-
tation or Herbrand model unless specified
explicitly.

The declarative semantics of a program 1s
often defined by using the fixed point of a
natural operator T, acting on ordered sets of
interpretations[van Emden, 1976]. Set inclus-
ion C is an ordering on the set L, of Herbrand
interpretations of a program and T, is an
operator T, : L—L on L. The operator T, is.
called monotone if 1<J mmplies T,(I)ST,(J)
for any [, J in L. An interpretation I is a fixed
point of T, if T,(I)=1. A least fixed point of a
monotone operator T,, which is a subset of
every fixed point of T, is generated by
iterating the operator T, starting from the
smallest Herbrand interpretation(interpreting
every ground atom in the program as false)
and obtaining the sequence:

T,Tv=¢

T, 1w =TT, 1),

An iteration T, 1, is a fixed point of T, if
andonly if T, 1.,=T, 1 .4

. Previous Research

1. Least Model Semantics

A set of ground atoms logically impled by
a Positive Program must be true in every

model of the program. Models of a Positive

Program have a property that the intersection
of two models is also & model and there is a
model of the program which is a subset of
every model. The model which 1s a subset of
every model 1s called a least model and a
ground atom in the least model is a logical
consequence of the program. Thus, the
declarative semantics of a program must be
the least model of the program and any
ground atom not in the model should be
assumed to be false because in that way the
true facts deduced from the program are
minimized.

This semantics can also be characterized as
a fixed point of a natural operator T, on the
program too. Given a program P and an
interpretation I, an interpretation T,(I) is
defined as follow:

A ground atom A istrue m T,(I) if Aisa
ground fact or there is a ground rule A<L,,
-, L,.and Ly, -+, L. are true in L.

Otherwise A 1s false in T,(1).

The T, operator of a Positive Program 1s
monotonic and the least fixed point of the
operator exists and it coincides with the least
model of the program.

This clear and intuitive semantics Is
equivalent to Closed World Assumption
(CWA) for a Positive Program because any
ground atom that is in the least model is a
logical consequence of the program and any
ground atom that 1s a logical consequence of
the program is in the least model.

Consider the following process for seeking a
least model. This amounts to execution of the

folléwing loop.

89

WHILE a ground atom p(t,, -+, t,} can be
found

assign true to plty, =+, 1,);

substitute t,, -+, t, for logical variables
X, -+, X, in a rule containing
p(X,, -+, X,) in the program;

remove fact p(t, -, t,) from the
program,

remove p(t, -+, t,) from the premise of
every rule in which p(t, -, t.)
appears as a positive literal;

remove all modified ground rules which
cannot be binding on the values of
remaining literals(i.e. rules with

=ip{t), *-, ta) In their premise)

ENDWHILE

If the above process terminates with an
empty set of ground rules, then a model has
been found. At the very least all literals
assigned true in the execution of this WHILE
loop must be assigned true m any model(if
any model exists). In a Definite Horn Clause
Program, a model can be built by assigning
false to all still unassigned literals in the
Herbrand Base.

For Programl, the loop assigns true to
{supply(sl,pl), supply(sl,p2),
pl), subpart(p5,p3), subpart(p5,pl), supply

subpart(p3,

(s1,p3), supply(sl,p5)}. By assigning false to
any other ground atoms we can have a model
for Programl in previous page.

It is exactly the above WHILE loop that is
executed in searching for a least model.
Consider the class of General Programs. Any

rule has a positive literal for its head and any

90

fact 1s a positive literal. Negative literals may
appear only in the body of a rule. For General
Programs the least model semantics is not
defined because the model intersection
property does not hold and the T, operator 1s

no longer monotonic.
Program?2.

mnocent(X)«child(X), -lar(X).
lar(X)«har(X), —child(X).
child(lee).

The above program has two models {child
(lee), liar(lee)} and

(lee)}. Because intersection of two models of

{child(lee), mnocent

Programl 1s not a model of the program,

Program2 does not have a least model.

2. Minimal Supported Model
Semantics

One of the reasons of anomalies concerning
NF rule is unsafe use of negation in logic
programming. Unsafe negation can occur
when a negative subgoal 1s tried when the
truth value of its atom 1s not determined. The
issue of safe usage of negation is studied by
many researchersf Naish, 1985; Clark, 1978;
van Gelder, 1988]. The idea of safe use of
negation is suggested by Clark as hierarchical
programs and allowed query for which NF
rule i1s sound and complete for Comp(P). A
program is hierarchical if every relation has a
finite extension that can be computed by
SLDNF that a

hierarchical program is so restrictive that

resolution. It is clear

recursion is not permitted in it. Apt, Blair and
Walker and others suggest a framework for
negation, called a stratified program, in which
usage of negation is restricted but recursion is
allowed[Apt, 1988; Naqvi, 1987]. Predicates
are assigned to strata 1, 2, -+, S so that the
use of negation in definitions is appropriately
limited. A program is stratified if for each
rule in the program A<L,, -, L,., the tratum
of A is strictly greater than the stratum of
each negative literal in L, -+, L, and stratum
of A is greater than or equal to stratum of
each positive literal in L,, -, L, Strati-
fication can be considered as a priority
relation between predicates In a program so
that a predicate in a lower stratum has a
higher priority and the truth value of a
predicate with higher priority 1s decided
before the truth value of a predicate with
lower priority is decided. Thus only already
decided relations(predicates) are used to
define a new relation.

A stratification of a program can be found

by the following loop:

WHILE Program and Stratum are not empty
WHILE Predicate 2 Head
i=i+1,
Predicate-Head =Stratum 1;
remove Stratum 1 from Program;
ENDWHILE
i=1+1;
Positive _head-(Negative _head+
Positive _head defined recursively
by Negative head)=Stratum i;

remove Stratum 1 from Program;

ENDWHILE

Predicate . All predicates that Program

contains.

Head : Predicate defined by a rule.

Stratum 1 Predicates assigned in stratum

L
Positive _head : Predicates defined by a
rule containing only posi-
tive literals.
Negative__head : Predicates defined by a
rule containing negative
literals.

If this process terminates with empty
program then the program is stratified by the
process and if terminates with non-empty
program then the program can not be
stratified.

Using the above loop, Program?2 is stratified
by Program2={child(lee).} & {liar(X)«liar
(X), —child(X).} & {innocent(X)«—child(X),
—liar(X).}.

Because a stratified program may have
negation in it, generally a least model may
not exist. A model(interpretation) of a
program P 1s supported if and only if for each
ground atom A in the model(interpretation)
there exists a ground clause with head A
whose body 1s true in the model (interpre-
tation). Apt et al. suggested that a minimal
and supported model be considered to be the
declarative semantics of a program and they
show that each stratified program has a
unique minimal supported model. The minimal
supported model can be defined as a fixed

point of an operator also. A natural operator

91

T. 1s defined for each stratum 1. An operator
T, for a stratum 1 1s monotonic and 1t has a
fixed point. An iterative fixed point of T, for a
program P 1s defined as follow:

T, 1 .(¢)=M(fixed point of T, with inter-

pretation ¢)

T, 1 .(M))=M,(fixed point of T, with inter-

pretation M,)
Ty 1. (M, UM,) =M;(fixed point of T, with
Interpretation M, UM,)
T, 1. (MUM,U..UM,)=M,(fixed point’
of T, with interpretation M, UM, U...
UM, 1)
The 1terative fixed point M, of a program P is
a minimal supported model of P.

Clearly NF rule i1s not complete for this
semantics because recursion is allowed in
stratified programs. Apt et al. elegantly
define a top-down interpreter which uses
bottom-up information to check for the
presence of infinite loops. This interpreter is
complete and sound for finite stratified
programs (finite Herbrand base) in minimal
supported model semantics. NF rule using
tight derivations can also be an interpreter for
this semantics. A ground atom is proved by a
tight NF derivation if any infinite loop in the
path of the proof procedure is checked and
removed| van Gelder, 1988].

For a stratified logic program, the following
process which considers strata 1, -+, s in turn

yields a unique minimal supported model also.

FOR Stratum=1 to S DO
WHILE a ground atom p(t;, -+, t.) can

92

be found in Stratum

assign true to p(t,, -+, t.);

substitute t,, -, t, for logical
variables X, -+, X, in a rule
containing p(X;, -+, X,) In the

program;

remove fact p(t, -, t,) from the
program,

remove p(t, -+, t,) from premise of
every other rule in which p(t,,
.-+, t,) appears,

remove all modified rules which have

“p(ty, -+, t,) In their premise;

ENDWHILE;
assign false to all remaining positive
literals L associated with
Stratum;
substitute false for L in every rule in
which L appears;
remove all modified rules which have

L in their premise;

ENDFOR

With this approach, we assume that any
literal 1s assigned the truth value false unless
it is forced to be true. This is a form of Closed
World Assumpti_on(CWA). Unlike the CWA
for a logic program presented in Reiter
[1978], this CWA is implemented sequenti-
ally.

When the condition 1 and condition 2 are
satisfied, the result of executing the above
WHILE loop is a model(since truth assign-
ments are made so that no rules are violated).

It is also a minimal model, since converting

truth values from true to false for any subset
of literals will no longer yield a model. This
model is a supported model since literals are
assigned true only as a result of applying a
rule whose premise 1s already true.

Running this loop for Program2, we have a
model in which child(lee) and innocent(lee)
are true and liar(lee) is false.

The concept of minimal supported model is
a natural generalization of least model to
stratified programs and is well-defined. One
of the drawbacks of this semantics 1s that
only a restricted class of programs can be
stratified. There are many useful programs
which cannot be stratified and this seamntics
can not be applied[Przymusinski, 1989; van
Gelder, 1989]. Przymusinski extended the
stratified program to locally stratified pro-
gram by stratifying ground atoms in the
Herbrand base instead of predicates. A
program is locally stratified if for each
ground rule A<L, -, L., the local stratum
of A is strictly greater than the local stratum
of each ground atom of negative literal in L,
-+, L, and the local stratum of A is greater
than or equal to the local stratum of each
ground atom in L, -+, L,,. The class of locally
stratified programs is larger than the class of
stratified programs and there are natural and
useful programs which cannot be stratified
but can be locally stratified[Przymusinski,
1988].

Locally stratified programs have a well-
defined declarative semantics, called a perfect
model, which is minimal and unique for each

locally stratified program. A perfect model is

a model of a program in which each ground
atom In & lower local stratum is mmimized
(falsified) before each ground atom m a
higher local stratum is minimized. For
stratified programs, the perfect model 1s
identical with the minimal supported model
and hence the perfect model semantics is
more powerful than the semantics of the
minimal supported model. On the other hand,
although it i1s quite easy to check whether a
program is stratified, 1t is very hard to check
local stratifiability because when functions
are present a program may have infinite local
stratification. It has been shown that it is not
decidable in general whether a program is

locally stratified or not[van Gelder, 19891

3. Weakly Perfect Model
Semantics

The weakly perfect model semantics, which
1s an extension of perfect model semantics, is
based on the dynamic decomposition of the
program (grounded) Into strata and its
semantics 1s based on the iterated least model
[Prysmusinska, 1988]. In the Herbrand ins-
tantiation of a program (program in which all
the wvariables are substituted by ground
terms), many irrelevant relations and clauses
are present and they may cause local
unstratifiability. The main idea of this
semantics i1s to remove irrelevant relations
and clauses from the grounded program.

Although negative recursion is not allowed
in stratified and locally stratified programs, a

restricted form of negative recursion is

93

allowed in this semantics by the notion of a
component, Two ground atoms A and B are
in the same component C if there are at least
two ground rules A«L,, -, L. where Liis -
B for some 1 and B<L,, -+, L,. where Ljis
A for some 1. Then there is an order relation
between components such that a component
C, 1s higher than C, if C, contains a ground
atom which has higher prority(lower local
stratum) than a ground atom in C, A
component 1s maximal if no other component
is higher than that. A component is trivial if it
consists of a single atom and there is no rule
A<l -, L, in which L. 1s —A for some 1
The bottom stratum S(P) of a program P is
the union of all maximal components of P.
The bottom layer L{P) of P is the set of all
the clauses from P whose heads belongs to
S(P}. A reduction of a program P with an
interpretation I is a new program P/I created
by performing the following reductions:

- removing from P all clauses which contain

a false premise n

»removing from all remaining clauses

premises which are true n I
- removing from resulting program all non-

unit clauses whose heads appear as unit

clauses in the program.

The construction of a weakly perfect model
15 as follows.

Take any program P=P, and M,={¢, &
be an interpretation in which any ground
atom 1s neither true nor false.

Let P.= Py/M,, the reduction of P, with
respect to M. Find the least model T, of the

bottom layer L(P,) of P, and let M,=(T,, F))

94

where F,=S(P,)-T..

Let P,=P,/M,, find the least model T, of
L(P,), and let M,=<{T,UT,, F,UF,) where F,
=5(P,)-T..

Continue this process until either P, 1s
empty, In which case M,=M,, or, otherwise,
until either S(P,) is empty or L(P,) does not
have a least model, in which case the weakly

perfect model is undefined.

Program 3.

team{kim,park).

senior(X)«team(X,Y), —senior(Y).

The first rule represents a team of workers
and the second rule means that if the second
worker is not senior worker then the first
worker 1s senior worker of the team.

Every locally stratified program has a
weakly perfect model and it coincides with the
perfect model. Weakly stratified programs
which are more general than locally stratified
programs, have a unique weakly perfect
model. A program is weakly stratified if
every maximal component in each stratum is
trivial and it has a weakly perfect model. But,
(1) programs with a weakly perfect model
may not be weakly stratified, (2) the class of
programs which have a weakly perfect model
1s not clearly defined, and (3) some
reasonable programs which still do not have

weakly perfect models.

4, Stable Model Semantics

Gelfond and Lifschitz developed a stable

model semantics for General Programs which
1s based on a form of non-monotonic
reasoning, autoepistemic logic[Gelfond, 1987,
Moore, 1985]. An interpretation of a program
is a stable model if it reproduces itself in a
natural transformation process, called stable
transformation. That is, if what we currently
know about the context of the program is not
changing with respect to a stability operator
of the program, then it is the intended
meaning of the program. A stability operator
S, is defined as follows:

Given a ground program P and an inter-
pretation I, a reduction of P with respect to [
is a new program P/l obtained from P by
performing the following reductions:

- removing from P all clauses containing a

negative premise which 1s false in I,

- removing from the remaining clauses those

negative literals which are true in .

Since the resulting P/l is a Positive
Program it has a unique least model J. The
least model J 1s defined as the outcome of the
operator S, on I, 1e. S,(I)=J. Note that the
number of true ground atoms in a model M is
greater than the number of true ground atoms
in S,(M) because M is a model of P/I and S,
(M) is a least model of P/I[van Gelder,
1989]. The least fixed point of S, of a
program P is always both a minimal model of
P and a stable model of P.

The stable model is an extension of the
perfect model semantics. For locally stratified
programs the stable model is unique and it
coincides with the perfect model. Further-

more, for a wider class of programs than

locally stratified programs, stable models are
unigue and match with the intended meaning
of the programs.

However, there are logic programs with
reasonable intended meaning which either
does not have a unique stable model or have a
stable model which does not match with the

intended meaning.

Program 4.

success< =failure.

failure« —success.

Program4 has two stable models which are
not an intended meaning. Program {success«
~failure. } has no stable model. So, the stable
model semantics is defined only for restricted
programs but the exact class of programs
which have a unique stable model is not
found. Another problem involved in this
semantics is that no constructive method for
building a stable model for a program has not
been found. One way is to find all minimal
models and test each one for the stablilty
transformation. It has been shown that
determining whether a program has a stable
model is NP-complete[van Gelder, 198971,

5. Well-founded Model
- Semantics

Since every attempt to find a suitable
declarative semantics which is categorical
(each ground atom in Herbrand base is true
or false) for a general logic program has been

failed, a declarative semantics in 3-valued

95

logic seems appropriate. van Gelder, Ross,
and Schlipf
semantics which can be applied for any
1990). The well-

founded partial mode] of a program P, which

introduced a well-founded

program|van Gelder,

is the intended meaning of P, is defined in
terms of a transformation that involves
unfounded sets which provides the basis for
negative conclusions in this semantics. Given
a program P and an interpretation 1, a set U
in Herbrand base 1s an unfounded set if each
atom p in U satisfies the following condition:

For each ground rule in P with p as head,
one of the following holds:

- a premise of the rule is false n L

- a positive premise of the rule occurs in U.

A literal that makes one of the conditions is
called the witness of unusability of the rule,

The union of all unfounded sets with respect

to a given | is also unfounded and is called the

greatest unfounded set{ van Gelder, 19847,

A well-founded partial model i1s a fixed
point of a natural operator W, defined as
follows:

Given a program P and an interpretation 1.

-T, is a van Emden and Kowalsk

operator.

« U.(D) is the greatest unfounded set of P

with respect to L.

- W,=T,(hyU —UD).

The operator W, is monotonic in 3-valued
logic because the number of ground atoms
with known truth values in W,(I) is not less
than the number of ground atoms with known
truth values in I for any L. Thus W, has a

least fixed point which is a well-founded

9%

partial model of P.

This semantics can also be characterized as
an alternating fixed point of another operator
which i1s a variant of a stability transforma-
tion operator. Given a program P and an
interpretation I, —l is a negated complement
of T in the Herbrand base(Hb) and an
operator S,{ 1) is defined as follows:

Let P'= PU =l then S,(=I) is defined as
a least fixed point of T,, the set of ground
atoms proved from P and -l The negated
complement of S,{ 1) or =(Hb-S,{ -I)), is
denoted by ~S,(—I). Now the alternating
operator with respect to an interpretation I,
A) = =S, (~5,(I)). Ap operator Is
monotonic in 3-valued logic and the least
fixed point of Ap is the alternating fixed point
of P. An alternating fixed point I consists
of ground atoms which are false in the
corresponding well-founded partial model and
S,(—1) is the set of atoms which are true in
the corresponding well-founded partial model.
Any ground atom in the Herbrand base that
1s neither in = nor in Sy{ =) is unknown in
model. This

alternating fixed point operator can be used

the well-founded partial
to builld a well-founded partial model
constructively. When a well-founded partial
model 1s categorical it is called a well-
founded model. In this case a well-founded
.model coincides with both a perfect model and
a weakly perfect model if they exist. So, the
well-founded semantics is an extension of
perfect model and weakly perfect model
semantics. And a well-founded model, if it

exists, coincides with one of the stable models.

However, a unique stable model may not be a
well-founded model. Furthermore, a well-
founded partial model exists for every logic
program and it is the same as the results by
non-monotonic reasoning approaches| Prysi-
musinski, 1989). The procedural semantics
corresponding to well-founded model sem-

antics, however, has not been found.

V. Practical Model
Semantics

1. Conditions of logical variables

The role of logical variables in rules is
important to interpret the meaning of a
program. Difficulties arise when we try to
state general universally quantified (1.e. "for
all---") facts or try to reach universally
quantified conclusions to rules. The following
two statements each meets the definition of a
logic programming statement but can be a
source of difficulty in analyzing a program’s

meaning .

potential _patron(Y, X)« —taken care
of (X), baby (X).

watches(Everyone, tv).

These two statements violate Condition 1:

Condition 1(Covering Axiom). Any vari-
able appearing in the conclusion of a rule
must appear in a positive literal in "the
premise of the rule.

The intended meaning of the first rule is “if

X is a baby and it is not taken care of then

any Y is a potential patron of X”. Difficulty
involved 1in this rule is that because Y is
universally quantified Y can be substituted
with any object in the program ie, anythiong
is a potential patron of X which is not
intended. Since a fact is a rule with an empty
premise, when the Covering Axiom is satis-
fied, the program cannot contain assertions
with variables, e.g. “watches(Everyone, tv).”
Notice also that the simple rule “female(X) :
- "male(X)}” violates Condition 1.

Another condition concerning the role of
logical variable 1s:

Condition 2(Allowedness): Any variable
appearing In a negative literal in the premise
of a rule must appear in a positive literal in
the same premise. Allowedness is necessary if
forward reasoning processor is used to
answer a query in a program. Without this
condition, we may have a query with negative
Iiteral containg variables, called floundering.

When Conditions 1 and 2 are satisfied, a
logic program is well-behaved in the follow-
g sense. If given a ground query (like "7-
flies(tweety).”), any rule used in a forward
reasoning process will produce a ground
conclusion. Also, by reordering literals in the
premise of a rule, any negative literal is
Although

negation must always be used with caution, it

ground before being unified.
is generally preferable to be constrained to
proving ground negative hterals like ” —flies
{(tweety)” rather than unground literals like ”
~flies(X).”

2. Practical model semantics

In this section we introduce a new seman-
tics for a program. Unlike other approaches in
semantics, this semantics is constructed by
alternating process of substitution for logical
variables and finding a model of subset of a
program. Most of difficulties in {inding an
appropreate semantics of a program are
caused by irrelevant ground rules (rules
without practical meaning like, senior(kim)
«team(kim, kim), -senior(kim).) in Her-
brand Instantiation of the program. For
example, Herbrand instantiation of Program3
has three irrelevant ground rules and because
of these rules Program3 can not be locally
stratified. If we force these irrelevant ground
rules from being generated then suitable
semantics of a program may be found easily.
In weakly perfect model semantics[Przy-
musinskl, 19887, all irrelevant rules are
removed from Herbrand instantiation of the
program in the program reduction step. In
this semantics irrelevant ground rules are not
generated In the substitution process and only
generated ground rules are considered in
finding semantics of a program.

In general Herbrand instantiation of a
program is large and 1t contains a lot of
rrelevant ground rules. In order to prevent
irrelevant ground rules from being generated,
we Instantiate only ground rules with premise
in which positive ground literals are true and
negative ground rules are false. Let us define

a couple of terms which will be frequently ued

98

in the following discussion.

Definition : Given an interpretation I,

ground part of a program P is a set of ground
I'UleS A — L}, Sty Lm Lp+h o
be generated from P by substituting logical

-, Lysn- which can

variables and L,, -+, L, are true in I,

Definttion : A ground rule is useful in
Interpretation I, if all positive literals in the
premise are true in I A ground rule is
unuseful if one of positive literals in its

premise is false in L,

If a ground rule is useful then the head of
the rule can be assigned to be true in 1. But if
a ground rule 1s unuseful then the truth value
of its head can not be determined n I. Thus,
given an Interpretation I and grourd part of a
program which contains only useful ground
rules, by making only forced ground atoms
true and remaining ground atoms false, we
can find a model of the ground part. In this
way the number of ground atoms assigned to
be true are minimized. Most of anomalies in
semantics of programs which can not be
locally stratified stem from using unuseful
ground rules in Herbrand instantiation of a
program.

Therefore, if a ground rule is unuseful in an
appropriate model of the program then we
can ignore the rule in the process of finding
the model. These unuseful rules may not be
in - query This
semantics 1s based on this idea. With this

instantiated answering.

strategy we may define an easy to understand

and intuitive semantics of a large class of

programs in the following manner.

When condition 1 and condition 2 are
satisfied, the construction of practical model
is as follows:

Given a program P, G; is a ground part of
P using interpretation M. If G, is ¢ or not
locally stratified, then no practical model
found. If G, is locally stratified then find a
perfect model M; of G using the following

process.

FOR Local _Stratum=1 to S DO

WHILE a ground atom p(t,, -+, t.) can
be found in Local_ Stratum
assign true to p(t,, -+, t,);
substitute t, -+, t, for logical
variables X, -+, X, m a rule
containing p(X,, =+, X,) in the
ground part,;
remove fa}ct. p(ty, +-+, t,) from the

ground _ part,
remove p{ty, -, t,) from premise of
every other rule in which p(t,,
-+, t,) appears;
remove all modified rules which have
p(ty, oo t;,) in their premise;
ENDWHILE;
assign false to all remaining positive
literals L. associated with Local _
Stratum;
substitute false for L in every rule in
which L appears;
remove all modified rules which have L in
their premise,
ENDFOR

Starting from M,=¢, continue the process

untll G,=G,4, or M,=M,... I G, s locally
stratified then it has a perfect model M, which
is a practical model of P. If G, is not locally
stratified then a practical model of P is not
defined.

This model of G, is a minimal model of P
and it is unique when condition 1 and

condition 2 are satisfied.

Lemma

A ground rule which s not

instantiated by the above process 1s unuseful
in M.

Proof: Assume that a ground rule r is not
Instantiated by the process and it is useful.
Then its body is true in M. Positive part of
the premise of the rule must be true in M.
Thus the rule must be instantiated n the

process. Constradiction. -

Theorem M is a model of the program P
when condition 1 and condition 2 are

satisfied.

Proof : Suppose M is not a model of P then
there is a ground rule r which is not true in
M. If ris in G, then r is true in M because M
is a perfect model of G,. If ris not in G,. We
Y Lyt

where p represents numer of positive literals

can rewrite r as A<Ly, -, Ly, Ly, -

in r and n represents number of negative
literals. L. in Ly, »++, L, i1s false in M for some i
otherwise r is in G, Thus r Is true in M
whatever truth value A and L.+, - Losa

have. Contradiction.

M is also a minimal model of P. M is a

perfect model of G, and a perfect model is a

99

minimal model. But G, is a proper subset of

P. Thus M is a minimal model of P.

In Program3, Program3=P. M,=(¢, ¢). G,
M, = <{team(kim,
park)}, {team{kim, kim), team(park, park),
team(park, kim)}>. G.={team(kim, park),

= (team(kim, park).}.

senior{kim)«—team(kim, park), ~ senior
(park)}. M,=<{team(kim,

(kim)}, {team{kim, kim), team{park, park),

park), senior
team(park, kim), senior(park)}). G;={team
(kim, park), senior(kim)eteam(kim, park),
- senior(park)}. G,=G, and M;=M, Thus

the practical model of Program3 is M.

As shown above, the practical model
semantics Is easier to understand than well-
founded model semantics which uses well-
founded set and unfounded set of ground
literals. The process of finding the practical
model semantics alternately uses instantiation
of ground rules and finding a perfect model of
the ground part which are rather simple. And
also this model may be found with less
computation than others because only useful
ground part, which is only a small subset of
Herbrand base of the program, is instantiated
and considered to {ind this model. In other
approaches the all ground rules in Herbrand
base are searched and evaluated to find an
appropreate model. Although this semantics
has very clear and intuitive meaning, it should
be used with care. When condition 1 and
condition 2 are not satisfied a model can not
be found. However, if general assertions are
not allowed and negative subgoals are to be

ground then these conditions are automati-

100

cally satisfied.

V. Conclusion

Logic programming and deductive databas-
es has gained widespread attention because of
the popularity of Prolog as a programming
language for knowledge-based applications.
To enhance the expressive power of logic
programming negation 1s necessary but use of
negation m logic program complicates the
meaning of the program.

In this paper we have described various pro-
posed semantics for deductive databases and
logic programs and discussed therr mutual
relations. We have particularly emphasized
recent research work in this area which
appears to be very significant and lead to a
change of perspective. There are two essen-
tiélly different 2-valued model-theoretic
semantics of deductive databases and logic
programs, both of which are closely related to
non-monotonic formalisms. One of them is
the stable model semantics, which is based on
autoepistemic logic or default theory. The
other 1s the weakly model semantics, based on
circumscription. There is a unique 3-valued
model-theoretic semantics, namely the well-

founded semantics, which 1s equivalent to

suitable forms of all 3-valued non-monotonic
formalisms and appears to be the most
adequate semantics for Jogic programs and
deductive databases.

We also suggested a semantics for a
practical use. This practical model semantics
is easy to find and intuitive. The process
described above generates a model of a
program which is minimal and unique. Any
ground rule in a program is intended to be
used to prove new fact which is not n
extentional database, Thus if a ground rule is
not useful then we can ignore the rule. In this
semantics unuseful rules are ignored in the
process of finding a semantics of a program.

The class of programs having this seman-
tics 1s wider than locally stratified programs
but narrower than well-founded model sem-
antics. And for weakly stratified programs,
the practical model is the same as weakly
perfect model. Although this semantics has
some advantages, the class of programs
which have the practical model semantics 1s
not clearly determined.

A compiler or interpreter using this sem-
antics willl have more expressive power and a
query or rule which is closer to natural
language can be used in logic program and

deductive databases.

REFERENCES

Apt, K. and Van Emden. “Contributions to

the theory of logicprogramming”, Journal of
the ACM, 29 : 841862, 1982.

Apt, K. Blaire, H. and Walker. A. “Towards a
theory of declarative knowledge”, In J.
Minker, editor, Foundations of Deductive

Database and Logic Programming, pages
89-142, Morgan Kaufmann, Los Altos, CA.,
1988.

Chang C. and Lee. R.C. Symbolic Logic and
Mechanical Theorem Proving., Academic
Press, New York, 1973,

Clark. K.L. “Negation as failure”, In H.
Gallaire and JMinker, editors, Logic and
Data Bases, pages 293-322, Plenum Press,
New York, 1978,

Bell, C.E. and Dae Yong Lee. “Analysis of the
behavior of logic-based computation for
deductive databases and default reasoning”,
Decision Support Systems, 8&:517-535,

1992.

Gallaire, H. and Minker, J. Logic and
databases, Plenum Press, New York, 1978.

Gallaire, H. Minker, J. and Nicolas. J. “Logic
and databases ! a deductive approach”, ACM
Computing Surveys, 16 ; 153-~185, 1984,

Gelfond, M. and Lifschitz, V. “The stable
model semantics for logic programming”, In
R. Kowalski and K. Bowen, editors, Proceed-
tngs of the Fifth Logic Programming
Sym posium, pages 1070-1080, Association
for Logic Programming, MIT Press, Cam-
bridge, Mass., 1988,

Kowalski. R. Logic for Problem Solving.
North Holland, New York, 1979.

101

Kowalski. R. “Logic as a Computer Lan-
guage”, In K.L. Clark and S. Tarnlund,
editors, Logic Programming, pages 3-18,
Academic Press Ine., New York, 1982

Lifschitz. V. “On the declarative semantics of
logic programs with negation”, In J. Minker,
editor, Foundations of Deductive Data-
bases and Logic Programming, pages 177-
192, Morgan Kaufmann, Los Altos, CA.,
1988.

Lioyd. J.W. Foundations of Logic Progra-
mming. Springer Verlag, New York, N.Y.,
second edition, 1987.

Minker. J. Foundations of Deductive Data-
bases and Logic Programming. Morgan
Kaufmann, Los Altos, CA., 1988.

Minker. J. “Perspectives in deductive data-
bases”, Journal of Logic Programming, 5
(1) : 33-60, 1988.

Nagvi. S.A. “A logic for negation in database
systems”, In J. Minker, editor, Proceedings
of the Workshop om Foundations of
Deductive Databases and Logic Program-
ming, Washington, D.C, pages 378-387,
August 1986.

Przymusinska H. and Przymusinski T.
“Weakly perfect model semantics for logic
programs”’, In R. Kowalski and K. Bowen,
editors, Proceedings of the Fifth Logic
Programming Symposium, pages 1106~

102

1122, Association for Logic Programming,
MIT Press, Cambridge, Mass., 1988.

Przymusinski. T. “On the declarative and
procedural semantics of logic programs”,
Journal of Automated Reasoning, 5 167-
205, 1989.

Reiter. R. “On closed-world data bases”, In
H. Gallaire and J. Minker, editors, Logic and
Data Bases, pages 293-322, Plenum Press,
New York, 1978.

Reiter. R. “Towards a logical reconstruction
of relational database theory”, In M. Brodie
and J. Mylopoulos, editors, On Conceptual
Model-ling, pages 341-348,
Kaufmann, 1989.

Morgan

Shepherdson. J. “Negation in logic program-
ming”, In J. Minker, editor, Foundations of
Deductive Databases and Logic Program-
ming, pages 19-88, Morgan Kaufmann, Los

B on,

O MR O

Altos, CA., 1988.

van Emden M. and Kowalski. R. “The seman-
tics of predicate logic as a programming
language”, Journal of the ACM, 23(4) . 733
-742, 1976.

van Gelder. A. “Negation as failure using
tight derivations for general logic programs”,
In J. Minker, editor, Foundations of Deduc-
tive Databases and Logic Programming,
pages 149-176, Morgan Kaufmann, Los
Altos, CA., 1988.

van Gelder. A. “The alternating fixpoint of
logic programs with negation”, In Pro-
ceedings of the Symposium on Principles
of Database Systems, pages 1-10, ACM
SIGACT-SIGMOD, 1989.

van Gelder, A. Ross, K.A. and Schiipf. J. S.
“The well-founded semantics for general
logic programs”, Journal of the ACM, 1990.

A7 olth4-e 1990 Univ. of lowaolA MIS uhA&$1E #S8ta 2408
@ A9 a5 A& Folc}. 1= Decision Support System S0 =g 3
BAFoke= Logic Programming, Deductive databases, Expert
Systems, ILP9} Logicate] @4 Solct,

