Abstract
Irradiation of N-t-butyl-N-chloro-3-phenylpropanesulfonamide (1a) in benzene at $20^{\circ}C$ using 450 W high pressure mercury arc lamp in the presence of oxygen affored N-t-butyl-3-phenylpropanesulfonamide (2), N-t-butyl-3-chloro-3-phenylpropanesulfonamide (3), and N-t-butyl-3-oxo-3-phenylpropanesulfonamide (4). Similarly, N-t-butyl-4- (5), N-t-butyl-4-chloro-4- (6), and N-t-butyl-4-phenylbutanesulfonamides (7) were obtained from N-t-butyl-N-chloro-4-phenylbutanesulfonamide (1b). However, irradiation of N-t-butyl-N-chloro-5-phenylpentanesulfonamide (1c) under the same conditions gave complex mixtures. These results indicate that sulfonamidyl radical generated from each of 1a and 1b can abstract intramolecularly a hydrogen atom from the benzylic position only by forming six and seven-membered transition states, respectively.