Superconductivity of High $T_c$ Superconductor $(Y_{1-x}Eu_x)Ba_2Cu_3O_{7-{\delta}}$

고온초전도체 $(Y_{1-x}Eu_x)Ba_2Cu_3O_{7-{\delta}}$의 초전도성

  • Chung Won Yang (Department of Chemistry, Kangwon National University) ;
  • Kweon Jung Ohk (Department of Chemistry, Kangwon National University) ;
  • Cho Eun Kyung (Department of Materials Science, Kangwon National University.) ;
  • Kim Keyung Nam (Department of Chemistry, Kangwon National University) ;
  • Han, Sang Mok (Department of Materials Science, Kangwon National University.)
  • Published : 1992.02.20

Abstract

High $T_c$, superconductor $(Y_{1-x}Eu_x)Ba_2Cu_3O_{7-{\delta}}$ (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) were prepared and the physical properties were observed. XRD analysis showed that the structures of all the specimen were orthorhombic and the lattice parameters a, b and c increased with the increasing x value. Electrical resistivity and magnetization measurements revealed that pure high $T_c$, superconducting phases were formed at above 90 K. The critical temperatures increased with increasing the amount of Eu. From the measurement of magnetization and the size of the grains using SEM micrographs, volume diamagnetic susceptibilities for each specimen were calculated. These values decreased with the increasing x value. The composition of Ba in the lattice site decreased as the concentration of Eu increased, and this was confirmed by EPMA. It was found out that the volume diamagnetic susceptibility of each specimen was directly influenced by the composition of Ba in the lattice site.

고온초전도체 $YBa_2Cu_3O_{7-{\delta}}$에서 Y를 Eu로 치환시킨 $(Y_{1-x}Eu_x)Ba_2Cu_3O_{7-{\delta}}$ (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0)를 제조한 후 물성변화를 관찰하였다. X-선 회절분석결과 모든 시료가 사방정계 구조를 갖고 있었으며 x값이 증가함에 따라 격자상수 a, b 및 c도 증가하였다. 전기저항과 자화율측정으로부터 순수한 90K 이상의 고온초전도상이 생성되었음을 알았으며, x값이 커짐에 따라 임계온도가 상승하였다. 주사전자현미경을 사용하여 구한 낟알크기와 자화측정결과로부터 각각의 시료들에 대한 부피 반자성자화율을 구하였으며, x값이 커질수록 이 값은 감소하였다. Eu의 농도가 증가함에 따라 결정격자내의 Ba의 양이 감소됨을 EPMA로 확인하였으며, 이것은 부피반자성 자화율의 감소에 직접적인 영향을 주는 것으로 판단된다.

Keywords

References

  1. Phys. Rev. Lett. v.58 M. K. Wu;J. R. Ashburn;C. J. Torng;P. H. Hor;R. L. Meng;L. Gao;Z. J. Huang;Y. Q. Wang;C. W. Chu
  2. Jpn. J. Appl. Phys. v.27 I. Taguchi
  3. Phys. Rev. Lett. v.58 P. H. Hor;R. L. Meng;L. Gao;Z. J. Huang;J. Bechtold;K. Forster;C. W. Chu
  4. Jr. Solid State Commun. v.64 R. J. De Angelis;J. W. Brill;M. Chung;W. D. Arnett;X. -D. Xiang;G. Minton;L. A. Rice;C. E. Hamrin, Jr.
  5. Solid State Commun. v.65 C. Ning;G. Weiyan;Z. Jiagi;C. Xichen
  6. Jpn. J. Appl. Phys. v.27 Y. Wadayama;K. Kudo;A. Nagata;K. Ikeda;S. Handa;O. Izumi
  7. Novel Superconductivity J. M. Tarascon;L. H. Greene;B. G. Bagley;W. R. McKinnon;P. Barboux;G. W. Hull;S. A. Wolf(ed.);V. Z. Kresin(ed.)
  8. Phys. Rev. v.B36 J. M. Tarascon;W. R. Mckinnon;L. H. Greene;G. W. Hull;E. M. Vogel
  9. Mat. Res. Bull. v.23 Y. Ueda;A. Mitushima;H. Toda;N. Kojima;M. Yoshikawa;K. Kosuge
  10. Sov. Phys. JETP v.12 A. A. Abrikosov;L. P. Gor'kov
  11. J. Mat. Sci. v.25 K. Nahm;J. S. Kim;K. B. Lee;D. W. Shong;B. Y. Cha;C. K. Kim
  12. Jpn. J. Appl. Phys. v.27 K. Okura;K. Ohmatsu;H. Takei;H. Hitotsuyanagi;T. Nakahara
  13. Jpn. J. Appl. Phys. v.27 M. Kuwabara;N. Kusaka
  14. Proceeding of the 10th Workshop on High T$_c$ Superconductivity 장민수;노지현;김형국;이형철;성낙언;구영선;김성래;고온초전도연구협의회(ed.)
  15. Jpn. J. Appl. Phys. v.27 B. Okai;M. Kosuge;H. Nozaki;K. Takahashi;M. Ohta
  16. Jpn. J. Appl. Phys. v.27 A. Oota;Y. Sasaki;M. Ohakubo;T. Hioki
  17. J. Mat. Sci. Lett. v.8 K. Nahm;J. S. Kim;K. B. Lee;B. Y. Cha;C. K. Kim
  18. J. Phys. F:Met. Phys. v.10 K. Nahm;W. H. Kettler;M. Rosenberg;R. Wermhardt
  19. Mat. Res. Bull. v.22 P. K. Gallagher;H. M. O'bryan;S. A. Sunshine;D. W. Murphy
  20. Solid State Chemistry and Its Applications A. R. West
  21. Phys. Rev. Lett. v.58 R. J. Cava;B. Batlogg;R. B. van Dover;D. W. Murphy;S. Sunshine;T. Siegrist;J. P. Remeika;E. A. Reitman;S. Zahurak;G. P. Espinosa
  22. Chem. Met. Engrs. v.16 Z. Jeffries
  23. Rev. Mod. Phys. v.36 C. P. Bean