메탄올 용매에서 산소 첨가된 네자리 Schiff Base Cobalt(II) 착물들의 활성촉매에 의한 Hydrazobenzene의 산화반응 (제 2 보)

Oxidation Reaction of Hydrazobenzene by Activated Catalysts of Oxygen Adducted Tetradentate Schiff Base Cobalt(Ⅱ) Complexes in Methanol Solvent. (Ⅱ)

  • 조기형 (전남대학교 자연과학대학 화학과) ;
  • 최용국 (전남대학교 자연과학대학 화학과) ;
  • 김상복 (울산대학교 자연과학대학 화학과) ;
  • 박종기 (전남대학교 자연과학대학 화학과) ;
  • 박동화 (전남대학교 자연과학대학 화학과)
  • Ki-Kyung Chjo (Department of Chemistry, College of Natural Science, Chonnam National University) ;
  • Yong-Kook Choi (Department of Chemistry, College of Natural Science, Chonnam National University) ;
  • Sang-Bock Kim (Department of Chemistry, University of Ulsan) ;
  • Jong-Ki Park (Department of Chemistry, College of Natural Science, Chonnam National University) ;
  • Dong-Hwa Park (Department of Chemistry, College of Natural Science, Chonnam National University)
  • 발행 : 1992.12.20

초록

산소가 포화된 메탈올 용액에서 Superoxo형인 [Co(Ⅲ)(SED)(Py)$O_2$]와 [Co(III)(SOPD)(Py)$O_2$]들의 균일 산화 활성 촉매에 의한 hydrazobenzene(H2AB)의 산화 주생성물은 trans-azobenzene (t-AB)이고 반응 속도상수 k = 7.692 ${\times}$ $10^{-2}$ M/sec 및 5.076 ${\times}$ $10^{-2}$ M/sec이나 ${\mu}$-peroxo형인 [Co(III)(SED)(Py)]$_2O_2$에 의한 주생성물은 cis-azobenzene (c-AB)이 선택적으로 생성되고 반은 속도상수 k = 1.266 ${\times}$ $10^{-2}$ M/sec로 주어짐을 UV-visible 흡광도법으로 알아보았다. 이들 산화반응은 다음과 같이 균일 산소 첨가 착물촉매에 의하여 산화주생성물이 선택적으로 다르게 생성된다. $H_2$AB + Co(II)(Schiff base)$(Py)_2$ + $O_2$ ${\rightleftharpoons}_{MeOH}^K$ Co(III)(Schiff base)(Py)$O_2$${\cdot}$$H_2$AB + Py $\longrightarrow^k$ Co(II)(Schiff base)$(Py)_2$ + t-AB + $H_2O_2$(Scchiff base : SED 및 SOPD). $H_2$AB + 2Co(II)(SND)$(Py)_2$ + $O_2$ ${\rightleftharpoons}_{MeOH}^K$ [Co(III)(SND)(Py)]$_2O_2$${\cdot}$$H_2$AB + 2Py $\longrightarrow^k$ (Co(II)(SND)$(Py)_2$ + c-AB + $H_2O_2$.

Dioxygen binding and homogeneous catalytic oxidation of hydrazobenzene were investigated by employing tetradentate Schiff base Cobalt(II) complexes such as Co(II)(SED)$(Py)_2$, Co(II)(SOPD)$(Py)_2$ and Co(II)(SND)$(Py)_2$ in saturated oxygen methanol solvent. The major product of hydrazobenzene ($H_2$AB) oxidation by catalysts of superoxo type [Co(III)(SED)(Py)$O_2$] and [Co(III)(SOPD)(Py)$O_2$] complexes are trans-azobenzene (t-AB) and rate constants k for oxidation reaction was 7.692 ${\times}$ $10^{-2}$ M/sec for [Co(III)(SED)(Py)$O_2$] and 5.076 ${\times}$ $10^{-2}$ M/sec for [Co(III)(SOPD)(Py)$O_2$]. But cis-azobenzene (c-AB) are obtained as a major product with ${\mu}$-peroxo type [Co(III)(SED)(Py)]$_2O_2$ catalyst, and rate constant k is 1.266 ${\times}$ $10^{-2}$ M/sec. The rate constants of oxidation reaction has been studied spectrophotometrically and the rate law established. A mechanism involving a intermediate activated complexes of catalyst, hydrazobenzene and oxygen has been proposed. $H_2$AB + Co(II)(Schiff base)$(Py)_2$ + $O_2$ ${\rightleftharpoons}_{MeOH}^K$ Co(III)(Schiff base)(Py)$O_2$${\cdot}$$H_2$AB + Py $\longrightarrow^k$ Co(II)(Schiff base)$(Py)_2$ + t-AB + $H_2O_2$(Scchiff base : SED and SOPD). $H_2$AB + 2Co(II)(SND)$(Py)_2$ + $O_2$ ${\rightleftharpoons}_{MeOH}^K$ [Co(III)(SND)(Py)]$_2O_2$${\cdot}$H_2$AB + 2Py ${\longrightarrow}^k$ (Co(II)(SND)$(Py)_2$ + c-AB + $H_2O_2$.

키워드

참고문헌

  1. Real. Trav. Chim. Pays-Bus v.86 H. M. Van Dort;H. J. Guerson
  2. J. Org. Chem. v.4 L. H. Vogt;J. G. Wirth;H. L. Finkbeimer
  3. J. Org. Chem. v.35 D. H. Tomaja;W. H. Vogt;J. G. Wirth
  4. J. Catal. v.41 V. M. Kothari;J. J. Tazuma
  5. J. Am. Chem. Soc. v.103 R. S. Drago;A. Zombeck;B. B. Cordon;J. H. Gaul
  6. J. Chem. Soc. (A) C. Floliani;F. Calderazzo
  7. Bull. Chem. Soc. Japan v.42 A. Misono;S. Koda
  8. Inorg. Chim. Acta. v.5 C. Busetto;C. Neri;N. Palladino;E. Penotti
  9. Chem. Comm. D. Dimente;B. M. Hoffman;F. Basolo
  10. J. Inorg. Nucl. Chem. v.35 E. I. Ochiai
  11. J. Phys. Chem. v.71 J. A. Weil;J. K. Kinnaird
  12. J. Am. Chem. Soc. v.89 M. Mori;J. A. Weil
  13. J. Am. Chem. Soc. v.92 B. M. Hoffman;D. L. Dimento;F. Basolo
  14. J. Am. Chem. Soc. v.92 F. A.. Walker
  15. J. Korea. Chem. Soc. v.31 no.6 K. H. Chjo;J. S. Chung;H. S. Ham;S. S. Seo
  16. J. Korea. Chem. Soc. v.33 no.2 K. H. Chjo;J. S. Chung;H. S. Ham;S. S. Seo
  17. J. Korea. Chem. Soc. v.33 no.3 K. H. Chjo;S. S. Seo;D. S. Chon
  18. J. Chem. Educ. v.54 no.7 T. G. Appleton
  19. J. Korea. Chem. Soc. v.34 no.6 K. H. Chjo;Y. K. Choi;H. S. Ham;S. S. Seo;S. B. Kim
  20. Purification of Laboratory Chemicals D. D. Perrin;W. L. Armargo;D. R. Perrin
  21. J. Am. Chem. Soc. v.97 no.21 J. H. Burness;T. G. Dillard;L. T. Talor
  22. Iowa state coll., Jour. Science v.22 H. Diehl;L. Ligget;C. C. Hach;G. C. Hanrrison;L. Henselmesier;R. W. Schwant;J. Matheewe, Jr.
  23. Anal. Chem. v.54 D. T. Sawyer
  24. Chem. Ber. v.10 G. Kaupp;G. A. Russwel
  25. Chem. Rev. v.79 F. Basolo;R. D. Jones;D. A. Summerville
  26. J. General Chem. Of the U.S.S.R. v.49 A. V. Savitskii;V. I. Nelyubin
  27. J. Am. Chem. Soc. v.1102 R. S. Drago;J. P. Cannady;K. A. Leslie
  28. J. Am. Chem. Soc. v.107 R. S. Drago;B. B. Cordon;R. P. Perito
  29. Helv. Chim. Acta. v.43 F. Gerson;E. Heilbronner;A. Van Veen;B. M. Wepster
  30. J. Korea. Chem. Soc. v.36 no.2 K. H. Chjo;Y. K. Choi;S. B. Kim