DOI QR코드

DOI QR Code

Functionalized Organometallic Ligand (1) Synthesis of Some Ferrocene Derivatives of Cyclohexyl- and Cyclopentadienyl-phosphines

  • Kim Tae-Jeong (Department of Industrial Chemistry, Kyungpook National University) ;
  • Kim Yong-Hoon (Department of Industrial Chemistry, Kyungpook National University) ;
  • Kim Hong-Seok (Department of Industrial Chemistry, Kyungpook National University) ;
  • Shim Sang-Chul (Department of Industrial Chemistry, Kyungpook National University) ;
  • Kwak Young-Woo (Department of Industrial Chemistry, Kyungpook National University) ;
  • Cha Jin-Soon (Department of Industrial Chemistry, Kyungpook National University) ;
  • Lee Hyung Soo (Department of Industrial Chemistry, Kyungpook National University) ;
  • Uhm Jae-Kook (Department of Industrial Chemistry, Kyungpook National University) ;
  • Byun Sang-In (Department of Industrial Chemistry, Kyungpook National University)
  • Published : 1992.12.20

Abstract

A series of new ferrocene derivatives containing cyclohexylphosphines have been prepared from the reactions of lithioferrocenes with corresponding chlorodicyclohexylphosphines. 1-diphenylphosphino-1'-dicyclohexylphosphinoferro cene has been prepared from [1]-ferrocenophane via a ring cleavage reaction. Chiral ferrocenylaminophosphines incorporating cyclohexyl-and cyclopentadienylphosphines have also been prepared from the chiral template 2-N,N-dimethylaminoethylferrocene (FA) via stereoselective lithiation followed by phosphination with corresponding $R_2PCl$(R= $C_6H_{11}$, $C_5H_5$). The synthesis of cyclopentadienylphosphine derivative of (R)-FA (6b) led to the formation of a mixture of four diastereomers due to the presence of three chiral sources in the final product in addition to the fluxional behavior of the $η^1$-$C_5H_5$ group attached to the phosphorus. All these new compounds have been characterized by analytical and spectroscopic techniques.

Keywords

References

  1. Fundamental Research in Homogeneous Catalysis M. Kumada;T. Hayashi;K. Tamao
  2. Acc. Chem. Res. v.15 T. Hayashi;M. Kumada
  3. Organometallics v.2 W. R. Cullen;F. W. B. Einstein;T. Jones;T. J. Kim
  4. Organometallics v.4 W. R. Cullen;F. W. B. Einstein;T. Jones;T. J. Kim
  5. J. Organomet. Chem. v.279 T. G. Appleton;W. R. Cullen;S. V. Evans;T. J. Kim;J. Trotter
  6. Bull. Korean Chem. v.10 T. J. Kim;K. C. Lee
  7. J. Organomet. Chem. v.389 T. J. Kiim;K. H. Kwon;S. C. Kwon;J. O. Baeg;S. C. Shim;D. H. Lee
  8. J. Am. Chem. Soc. v.106 T. Hayashi;M. Konishi;Y. Kobori;M. Kumada;T. Higuchi;K. Hirotsu
  9. Inorg. Chem. v.26 W. R. Cullen;S. V. Evans;N. F. Han;J. Trotter
  10. J. Am. Chem. v.108 Y. Ito;M. Sawamura;T. Hayashi
  11. Tetrahedron Lett. v.289 Y. Ito;M. Sawamura;T. Hayashi
  12. J. Chem. Soc. Chem. Commun. I. R. Butler;W. R. Cullen;T. J. Kim;F. W. B. Einstein;T. Jones
  13. Acc. Chem. Res. v.16 W. S. Knowles
  14. Bull. Korean Chem. Soc. v.11 no.2 T. J. Kim
  15. Purification of Laboratory Chemicals D. D. Perin;W. L. F. Armarego;D. R. Perrin
  16. J. Am. Chem. Soc. v.92 D. Marquarding;H. Klusacek;G. Gokel;P. Hoffman;I. Ugi
  17. J. Chem. Educ. v.49 G. Gokel;I. Ugi
  18. J. Organomet. Chem. v.27 T. J. Bishop;A. Davison;M. L. Katcher;D. W. Lichtenbetg;R. E. Merril;J. C. Smart
  19. Organometallics v.1 D. Seyferth;H. P. Withers, Jr.
  20. Bull. Chem. Soc. Jpn. v.53 T. Hayashi;T. Mise;M. Fukushima;M. Kagotani;M. Nagashima;Y. Hamada;A. Matsumoto;S. Kawakami;M. Konishi;Y. Yamamoto;M. Kumada
  21. Organometallics v.2 I. R. Butler;W. R. Cullen;F. W. B. Einstein;S. J. Rettig;A. J. Willis
  22. Ph. D. Dissertation, University of British Columbia T. J. Kim
  23. Angew. Chem. Int. Ed. Engl. v.11 J. E. Bentham;E. A. V. Ebsworth;H. Moretto;D. W. H. Rankin
  24. Tetrahedron v.31 F. Mathey;J. D. Lampin
  25. J. Organomet. Chem. v.128 F. Mathey;J. D. Lampin
  26. Tetrahedron Lett. v.240 C. Charrier;F. Mathey
  27. J. Organomet. Chem. v.120 C. Charrier;F. Mathey
  28. Inorg. Chem. v.22 S. G. Baxter;R. L. Collins;A. H. Cowley;S. F. Sena
  29. Organometallics v.6 I. R. Butler;W. R. Cullen;S. J. Retting

Cited by

  1. Synthesis and electrochemistry of late transition metal complexes containing 1,1′-bis(dicyclohexylphosphino)ferrocene (dcpf). The X-ray structure of [PdCl2(dcpf)] and Buchwald–H vol.691, pp.23, 2006, https://doi.org/10.1016/j.jorganchem.2006.08.030
  2. Performances of symmetrical achiral ferrocenylphosphine ligands in palladium-catalyzed cross-coupling reactions: A review of syntheses, catalytic applications and structural properties vol.251, pp.15, 2007, https://doi.org/10.1016/j.ccr.2007.03.020
  3. Molybdenum Nitrosyl Complexes and Their Application in Catalytic Imine Hydrogenation Reactions vol.2011, pp.5, 1992, https://doi.org/10.1002/ejic.201000973
  4. Catalytic CSe Bond Formation under Very Mild Conditions for the Two‐Step, One‐Pot Synthesis of Aryl Selenoacetates vol.354, pp.14, 1992, https://doi.org/10.1002/adsc.201200486
  5. Synthesis of [2]ferrocenophanes containing trivalent diphosphine units vol.713, pp.None, 1992, https://doi.org/10.1016/j.jorganchem.2012.04.022
  6. Insight into the Thermal Ring‐Opening Polymerization of Phospha[1]ferrocenophanes vol.22, pp.47, 1992, https://doi.org/10.1002/chem.201603000
  7. Pd‐Catalyzed Regioselective Hydroesterification of Olefins with 2,2,2‐Trifluoroethyl Formate vol.2020, pp.9, 2020, https://doi.org/10.1002/ejoc.201901601