거리영상의 획득 및 형상특징 추출

Range Data Acquisition and Shape Feature Extraction

조 동 욱* 김 지 영* 이 부 호**
(Dong Uk Cho, Ji Yeong Kim; Boo Ho Lee**)

요 약

본 논문에서는 거리영상의 횐득빵법 및 입력으로 들어 온 거리영상에저 형상특징을 추출하는 방법올 제안하고자 한다. 제 안한 페인지파인더 서스팀은 긱 화소마다 단지 $\triangle \mathrm{R}$ 만을 계산함으로써 기존빵법예 비해 계산시간을 줄어고자 하며, 얻어진 거리영상에서 갚이값외 부호변화를 고려함으로써 물체의 형상륵징도 추출하고자 한다. 끝으로 본 시스팀의 유통성을 여러 가지 실헙에 의해 입중하고자 한다.

Abstract

This paper proposes an acquisition and the representation method of the 3 -dimensional information. The proposed range finder system can reduce the computation time by only calculating the ΔR of each pixel compared to the existing methods.

We also propose a shape feature extraction method by considering the sign change of the acguired range data.
Finally, the effectiveness of this system is demonstrated by several experiments.

I. Introduction

In the field of computer vision, the successful mage recognition from the camera-captured images depends on how to obtain the 3 -D (3 -dimensional) data and how to represent and process the acquired data in the computer. For the better recognition many methods have been proposed so far "il? 13 .3.

The ways to acquire 3 -dimensional data can be classified into the passive methods such as

[^0]"Shape from X " ${ }^{\left(4 i j-1!n^{*}\right)}$ and the active ones which include the range finder method $[[i-[9]]$.
The problems associated with the former methods have the difficulties in finding correspondence among the multiple images and the latter methods require a separate range measuring medium such as a laser source, an ultra sonic emitter, etc.
However, the range finder system is preferred because it has the advantage that it can take 3 -dimensional data directly.
Meantime, the improvement in the range finder system can be achieved when the processing time is reduced.

거라염상의 칙늑 딕 형상특징 추출
In this paper a method to significantly reduce the processing time of the existing range finder system ${ }^{[16]}$ is proposed.
First, the data captured for the reference flat by the horizontally projected laser stripes at the parallel of the camera are saved in the table, then the range data for the object in question :s extracted easily by comparing the pixel data value with the reference table values. By utilizing this input;reference table values, computation becomes simpler, hence the processing time is reduced.

Also proposed is the way to recognize the shape of the objects by combining the unique features of the primitives obtained when the captured input range data is scanned row by row and columm by column.

Finally, we have demonstrated the effective ness of the proposed system through the exper. iments.

II. Acquisition of 3-dimensional information

A basic range finder system consists of a cam era which capture the image, a laser source, a cylindrical lens to form structured stripes, a motorized rotating mirror, analysis monitor. a computer including digitizer.

1) Camera calibration

The camera calibration is to detemme the cor respondence between the real world condinates in the camera image.

This process is necessary to get the range data through triangulation which requires various parameters such as the foral length of the camera, the distance deinclit is whin ini wist the shaft of the horizontally rotating disk on which the objects to be placed and the angle between the front direction of the camera ard ine lasen stripe plane.

Fig. 1 Camera calibration

Figure 1 shows the following relationship among the parameters :
$L-d: f=h: a$
$L+d: f=h: b$

From the above equations we get
$L=d \times \frac{a+b}{a-b}$.
$\mathrm{f}=\frac{2}{\mathrm{~h}} \times \frac{\mathrm{a}+\mathrm{b}}{\mathrm{a}-\mathrm{b}}$.

2) Computation of range values

a. Existing method: ${ }^{10}$.

Figure 2 shows the relationship between the system and the image coordinates. As shown in the figure the shaft of horizontally rotating disk becomes the Z-axis and the center of the disk surface is to be the origin of the 3 dimensional coordinate system. Then the X -axis is the line on the disk surface to the direction of camera and the line from the origin parallel to the image plane becomes the Y axis.

The coordinates in the image plane are formes such that the center point on the image plane perpendicular to the center of the camera lens is
 plane parallel to the previously mentioned Y and Z axis from U -and V axis.

Then any point. I no the mage plane has the following relationships:

Fig． 2 System \＆Image coordinates

$$
\begin{equation*}
\mathrm{P}=\mathrm{C}+\mathrm{tU} \tag{4}
\end{equation*}
$$

and
$P=\left[\begin{array}{l}x \\ y \\ z\end{array}\right], C=\left[\begin{array}{l}x 0 \\ y o \\ z 0\end{array}\right]=\left[\begin{array}{l}\mathrm{L} \\ \mathrm{O} \\ \mathrm{h}\end{array}\right]$
$U=\left[\begin{array}{c}-f \\ \mathrm{Up} \\ \mathrm{Vp}\end{array}\right]$

From the above

$$
\begin{align*}
& x=-t f+L \\
& y=t \times U p \tag{6}\\
& z=t \times V p \times h
\end{align*}
$$

Also the equation of the stripe plane is
$y=\tan \Phi \times x$

These equations can be rearranged by eliminating t and we get

$$
\begin{aligned}
& x=\frac{L}{1+\frac{f \times \tan \Phi}{U p}} \\
& y=\frac{\mathrm{L} \times \tan \Phi}{1+\frac{\mathrm{f} \times \tan \Phi}{\mathrm{Up}}}
\end{aligned}
$$

$$
\begin{equation*}
z=\frac{\frac{\mathrm{Vp} \times \mathrm{L} \times \tan \Phi}{U \mathrm{p}}}{1+\frac{\mathrm{f} \times \tan \Phi}{\mathrm{Up}}}+\mathrm{h} \tag{8}
\end{equation*}
$$

b．Proposed method

The ways to get the range data by projecting laser include the methods of shooting a spot light into the forms of stripes or a grid type．

The proposed system projects laser stripes called＂structured stripes＂on the object and com pute the range data from it．

Camera
Rotating Mirror

Fig． 3 System and matge vordinates

Figure 3 shows the relationship between the system and the image coordinates. In this system the coordinate system of the physical space is formed such that the optical axis of the camera becomes the z-axis and the optical center on the z-axis is fixed as the origin. From this origin, the x axis is the horizoncal line and the verthat ine becomes the y-axis, thereby the $x \cdot y$ plane is par allel to the image plane.

In this system, the coordinate system on the image plane shares the same of the physical space.

From the pixel data obtained by the light stripe projection, the coordinate of the point that the light stripe touches with the $Y-Z$ plane of the optical center is obtained.

At the same time the value of R 0 which is the distance from the origin to the object $1 s$ computed from the angle of the rotating mirror. Meantime the reference pixel data table is inde with the plane placed parallel to the mage plane by projecting the laser stripes repeatedly. This table is used as the reference in computing the: range data of the object. At this time it is assumed that the distance value between the camera and the object is unpropotionally larger than the size of the object.

In reality a maximum of $1.5 \pi m$ discrepancy is measured for the 10 cm drameter object at the dis tance of 1.5 mm

$$
\begin{align*}
& \mathrm{R} \doteqdot \mathrm{Ro}+\triangle \mathrm{R} \tag{9}\\
& \mathrm{Ro}=\mathrm{L} \times \frac{\sin \left(\Phi-\frac{\mathrm{n} \theta}{\sin (\Phi}-\cdots\right.}{n \theta)} \tag{10}\\
& \Delta \mathrm{R}=\frac{\operatorname{To}-\mathrm{P}}{\tan \Phi}
\end{align*}
$$

where To: a value from the reference mixel data tabic
P : measured pixel data of the mage soor dinate
L. : distance between the somky ant the mirror
$\mathrm{n} \theta:$ angle of the mirror rotation
Φ_{1} : angle between light stripe and optical axis

In computing the range data by the above method the value of Ro for each object is cat ulated anly ones, sherebs only the value of \therefore R is computed for each pixel. This is the significant processing time reduction compared with the existing method.

The table shown below gives the comparision between the proposed and existing methods.

Table 1. Comparision between the proposed and existing methods

Il. Representation of 3-D Information

To get the shape features. it is confined in this paper that the shapes of the objects are some combinations of the primitives such as spheres. cylinders. cones and planes.

It is based on the report that about 85% of all man-made objects can be represented as some combinations of only four primatives mentioned
i) Now, for each promitive with the 3×1 mask as shown in figure 4 the value of $\mathrm{A}+\mathrm{C}-2 \mathrm{~B}$
 thresholed value (THI) then plus sign. it it is less than TH1 then minus sign, and if they are the seme the value zero are given acorrdingly. Then each primitive yelds a unique sign as shown in

Fig. 43×1 Mask

Fig. 5 characteristics of sign values

Fig. 61×3 Mask

Fig 5.
The reason for the operation of $\mathrm{A}+\mathrm{C}-2 \mathrm{~B}$ is as follows.

As an example we may have the range values in the window of " 123 " and " 222 ". From the front the former is slanted 45° and the latter is perpendicular. In this case the values of $\mathrm{A}+\mathrm{C}-2 \mathrm{~B}$ operations are the same which also corresponds the fact that both are plane surfaces.

In other words, the operation detects plane surface regardless of the degree and orientation of slant.

In this case both plane and cylinder have zero value, so they cannot be distingutished. To differentiate them, we do the same operation with the 1×3 mask as shown in figure 6 .

The purpose of these operations is to distingish convexity. concavity and flatness and assign the + . - and 0 signs accordingly.
Also by the curvature of the object the different distribution of +-0 signs is presented. Consequently, this umqueness of the distribution
of the signs saved in two matrice, the one by horizontal scanning and the other one by vertical scanning yields the shape feature of each object. Here, the mentioned threshold values TH1 and TH2 are the maximum allowable error values and have to be determined experimentally with the real range finder system operations.

Theoritically these threshold values have to be zero.

However they are fixed as small positive values close to zero in considerations of possible noise in the system.

The threshold value is originally the range value of the developed range finder system. This value is optimally selected after repeated experiments to get the best shape feature from the $1 \times$ 3 and 3×1 window operations.

TV. Experimental Results and Observation

According to the setup explained previously a laser source is used to get the range data by triangulation and the shape feature of the four single primitive object is extracted.

A 12 volt DC stepping motor of $1.8^{\circ} /$ step is used. The mirror moves $0.188^{\prime \prime}$ /step and the stripe rotates $0.36^{\%} /$ step through gear reduction. In this way we get about $20-25$ stripes for each exper. imental object. Also the processing time required to extract shape feature of each object from the time of range data acquisition is about $\{\sim \sim$ seconds by the C language pregrammed IBM $\mathrm{PC} / \mathrm{AT}$. Figure 7 shows the range finder system used in the experiment. Figure $\delta(a) \sim(d)$ show the objects used in the experiment and the corresponding range data are presented in Figure 9. The range data values atr computed through triangulation by findung the position of each laser strep with the estixest image data captured be the camera. Figure fir through 11 show the sign matrices compoted from the tathe date mindore

Fig. 7 Developed Range Finder System.

Fig. 8 (objects lisedirn the Fxperankert:

(a) Plane

(b) Sphere

(c)Cylinder

(d)Cone

Fig. 9 Obtained Range Data

9 by scanning horizontally and vertically.
The dots(.) in these figures represent the background of the objects, so the light stripes are not reflected. The experiment has demonstrated that the method developed in this paper successfully expresses the uniqueness of each object by representing the corresponding range data accordingly.
The proposed method cannot be applied in ac quiring the range vaiues and in extracting the shape features for the objects whose surface is quite unleven and rugged. It also has the limi tation for the complex shape objects in which mutiple prmitives are variously combined. Fur
ther research is expected in this area.
V. Conclusion

In this paper. a new method of acquiring and representing 3 dimensinal information by the range finder system is presented.
The proposed range finder system computes only ΔR values for each pixel, thereby siguit: cantly reduces processing time.
Also it has been shown that regardless of the range data value density, by taking only tio signs from the range data values, the shafe fertare on each object could be extracted.

Finally, we are grateful for Ki-won Kwon of Seowon University for his fine word processing job.

References

1. Kanade, "lhree Dimensional Mam hum Vistrn." Wi. wer Academic Publisher, 1987.
2. Jarvis, "A Perspective on Range Finding Techniques for Computer Vision." IEEE Trans. om PAMI, 1983.
3. B.U.Choi, "A Basic Study on the 3-Dimensional Image Processing \& Understanding." KOSEF Report. 1991.
4. Horn \& Brooks, "The Variatıonal Approach tw Shape from Shading," CVGlP. Vol.33. No.2, 19xhi.
5. Kender, "Shape from Texture," Techneal Retom 1

CMU, 1980.
6. Medıoni \& Nevatia, "Segment Based Stereo Mal. ching," CVGIP, 1985.
7. Sato \& Inokuchi, 3.D Surface Measurement by Surface Encoding Range Inagery." Journal of Robotic System, 1985.
8. Smith \& Kanade. "Autonomous Scene Description with Range Irkgery. " C.VCIF. lis.
9. Nishikawa \& Inokuchi, "Kange Data Entry Techn iques Using Laser Scanner and Two Solid State Sensors," IEEF Trans. on instrum. \& Measure. ment, IM-3D(4), 270, 1931.
10. T.I.Cho, "Acquisition \& Representation of the Range Data, " KAlST, 1988 .
11. Hakala, Hillyard. Malaisın \& Nource, "Natural Quadrices in Mechamical Desıgn," SIGGRAPH * \%1 Seminar: Solid Modeling, August, 1981.

	000000 0000
00000	000000000000000
-	
000	$006000000 \ldots 000$
00	
00	000000000000000
	0000000-0000000
	000000000000000
	0000-0000000000
	$00 . .0000000000$
	000000000000000
	000000000000000
	000000000-00000
	0000000-0000000
	000000000000000
	000000000000000
0000000-00000000	00000000-000000
	000000000000000
0000000000000000	000000000000000
0000000000000000	000000000000000
000.00000000000	000000-00000000
000. . 00-00000000	00.... 000000000
000. .00000000000	$00 \ldots . .00000000$
000000000	00000. . . 0000000
0000-0.000000000	00000...0000000
	000000000000000
	000000000000000
	000000000000000
000000-000000000	000000000-00000
0000000000000000	000000000000000
	000000000000000
0000000000000000	000000-00000000
$00000000-0000000$	000000000000000
	000000000000000
	000000000000000
00000.0000000000	00000 . . 0000000
00000.00-0000000	00000000-000000
0000000000000000	000000000000000
0000000000000000	000000000000000
00....0.0.	000.000.0.00000

Fig. 10 Sign Change for Plane \& Sphere

***************	00000000-00000000
+t+*+0**t+******	000000000000000000
tit+6+6+0+6+64**	00000000000000000
*+6+6+6+6+6+6***	00000000000000000
- +64+6+0.0+6+4+4	00000000000000000
***************	00000000+10000000
**6+tit+00+6+t+4*	
t+t+t+6+t+t+t+t*	
+6*****0+0+*+6**	0000000-000000000
******0.t+t+t+**	+0000000000000000
*6**** 0 +t++t+t+	
*6t+************	0+00000000000000*
******0+0+4+****	+ $0000000+00000000$
******++000++t++	0+0000000-0000000
+t+t+t+6t++6t+	0+00000000000000.
+*+000+++*+6t+*	0-0000- 00000000 -
+6+6t+t+t+t+t+*	- $000000000000000+$
t+*+**0+****	0+00000000000000*
++*+*+*+*+*+****	
********0+4*****	* $000000000000000 *$
++t+0+*+t++*****	$0+000000 \div 00000000$
++60+********	+000000000c00000*
*t******0+******	+ 00000000000000 **
**t+t+6t+4+4t+t*	+ $00000000000000 \cdot+$
+t+*****+t+*+***	**0+00000000000+*
+********0++****	*+0+0000000+000**
t+t+t+t++t+t+t+*	+ $+00+000000000+*$
	0++00000000000+**
***************	+00000000000+0**
t**********	- $+00000000+0+4+*$
****+*00.0+6+**.	$\because+0000000000+\%$.
****+*+t+t+t..	
$\because+$ ++t+t+t++t*	
+++++*++**+	
*********	O+
+t+t+t+t*	+0000000+...
	$\cdots \cdots 0+00+0 . .$.

+t+t+t+t+	
++++0+**+4	
+*+++0)+*+**	
+t+++00+t+6+	
+t+++40+*+**	0000000000000
+t+*+t******	
++*********	00
++**+00*t++*	
+6+6+0+t+6+*	0000000000000
+t+**+00+++*	000000-000000
+4*********	
+t+***00t+**	0000000000000
++**+0+0+***	0000000000000
t+*++++0*++*	00000000-0000
t+**t+t+t+t+	0000000000000
+***+0+t++	000.000000000
** ${ }^{+}+$++**+**	000.000000000
+ ${ }^{+} \cdot 000+4+$ +	000-00000-000
+******	0000000000000
t++***t+t++*	0000000000000
+6++t++0+t+*	0000000000000
Ot+t+6+0+t++	00000000-0000
+**++t+6t+**	0000000000000
****+*00\%t+*	0000-00000000
+**+*** ${ }^{\text {a }}$ +*	000000000000
+++*++0....+*	000000000000
*++++0+ ${ }^{\text {a }}$ ++	000-00000.000
+**+t+*****	0000-00000000
+++++000 ++**	0000000000000
+*** $0+$ +6***	0000-00-0-000
+*+* 000 ++t*	0000000000000
t+**t+t+t+4	0000000000000
+**+t*******	0009000000000
+ ${ }^{+\cdots}$	00.000000000
	00.000-00000
	$00 \cdot 00000-000$
t+t+**+t+t+*	0000000000000
+++*00*+t+**	0000009000000
t+****tt+t+4	0000000000000
*******0****	00000000000000
+****+0+****	00000000-0000
+1+*+00+****	0000000000000
****t+***	
	$00 \cdots$

Fig. 11 Sign Change for Cylinder $\&$ Cone

ADong-Uk Cho (Regular Member)

He received the B.S, M.S and Ph.D in Electronic Engineering all from the Hanyang University in 1983, 1985 and 1989 respectively. He is an assistant professor of com. puter science and ergineer ing at Seowon University, Chongju since 1991.

Before joining Seowon University faculty, he was an assistant professor of telecommunication engineering at Dongyang Technical College for 2 years.

His research interests include computer vision, fuzzy set theory and neural network. He is a member of the IEEE PAMI and KITE.

- Boo Ho Lee (Regular Member)

He was born in 1962.
He received the B.S and M.S in telecommunication engineering all from the Hanyang University in 1985 and 1991 respectively.

At present he is a research worker of ETRI since 1991.
His research interests in clude computer vision, DSP and Operating System.

Ah-Yeong Kim(Regular Member)

He is an associate professor of computer science and engineering at Seowon University, chongju since 1989 where he has been also the Drector of the University Computer Center. His research intere sts include system performance evaluation. computer vision and tele-measuring and controlling system.

Before joinıng Seowon University faculty, be was the Chief Research Scientist at the Central Research Center at Oriental Precision Company Ltd. for 21.1 years. Before then he was an assistant professor of computer science and engineering at Auburn University, Auburn, Alabama for a year.

He received M.B. A in MIS and M.S. and Ph.D in computer science all from the State University of New York at Binghamton NY. in 1977. 1979 and 1984 respectively. He is a nember of the IEEE Computer and Communication Societies and the ACM .

[^0]: *Dept of Computer Science and engineering,
 Seowon University
 **ETRI
 접수일자:1991. 10. 31.

