Mo Interpretation for the Substituent Effect of Stilbenes

스틸벤의 치환기 효과에 대한 분자궤도함수론적 해석

  • Lim Sung-Mi (Department of Chemical Education, Hyosung Women's University) ;
  • Park Byung-Kak (Department of Chemical Education, Hyosung Women's University) ;
  • Lee Gab-Yong (Department of Chemistry, Yeungnam University)
  • 임성미 (효성여자대학교 사범대학 화학교육과) ;
  • 박병각 (효성여자대학교 사범대학 화학교육과) ;
  • 이갑용 (영남대학교 이과대학 화학과)
  • Published : 1992.02.20

Abstract

The Hammett's substituent constants were interpreted for substituted stilbenes by HMO method. The appropriate quantum chemical indices are chosen as independent contribution of the inductive and the resonance effects for substituent constants. It has been found that theoretical values, ${\sigma}_p{^{th}}$, defined as sum of the net charge, self atom polarizability and difference in HOMO energy between substituted- and unsubstituted-stilbenes, correlated with experimental Hammett's substituent constants. The dipole moments were found to be correlated with differences in ${\sigma}_p{^{th}}$ between two substituents for disubstituted stilbenes. It has been also found that transition optical spectra, ${\lambda}_{max}$ of the substituted stilbenes depend on difference between the HOMO and the LUMO energy as expected.

치환 스틸벤 계열에 대해 HMO법으로 Hammett치환기 상수를 해석하였다. 이 계열에서 치환기 상수에 대한 유도효과와 공명효과의 기여를 양자화학적 지수로 취하여 계산한 이론값이 Hammett 치환기 상수 ${\sigma}_p$와 병행성이 있음을 알았으며 이 이론값으로 치환 스틸벤의 쌍극자능륙에 미치는 치환기 효과를 설명할 수 있었다. 아울러 이 화합물의 전자전이에 대한 최대 흡수파장$({\lambda}_{max})$은 HOMO와 LUMO 에너지의 창에 의존됨이 확인되었다.

Keywords

References

  1. J. Org. Chem. v.22 Y. Okamoto;H. C. Brown
  2. J. Chem. Soc. v.81 A. I. Biggs;R. A. Robinson
  3. Rec. Trav. Chim. v.78 H. Van Bekkum;P. E. Verkade;B. M. Wepster
  4. J. Phys. Chem. v.64 R. W. Taft
  5. J. Chem. Soc. R. O. C. Norman;G. K. Radda;D. A. Brimacombe;P. D. Ralph;E. M. Smith
  6. Bull. Chem. Soc., Jpn. v.45 Y. Yukawa;Y. Tsuno;M. Suwada
  7. J. Am. Cherm. Soc. v.95 A. J. Hoefnagel;B. M. Wepster
  8. Prog. Phys. Org. Chem. v.10 S. Ehrenson;R. T. C. Brownlee;R. W. Taft
  9. J. Phys. Chem. v.92 A. Ulman
  10. J. Am. Cherm. Soc. v.107 M. J. S. Dewer(et al.)
  11. J. Am. Chem. Soc. v.108 M. J. S. Dewer;K. M. Dieter
  12. Steric Effects in Organic Chemistry R. W. Taft;M. S. Newman(Ed.)
  13. Correlation Analysis in Chemistry J. Shorter
  14. J. Org. Chem. v.45 G. Kemister;A. Pross;L. Radom;R. W. Taft
  15. J. Am. Cherm. Soc. v.84 M. J. S. Dewer;P. J. Grisdale
  16. J. Org. Chem. v.44 S. K. Knudson;J. P. Idoux
  17. J. Am. Cherm. Soc. v.103 E. R. Vorpagel;A. Streitwieser, Jr.;S. D. Alexandratos
  18. J. Am. Cherm. Soc. v.104 D. L. Grier;A. Streitwieser, Jr.
  19. J. Org. Chem. v.46 R. E. Gawley
  20. J. Am. Cherm. Soc. v.100 R. W. Taft(et al.)
  21. J. Org. Chem. v.44 J. Bromilow;R. T. C. Brownlee;V. O. Lopez;R. W. Taft
  22. J. Org. Chem. v.44 J. Bromilow;R. T. C. Brownlee
  23. J. Kor. Chem.Soc. v.30 no.2 Byung-Kak Park;Gab-Yong Lee
  24. Molecular Orbital Theory for Organic Chemists M. J. S. Dewer
  25. Introduction to Quantum Chemistry T. Yonezawa(et al.)
  26. 分子軌道法入門 廣田穰
  27. Molecular Orbital Theory for Organic Chemists A. Streitwieser, Jr.
  28. An Introduction to Physical Organic Chemistry M. Kosower
  29. Introduction to Quantum Chemistry T. Yonezawa(et al.)
  30. Mol. Cryst. Liq. Cryst. v.106 A. F. Garito(et al.)
  31. J. Chem. Phys. v.20 H. H. Jaffe
  32. J. Chem. Phys. v.21 H. H. Jaffe
  33. Tetrahedron v.26 K. Imafuku;S. Nakama;H. Matsumura
  34. Z. Chem. v.8 J. Kuthan;V. Skala
  35. Chem. Abst. v.70 J. Kuthan;V. Skala
  36. J. Chem. Ed. v.55 O. H. Rousseau;F. Texier
  37. Russ. J. Phys. Chem. v.37 A. E. Lutskii(et al.)
  38. Theor. Chim. Acta v.32 J. E. Ridley;M. C. Zerner
  39. Theor. Chim. Acta v.42 J. E. Ridley;M. C. Zerner
  40. Theor. Chim. Acta v.53 J. E. Ridley;M. C. Zerner
  41. Introduction to Quantum Chemistry T. Yoneazwa(et al.)