Identification of Acoustic Signals of Vehicles Using Bispectrum

ABSTRACT

Since power spectrum has no information about the phase of a signal, the power spectral analysis technique can not be used to interpret the phase coherency of the signal produced by some nonlinear process. In this case, the third-order spectrum, the so called bispectrum, is very useful in analyzing such signals. Some typical computer simulation results are shown in order to represent the usefulness of the bispectrum, and the bispectra of the measured acoustic signals of three vehicles are shown in order to use to identify the sources of those signals.

1. Introduction

Conventional power spectral analysis technique, which is based on autoand cross power spectrum, has been a very useful tool to analyze practical random signals in many fields of science and engineering. However, it is of limited value when analyzing random signals which interact with one another due to some nonlinear process since the power spectrum has no information about the phase of the random signals. The phase coherence existing between two (quadratically) nonlinearly interacting spectral components and a resultant sum (or difference) spectral component may be detected with the aid of the third-order spectrum, the so called bispectrum.

Let us consider, for example, three spectral components of which the frequencies are \( f_1, f_2 \) and \( f_3 \) in a random signal. If the three spectral components are independently excited,
the phases of the three spectral components are random and independent of one another, and, thus, in this case the three spectral components are not coupled. On the other hand, if the spectral components at \( \omega_1 \) and \( \omega_2 \) interact to form a third spectral component at \( \omega_3 = \omega_1 + \omega_2 \) due to a quadratic interaction, then a phase coherence will exist between three spectral components at \( \omega_1, \omega_2 \), and \( \omega_3 \). In other words the spectral components at \( \omega_1, \omega_2 \), and \( \omega_3 \) become coupled or correlated. Obviously, classical auto-power spectra are of no value in detecting such phase coherence because all phase information is lost in estimating auto-power spectra, in other words, we can not discriminate the above two cases by using the auto-power spectra since the power spectra of the above two cases are not different. However, due to the sensitivity of the bispectrum to the phase coherence, that is, the correlation between such three spectral components in the random signal, we can discriminate the above two cases by using the bispectra.

The bispectrum has been applied to many areas of science and engineering to analyze and interpret data associated with quadratically nonlinear phenomena. Many of these applications have been mentioned in the review paper by C.L. Nikias and M.R. Raghuveer\(^{[5]}\). The bispectrum and fourth-order cumulant methods have been used in order to estimate time delays in the underwater acoustics signal processing area\(^{[2,4]}\), and the advantages of the phase recovery from bispectra has been studied in \(^{[4]}\). The bispectrum has been applied to studies of ocean waves by Elgar and Guza\(^{[5]}\) and Kim and Dalzell\(^{[6]}\) used bispectral analysis techniques to model the nonlinear response of ships to sea waves. Powers and his colleagues have exploited the properties of the bispectrum to study three-wave coupling phenomena in plasmas\(^{[7]}\), fluids\(^{[8]}\), and oscillations of moored vessels in a random sea\(^{[9]}\).

Bispectral techniques have also been applied to analyze the radar signature by Walton and Joupy\(^{[10]}\), to determine the optical transfer function by Barakat and Ebstein\(^{[11]}\), to detect holographic information by Sato and Sasaki\(^{[12]}\), to analyze speech signals by Wells\(^{[13]}\). On the other hand, bispectral windows are studied in \(^{[14]}\), an optimized parametric method to estimate of the bispectrum is studied in \(^{[15]}\) and a parallel processing technique of the bispectrum for the biomedical signal processing is studied in \(^{[16]}\).

In the next section, some properties of the bispectrum will be described. In Section, \( \text{III} \), the bispectra of some typical examples which represent the usefulness of the bispectrum are shown. In Section \( \text{IV} \), the bispectra of three vehicles, that is, a car with a small gasoline engine, a bus with a large diesel engine, and a small truck with a small diesel engine, will be shown. Conclusion with the future work will be given in the last section, Section \( \text{V} \).

\( \text{II. Properties of Bispectrum} \)

Consider a real zero-mean random process \( x(t) \), then the triple correlation function, namely bicoherence function, of the random process is defined by

\[
R_{x_1x_2x_3}(\tau_1, \tau_2, \tau_3) = \text{E}\{x(t) x(t-\tau_1) x(t-\tau_2) x(t-\tau_3)\}
\]

(1)

where \( \text{E} \) denotes the expected value. As shown in Eq.(1), the bicoherence function is a function of two time delays, \( \tau_1 \) and \( \tau_2 \). The symmetry properties of the bicoherence function is easily derived from Eq.(1),

\[
R_{x_1x_2x_3}(\tau_1, \tau_2) = R_{x_1x_2x_3}(\tau_2, \tau_1) = R_{x_1x_2x_3}(-\tau_1, \tau_2, \tau_3)
\]

\[
R_{x_1x_2x_3}(\tau_1, -\tau_2, -\tau_3)
\]

(2)

As the correlation function is the 3D inverse
Fourier transform of the power spectrum, the
corcJrelation function can be defined by the 2-D
inverse Fourier transform of the bispectrum, \( S_{xx}(f_1, f_2) \),

\[
R_{xx}(\nu, \tau) = \int f_x S_{xx}(f_1, f_2) e^{j2\pi(f_1\nu + f_2\tau)} df_1 df_2
\] (3)

On the other hand, the bispectrum can be
defined in the frequency domain as follows :

\[
E[X(f_0)X^*(f_1)X^*(f_2)] = S_{xx}(f_1, f_2)\delta(f_0 - f_1 - f_2)
\] (4)

where \( X(f) \) is 1-D Fourier transform of \( x(t) \) and
* stands for the complex conjugate. The sym-
metry properties of the bispectrum are given as
follows :

\[
S_{xx}(f_1, f_2) = S_{xx}(f_2, f_1) = S_{xx}(f_1, -f_2)
\]

\[
= S_{xx}(-f_2, f_1) = S_{xx}(f_1 + f_2, -f_2)
\] (5)

Since our objective is to evaluate the
bispectrum digitally, we require, in order to
satisfy the sampling theorem, that not only \( f_1 \leq \frac{f_s}{2}, f_2 \leq \frac{f_s}{2} \), but also \( f_1 f_2 \leq \frac{f_s^2}{2} \), where \( f_s \) is the
sampling frequency. Thus, as a result of the sym-
metry properties and the constraints of the sam-
pling theorem, it is necessary to only compute
the auto-bispectrum within the triangular region
defined by the lines \( f_1 = 0, f_1 + f_2, f_2 = \frac{f_s}{2}, \) that is, Region 1 in Fig.1. In other words,
we evaluate the bispectrum of the Region 1, then
we can easily obtain the bispectra of the other 11
regions(i.e., Region 2 to Region 12). The expla-
nation about the shaded square area in Fig.1 will
be given in Section B.

III. Bispectra of the Generated Signals

Consider the signal given by

\[
x(t) = \sqrt{2} [\cos(2\pi g_1 t + \theta_1) + \cos(2\pi g_2 t + \theta_2)] + \frac{1}{2} \cos(2\pi g_3 t + \theta_3) + \frac{1}{2} \cos(2\pi g_4 t + \theta_4)
\] (6)

where \( g_1 = 38Hz, g_2 = 30Hz, g_3 = 68Hz, g_4 = 74Hz, g_5 = 12Hz \) and \( g_6 = 86Hz, \) and \( \theta_1 + \theta_2 = \theta_3 \) and \( \theta_1 + \theta_4 \neq \theta, \) that is, the former three sinusoids are fully
 correlated (because of their phase coherence),
but the latter three sinusoids are uncorrelated (no
phase coherence). The sampling frequency is
256Hz (that is, the Nyquist sampling rate), the
number of realization \( (M) \) is 64 and the number of
data points in each realization \( (N) \) is 128, (that
is, 128-point FFT is used), and thus the total
number of data points is 8k(i.e., 8912). This ex-
periment is carried out without noise in order to
show the bispectrum of an ideal case.

The amplitudes of the power spectral
components at \( g_1, g_2, \) and \( g_3, \) are 1.0 and those
of the power spectral components at \( g_4 \) and \( g_5 \) are
0.25, as shown in Fig.2(a). In Fig.2(a), we can
not find any differences between the coupling
relationship relationship among the sinusoids of
which the frequencies are \( g_1, g_2, \) and \( g_3 \) and that
among the sinusoids of which the frequencies are $g_1$, $g_2$, and $g_3$.

However, if we estimate the bispectrum of sinusoids, we can detect the differences as shown in Fig.2(b). In Fig.2(b), the amplitude of the bispectral component at (38 Hz, 30 Hz) is 0.177 and that of the bispectral component at (74 Hz, 12 Hz) is 0.014. Ideally, the latter must be zero if the phases of the three sinusoids of which the frequencies $g_1$, $g_2$, and $g_3$ (i.e., $\theta_1$, $\theta_2$, and $\theta_3$) are completely random. However, since the uniformly distributed random numbers generated by the computer, which are used to calculate the phases of the sinusoids, are not completely random, the amplitude of the bispectral component at (74 Hz, 12 Hz) is not zero but a small value.

The bicoherence spectrum is a measure of degree of the coupling (in this paper, the quadratic nonlinearity) of three sinusoids. The maximum value of the bicoherence spectrum is 1.0 and the minimum value is zero. The bicoherence spectrum is shown in Fig.2(c). The amplitude of the bicoherence spectral component at (38 Hz, 30 Hz) is 1.0, that is, three sinusoids of which the frequencies are $g_1$, $g_2$, and $g_3 = g_1 + g_2$ are completely coupled, and that of the bicoherence spectral component at (74 Hz, 12 Hz) is 0.006 (i.e., nearly zero), that is, three sinusoids of which the frequencies are $g_1$, $g_2$, and $g_3 = g_1 + g_2$ are not coupled.

Next, we consider another test signal such that

$$x(t) = \sqrt{2} \left[ \cos(2\pi g_1 t + \theta_1) + \cos(2\pi g_2 t + \theta_2) + \cos(2\pi g_3 t + \theta_3) \right]$$

where $g_1 = 52$ Hz, $g_2 = 41$ Hz, $g_3 = 86$ Hz, and $\theta_1$, $\theta_2$, and $\theta_3$ are random, that is, $\theta_1 + \theta_2 + \theta_3$. The sampling frequency is also 256 Hz, the number of realizations is 64 and each realization contains 128 data points.

The power spectrum of the signal is shown in Fig.3(a). The amplitudes of the power spectral components at $g_1$ and $g_2$ are 1.0, that of the power spectral component at $g_1 + g_2$ (i.e., $83$ Hz) is 0.510 and that of the power spectral component at $g_1 - g_2$ (i.e., $18$ Hz) is 0.250. All power of the $86$ Hz sinusoid comes from the coupling of two sinusoids, $\cos(2\pi g_1 t + \theta_1)$ and $\cos(2\pi g_2 t + \theta_2)$. However, half of the power of the $86$ Hz sinusoid...
comes from the coupling of two sinusoids, \( \cos(2\pi g_t + \theta) \) and \( \cos(2\pi g_r + \theta) \), but the other half of the power of the 86Hz sinusoid comes from the noncoupled sinusoid \( \frac{1}{2} \cos(2\pi g_r + \theta) \). In practical situation, the noncoupled sinusoid \( \frac{1}{2} \cos(2\pi g_r + \theta) \) could be considered as a random noise.

The bispectrum and the bicoherence spectrum of the signal expressed by Eq.(7) are shown in Fig.3(b) and (c), respectively. In Fig.3(b), the amplitude of the bispectral component at 86Hz is 0.177 and that of the bispectral component at 52Hz is 0.181. Since the uniformly distributed random numbers generated by the computer, which are used to calculated the phases of the sinusoids, are not completely random, both amplitudes of the bispectra are slightly different. The amplitude of the bicoherence spectral component at 34Hz is 1.0 which implies that three sinusoids of which the frequencies are \( g_a, g_b \) and \( g_d = g_a - g_b \) are completely coupled, and that of the bicoherence spectral component at 52Hz is 0.516 which implies that only half of the power of the sinusoid of which the frequency is \( g_d = g_a + g_b \) is due to the nonlinear interaction between the sinusoids of which the frequencies are \( g_a, g_b \). If three sinusoids of which the frequencies are \( g_a, g_b \) and \( g_d = g_a + g_b \) are fully coupled, the amplitude of the bispectral component at 52Hz is doubled, since the amplitude of the power spectral component at \( g_d \) (i.e., 86Hz) is 0.516 and that of the power spectral component at \( g_a \) (i.e., 18Hz) is 0.250.

IV. Bispectra of Acoustic Signals of Vehicles

Acoustic signals are collected from the three different vehicles, that is, a 5-passenger car with a small gasoline engine, an express bus with a relatively large diesel engine and a 2.5-ton truck with a relatively small diesel engine. When each vehicle, of which the engine runs idle, is stopped on a noisy road, the acoustic signal, precisely speaking, noise, of each vehicle is recorded for 2 seconds about 1m apart from the engine of the vehicle. The sampling frequency is 10kHz since the order of the signal bandwidth is under 2kHz, that is, in this case 10kHz sampling rate is high enough to avoid aliasing. Therefore, the data length of each signal is 20kHz, i.e., 20480. The power spectra of the acoustic signals of the car,
shaded area in order to obtain symmetric bispectrum patterns. The lowest frequency of the shaded area is about $-1kHz$ and the highest frequency is about $1kHz$ due to the limitation of the software package we have, which can be used to draw, at largest, 10000-point contour plot. The contour plots of the shaded area of the bispectra of the acoustic signals of the car, the bus and the truck are shown in Fig.5(a), (b) and (c), respectively. Although we can identify the sources of the acoustic signals by using the power spectra shown in Fig.4(a), (b) and (c), we can also identify the sources by using the bispectrum patterns shown in Fig.5(a), (b) and (c). However, if we use bispectrum patterns in order to identify the sources of acoustic signals, we can also utilize well-known pattern recognition techniques.

V. Conclusion

As shown in Section III, since both the power spectra of two different signals could be equal, it is not enough, sometimes, to identify the signals by using the power spectrum technique. However, the bispectrum technique is able to identify the two signals, since bispectrum can detect the phase coherence of the signal. Since the contour plot of the bispectrum of a signal looks like a pattern as shown in Section IV, we can apply many pattern recognition techniques in order to identify the sources of signals. Also, it is relatively easy to identify the sources of signals by human eyes. In addition, if we use both the power spectrum technique and the bispectrum technique in order to identify the sources of acoustic signals, the probability of the identification will be higher. Since one of the disadvantages of the bispectrum technique is the fact that the computation time to estimate the bispectrum is longer than that to estimate the power spectrum, the higher order spectra including the bispectrum
타이스테트림을 이용한 차량의 운동성별

(a)

(b)
have not been widely utilized. However, the computation time becomes less important due to the appearance of high speed computers.

We prepare the next paper in which we consider the bispectra of the acoustic signals of the vehicles with additive Gaussian noises. After then, we apply neural network techniques to the identification of the source of a signal by using the bispectrum pattern in the future. Ultimately, we are going to apply this technique to the underwater target identification using sonar.

References


\textbf{Chong Koo An} was born on July 7, 1953. He received B.S. degree in electrical engineering from the Seoul National University in 1977, M.S. degree in electronic engineering from the Korea Advanced Institute of Science and Technology in 1979 and Ph.D. degree in electrical and computer engineering from the University of Texas at Austin in 1989. In 1979 he joined the Hyundai Heavy Electric Company. Since 1980 he has been with the department of electronic engineering at the Ulsan University, where he is currently an associate professor. He joined the Electronics Research Center at the University of Texas at Austin, as a research fellow, from 1985 to 1989. His research activities are in the areas of spectrum estimation, time delay estimation, higher-order spectral analysis and speech and sonar signal processing. Dr. An is a member of Eta Kappa Nu.

\textbf{Dong Min Lee} was born on September 25, 1967. He received B.S. degree in electronic and computer engineering from the Ulsan University in 1991. At present, he is working towards the M.S. degree in electronic engineering at the Ulsan University. His current research interests include speech and sonar signal processing with neural networks.

\textbf{Tai Ho Lee} received B.S. degree in electronic engineering from the Hanyang University in 1966, M.S. degree in electronic engineering from the Seoul National University in 1969 and Ph.D. degree in electronic engineering from the Yonsei University in 1975. From 1969 to 1972, he was with the Korean Institute of Science and Technology as a researcher. Since 1973 he has been with the department of electronic engineering at the Ulsan University, where he is a professor. His research interests are in the area of digital signal processing, speech synthesis and recognition, and neural networks.