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We have investigated the kinetic옹 of diffusion-influenced bimolecular reactions in which one reactant has an internal 

mode, called the gating mode, that activates or deactivates its reactivity intermittently. The rate law and an expression 

for the time-dependent rate coefficient have been obtained from the general formalism based on the hierarchy of 

kinetic equations involving reactant distribution functions. The analytic expression obtained for the steady-state reaction 

rate constant coincides with the one obtained by Szabo et al., who derived the expression by employing the conventional 

concentration-gradient approach. For the time-dependent reaction rate coefficient, we obtained for the first time an 

exact analytic expression in the Laplace domain which was then inverted numerically to give the time-domain results.

Introduction

When the inherent reaction step proceeds very rapidly 

upon the contact of reactant molecules, the diffusive encoun­

ter rate can influence the overall reaction rate. Examples can 

be found in radical or ion recombination reactions,1,2 inter- 

molecular energy transfer reactions,3,4 enzyme-substrate re­

actions,5 tunneling reactions of solvated electrons,6 and the 

coagulation of colloid particles.7

A theory for the rate of diffusion-controlled reactions was 

first formulated by Smoluchowski.7 Since then the theory 

has been refined and generalized in many aspects8: e.g.t re­

fined modelings of the reaction event by the radiation bound­

ary condition9 or by the reaction sink function,10 rigorous 

formulations of the rate theory based on hierarchical kinetic 

equations governing the evolution of reactant molecule dis­

tribution,1112 inclusion of the effects due to long-range inter- 

moleuclar forces13 and solvent-mediated hydrodynamic in­

teractions,14 consideration of orientation-dependent reactivity 

of reactant molecules,1516 and so on.

An interesting generalization of the theory that has attrac­

ted much attention recently is to in이ude the effect of struc­

tural fluctuation in reactant molecules that may dynamically 

alter their intrinsic reactivity.17-19. In enzyme-substrate reac­

tions, for example, the enzyme m이ecule may have side 

chains that can change the binding site accessibility. Motions 

of such side chains constitute a gating mode which opens 

and closes the binding site of substrate molecules.

One of the simplest model of gated diffusion-influenced 

reactions is that propo않ed by A. Szabo et al}9 They considered 

a bimolecular reaction between molecules of species A and

B,

A+B一＞P+B (1.1)

where B molecules, which do not change in the course of 

reaction like an enzyme in enzyme-substrate reactions, have 

a fluctuating reactivity due the gating dynamics of an internal 

mode. For simplicity, they assumed that the fluctuations in 

the reactivity of B molecules can be described as a two-state 

process and that the dynamics of the gate between the two 

states, open and closed, can be described by the first-order 

rate equation

kc
。备(1.2) 

kQ

Here we designate the B molecules in the open state as 

molecules O while those in the closed state as molecules

C. kc and k0 are the rate constants, respectively, for the clos­

ing and opening of the gate. Molecules of species A can 

react only with molecules O:
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A^O——)P+0 (1.3)

where P denotes the product converted from A,

In the present work, we adopt the above model of gated 

diffusion-influenced reactions and reformulate the rate 

theory by starting from the hierarchical kinetic equations 

governing the reactant molecule distribution functions.12 The 

rationale of this approach is to remove the limitations in 

the conventional theory that is ba영ed on the calculation of 

the reactive flux of 0 molecules into a sink m이ecule of spe­

cies A fixed at the origin. The conventional approach based 

on such an analysis has two major difficulties. First, one 

cannot neglect the presence of nearby A molecules compet­

ing for the reaction partners with the central A molecule. 

Second, the cumulative flux of 0 molecules into the central 

A molecule must be less than one since the A m이ecule 

is destroyed after the reaction with one 0 molecule. One 

may avoid the second complication by considering the reac­

tive flux of A molecules into a sink molecule of species O. 

But then another difficulty arises. The boundary condition 

imposed on the concentration field of A molecules at infinite 

separation from the central 0 molecule is to match its value 

with the bulk concentration of A molecules, which is time­

dependent. This makes the analysis far more complicated. 

Hence the usual practice adopted in the conventional 

approach, as described in many textbooks on chemical kine­

tics,8,20 is to neglect altogether the complications raised above. 

Obviously, the validity of such approximations needs to be 

checked.

In the next section we present the general formalism to 

deal with the gated diffusion-influenced reactions. A second- 

order rate equation that is expected for the molecularity of 

reaction (1.1) but which involves a time-dependent reaction 

rate coefficient is derived. A microscopic but formal expres­

sion obtained for the rate coefficient is tian evaluated analy­

tically for the steady-state kinetics in the third section. The 

result agrees with that obtained by Szabo, et a/.19 via the 

conventional approach. Errors due to the neglect of the com­

petition and reactivity saturation of the sink as mentioned 

above are shown to be cancelled out. For the time-dependent 

reaction rate coefficient, we obtain for the first time an exact 

analytic expression in the Laplace domain which 治 then in­

verted numerically to give the time-domain results.

Derivation of the Reaction Rate Expression

We consider a solution which contains N% m이ecules of 

species A and N% molecules of species B including bo버 0 

and C forms as t=O. We assume that A molecules have 

spherically symmetric reactivity with no gating mode and 

that B molecules with a gating mode also have spherically 

symmetric reactivity. Hence the molecular state may be de­

scribed by the position vector. The kinetic equation govern­

ing the evolution of one particle probability density function 

PAl(r, t), which denotes the probability density that the ith 

A molecule has not undergone the reaction until time t and 

is located at the position r, is then written as

으 PaQ t)=LAPAi(rf f)- 丈 jdrfSAo(r, rf)PAt Oj(r, K t) 

曰 (2.1) 

where the first term on the right hand side represents the 

evolution of PAi(r, t) due to the thermal motion of 4 in the 

absence of reaction. In the present work we approximate 

the evolution operator LA by the Smoluchowski operator. In 

the absence of the external potential field, La is simply given 

by Da (d/drf with Da denoting the diffusion coefficient. The 

second term on the right hand side of Eq. (2.1) denotes 

the depopulation rate of Ai at r due to the reaction with 

any of the 0 molecules (B moecules in the open state). The 

sink function Sao (r /) denotes the reaction probability per 

unit time between an A molecule at r and an 0 molecule 

at r. The two particle probability density function 

r, t) denotes the joint probability density that at time t the 

ith A m시ecule which has not undergone reaction is at r 

and the jth B molecule is at r in the open state.

Kinetic equations governing the evolutions of one-particle 

probability density functions Fq(r f) and Pq0 £), which de­

note respectively the probability densities that the jth B 

moecule is located at r in the open and in the closed states 

at time t, are given by

으 Pg t)=LoPoj(r, t)-kcPOj(r, 노 dP* t) (2.2)

으Pc&L t)=LcPq0 t}+kcPOj(r, t)-k0Pq(r, f) (2.3)

Again, the first term on the right hand side of Eq. (2.2) 

or Eq. (2.3) represents the change due to diffusive thermal 

motion, and the second and the third terms represent the 

changes due to the gating dynamics. The evolution operators 

Lo and Lc are assumed to be given by the Smoluchowski 

operators.

Summation of PAi (r, t) over i gives the concentration (num­

ber density) field of A molecules at r at time t:

2
z, F血(药 t)=G (片 f)=LA] (2.4)

f=i

where we further equate the concentration field to the bulk 

concentration of A molecules at time t. This should be true 

under usual experimental condition where there is no exter­

nal potential field on A molecules. Similarly, we have

丈 PqG t)~Co(r, £)=[O] (2.5)

；=i

£ Pc« t) = Cc(r, t) = [C] (2.6)

The two-particle probability density function Pg板 r, f) 

can be expressed in the form

PAiOjir, r, B=Pa« t)Rg心；Hr) (2.7)

where PojW(rff t\f) denotes the conditional probability den­

sity that Oj is at r at time t given that A, is at r. Summing 

Eq. (2.7) over i and j gives

X 2^ r, t)= X & S QCo(&)(F, t\r) (2.8) 

1=1 j=i i=i

where Cow"尸)is the conditional concentration field of 

O molecules at r at time t given that At is at r. It depends 
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。히y on \r-r\ and should be the same for all A molecules. 

Hence we can write

C0{At} (r\ ^lr)=[O] pAo(\r~r\f t) (2.9)

where Pao denotes the nonequilibrium pair correlation func­

tion for the relative distribution of A and O molecules, 

and

£ £ Pa2« r, f)니L4] [0] pAo(\r~r\f t) (2.10) 

；=i

Summing Eq. (2.1) over i and using Eqs. (2.4) and (2.10), 

we obtain the rate equation:

'으~[A[= — 罗。)[4][0] (2.11)

where

drfSAo(l/-r|)p^o(加'一』，t) (2.12)

On 난)e other hand, summing Eq. (2.2) or Eq. (2.3) over j 

and using Eqs. (2.5) and (2.6), we obtain

”으「[0] = —券一 [C]= 一愿 愿[C] (2.13)

The usual phenomenological rate expression for the reac­

tion in Eq. (1.1) is

으 (2.14)

Comparison of Eq. (2.14) with Eq. (2.11) shows that

(2.15)

The distribution of B m이ecules over the open and closed 

states and thus the ratio must be det운rmined by

solving the rate equation, (2.13) for an appropriate initial 

condition. For simplicity, we assume an equilibrium distribu­

tion; that is,

드 K绡 (2.16)

In this case the bimolecular rate coefficient kf has the ex­

pression

您样(t) (2.17)

To calculate k°(f) defined in Eq. (2.12), we need an ex­

plicit expression for the nonequilibrium pair correlation 

function PAo(\r~r\, /). The kinetic equation governing the 

evolution of pAo can be derived from the evolution equations 

for two-particle probability density functions. We have

으Pa2冲, K t)~LAoPAto}(rt rt t)~SAo(r, r)PAiOj(r, r, t)

~kcpAiOj(rt rt £)+血r, t)

一 X r")%例(r，r', r", t) (2.18)

k=l J
瞞

t)=LAcPAiCj(r, F,，)

+此玖아(匕 r, t)-~k0PAiCj(rt rf, t)

-i r')PAiqok(r, r,尸”，/) (2.19)

Each term in these equations has a similar meaning as the 

corresponding term in Eqs. (2.1)-(2.3). In Eq, (2.18), for exam­

ple the first term on the right hand side represents the 

change due to diffusive thermal motions of 4 and O); the 

second term due to the reaction between & and Q; the 

third and the fourth terms due to gating dynamics in O, 

moecule; and finally the fifth term, involving the three-parti­

cle probability density functions, describes the change due 

to the reaction of A, at r with O molecules at f other than 

Q・

One can note the hierarchical structure of evolution equ­

ations for reactant m이ecule distribution functions from Eqs. 

(2.1), (2.18), and (219); that is, the evolution equation for 

an m-particle probability density function involves (m + l)-par- 

ticle probability density function. Writing higher-order equa­

tions is straightforward, but the glution to the whole hierar­

chy of kinetic equations is difficult to obtain. To truncate 

the hierarchy at the level of two-particle kinetic equations 

we need to approximate the three-particle probability density 

functions contained in Eq. (2.18) and (2.19) in terms of one- 

particle and two-particle probability density functions. In the 

superposition approximation,12,21-22 we may write

Pa心財 G，尸‘，匕，)三玖(尸，OPojiAi) (r, t\r)POk(Ai-,« t\r)

(2.20)

With this approximation, we have

鴨 nb 썅
Z 2 8霍。例(七 /，r”, t)

i=l j=l *=1
如

= CA(rf t)C0(A)(rf 此 C°(", t\r) (2.21)

Similarly,

Z Z 2 P&qsW, r, rf, t)

i=1 ;=1 k=l
喝

= CA(rt t)CaA)(rt Hg쇼)(/： t\r) (2.22)

Using the above approximation, we sum Eq. (2.18) over 

i from i = 1 to and over j from，드 1 to A府. The resulting 

equation is then simplified with Eqs. (2.4)-(2.10) and (2.12) 

to give

으{[加[(归Pao(尸, r, 0} = [i4]EO]Z，AoPAo(n r, t)

一L4][O]So(r, r)pA0(r, r, t)

一 电r, t) + L4][CM°p4c(r, r, t)

一[AHOY腭(f)p初s k t) (2.23)

With Eqs. (2.11) and (2.16), we can expand the left hand 

side of this equation as

으{L4][O]PaoS, r, t)} =-2为)[如[0了阮(尸, t)

+ 으- 伽0(尸, t)
(2.24)
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We note that 나】e la마 term in Eq. (223), which arises from 

the last term in Eq. (2.18) that represents the competition 

among O molecules for the reaction with A molecules, offsets 

the first term on 하虻 right hand side of Eq, (2.24), which 

is related to the reactivity saturation of the sink molecule 

as discussed in the introductory section. Thi옹 observation 

j니stifies 나｝e neglect of both the competition and reactivity 

saturation of the sink molecules as done in the conventional 

theories of diffusion-influenced reactions. However, this 

아lows also that attempts to account for only the competition 

effect or。미y 나】e reactivity saturation effect would yield 

worse results.23,24

From Eqs. (2.23) and (2.24), we obtain

a

r, t)=LA0PA0(r, r, t)一Sa*, r) pAo(r, r, t)

~kcpAo(r, r, f)+晨PacS, r, t) (2.25) 

where we have used Eq. (2.16) to equate 知 with

kc. Similar manipulation of Eq. (2.19) gives

a
rf, 〃드LacPac (匕 r, t)

+电，Pao (尸，r, t)-kof>AC(r, r, t) (2.26)

Summarizing this section, we have derived the rate equa­

tion, Eq. (2.14) Eor equivalently, Eq. (2.11)] that is expected 

for the m이ecularity of reaction (1.1) but which involves a 

time-dependent reaction rate coefficient given by Eqs. (2.12) 

and (2.17). To evaluate the rate coefficient, we should solve 

the coupled partial differential equations, Eqs. (2.25) and 

(226), for the nonequilibrium pair correlation function 

PAo(\r~r\, t).

Calculation of the Rate Coefficient

We first rewrite Eqs. (2.25) and (2.26) as a matrix equa­

tion

으西 t)=L(r)-p(rf t) (3.11)

where r= \r—r\ and

西"=(胃槌)

£(尸)=Lo(r) +£《一$(/)

Lg = ( 가 4 )' Ko Ko /

阳=(營)0)
A formal solution to Eq, (3.1) is given by 

攻 t) = expE^Lo+£c - S1)] -£(z; 0) 

=exp[^(L0+£G)>£(7； 0)

- J。dx expLr(Lo+£G-S)]-5
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• 은xp[ (t - r) (Lo+Lg) ] 攻 0) (3.2)

where in writing the second line we used the well-known 

operator identity,25

eKA +B) ="4+J： dx eT(A +由&아 s (3.3)

We now assume that the initial distribution of reactant 

m이ecules is an equilibrium one so th간

函, 0)=产(尸) = ( 썝,： ) (3.4)

g眼)7

where and g^(r) denote 나le equilibrium pair corre­

ction functions for A-0 and A-C pairs, respectively. We fur­

ther assume that physical characteristics of O molecules are 

n°t much different from those of C molecules. For example, 

they have the same diffusion coefficient DB and interact with 

A molecules through the same potential of mean force 

Uab(t). We then have12

g% (，) =gAc M = expC g ⑵(r) (3.5)

L2) =LAC(r) = (으 + 号)如(,) [으 + b 으。扇3)]

-L0W (3.6)

Here p — 1/^b T with 如 the Boltzmann constant and T the 

absolute temperature.血(尸)is the relative diffusion coeffi- 

cient bewteen A and B m이ecules. If the hydrodynamic in­

teraction is negligible, 如(尸) is simply given by 사sum 

of the diffusion constants of A and B molecules; ie., d^r) 

=Da+Db・
With the assumptions expressed in Eqs. (3.4)-(3.6), we 

have

^LG=LG-L0(r) (3.7)

and thus

exp[f(爲+Zg)]・£(N 0) = ©xp(Mg) ・exp(必)・g⑵&)

= exp(S( expW&)"(，)) = exp(农)仲响)

' exp[心(尸)]g⑵3)) g⑵&)丿

=gW (3.8)

With Eq. (3.8), Eq. (3.2) reduces to

四 =g(2)Cr) -£ dr exp[T(£0+Z,G-5)] -5-g(2)(r) (3.9)

On the 아her hand, the expression for the rate coefficient 

所(£)in Eq. (2.12) can be rewritten as

K쎄;)틔电；” 아阳妙； D (3.10)

Noting that

gP = (gW)=(gW 。).(1)

\g(2)&)丿V Q g⑵履)丿'1丿

三G⑵&).(；) (3.11)

죠nd substituting Eq. (3.9) into Eq. (3.10), we obtain
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K（£）= ■伍 SG）G ⑵（尸）

一 Jom J drSW , exp{r[£0(r) +LG-S(r)]} -S(r)• G⑵(r)

(3.12) 

where we have defined the equilibrium rate constant matrix 

K理 and the matrix memory kernel V(t).

Using the operator identity, Eq. (3.3), Y(s) can be rewritten 

as

Kt)-J drS(r) ・exp{t[Zdy)+L가 -5(r)-G(2)(r)

-drS0*).exp{Ei[£o(k)+£G-S(?*)]} -5(r) 

where I is a 2X2 unit matrix.

Substituting Eq. (3.20) into Eq. (3.12), we finally obtain 

a general but still formal expression for 나le rate coefficient:

斤(2)=厂成・(구⑵ 0)-厂或⑵

=厂甘+卧孕(6 £|或⑵G) (3.22)

Once the reaction-free Green's function G*(N t\r0) is calcula­

ted, the rate coefficient k°(t) can be evaluated from this 

equation.

We will then derive a more explicit expression for G*(r, 

tlm). Since £o(r) and LG commute [Eq, (3.7)], we can rew­

rite Eq. (3.15) as

G*0; fgo) = exp(tLG)・G(N t\ro) (3.23)

•expfCr-TjLLoCr) +LC]} -5(r) - G(2)(r)

Introducing the Green's functions,

(3.13)
where

G(n 巾o) 드 exp[比
S(r—r0)/4nrS O

0 6(r-ro)/4nr3

Gr(l t\ro)= exp{tto(r) +£G~5(r)]}

8 (r-r0)/4nrg

0

0

80—e)/4 崩
(3.14)

G(rf t\ro) 0

0 G(rt t\ro)
(3.24)

with

G*(r, flm)三 ex이£|&3)+£g]}

8(r-r0)/4nrg

0

O

S(^-^o)/4nrg
(3.15)

we can reexpress y(r) as

G{r,巾o) = expWo(『)]8(&-m)/4M (3.25)

A simple expression for the exponential operator exp(fL) 

can be found once we find the transformation matrix T which 

diagonalizes LG. We have

KW= drS(r)- dr0 GR(r,

/—（履+扇） 
广、3니 

' 0

0 \
(3.26)

=j drS(r)-Jdr0 G*(r,

-Ja Jrij rfr5(r)J drx GR(r, rilri)-S(ri)

r|r0)-5(r0)-GC2)(r0) where

. dr0 G*(rb r - Ti I r0) -S(r0) -G(2)(r0) (3.16)

We assume that the reaction can occur when A 

molecules are brought into contact at the separation r=o. 

modelled

and O

Then the reaction sink function &?&) may be 

by a delta function; that is,

&o(r) =k 6(r-o)/4no2

/ kc 1
T—

\ —k0 1) R厂비* ' k0

With the relation in Eq. (326), we can write 

厂1 , exp(f£G) , T= exp(/7^ 1-LG*T)= exp(Mg)

/ expE-(^+^0)Z]
=(O

1 / 1 

kc-\-k0

-1

kc
(3.27)

0

1

(3.28)

(3.17) and

or

s(,)=—写므 (K。)三_哗읖丄 

4m \ q q / 4n(r
(3.18)

Putting this expression for S(r) into Eq. (3.16) and taking 

the Laplace transformation of the resulting equation, with 

the notation

(3.19)

for the Laplace-transformed quantity, we obtain

Y(z)=KrGR(a, zb)・K・G⑵(o) (3.20)

t\ro)G*(r, = T•厂吳xp(Mg)・T・77・GG;

= T・exp(M%)・G(N册0),厂1

/ exp[一 (歸+ko)t]G(rt t\ro) 0
=卩(

、 O G(% t\ro)

(3.29) 

where in writing the second line we have used the fact that 

厂 1 commutes with G(r, t\r0) defined in Eq. (3.24). Taking 

the Laplace transformation of Eq. (3.29), we get

―,、 / G(r, z+知+知Im) 0 \ ,
G*U ,、项7 (330)

' 0 G(rf z\ro) ,

with

爲(6 z|o) = G*(o, (3.21)
Substituting this expression for z\r0) into Eq. (322), 

we obtain a general expression for the rate coefficient matrix
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K(z)：

馅、 妒(。) (X 0 X
K(z)=---- K---------------Z-----------

z[k血&(q z+시o)+响G(q 21o) + X] ' 0 0 '

(3.31)

where \=kc+k0. Hence the bimolecular rate coefficient 如 
which is related to k°(t) by Eq. (2.17), is given by

、 知g⑵J)
&(2)= . L r------------ K-------------- (3.32)

2%G(o, z+시d)+血，G((了, z|o) + (A/k)]

The Green's function G(r, 이？*。) defined in Eq. (3.25) has 

been obtained analytically only for a very simple case8 when 

(i) the potential of mean force UabM vanishes for and 

becomes infinite for r<c and (ii) the relative diffusion coeffi­

cient dAB(r) is simply given by (/刀+以)：

G(r, z\r0)^- . 号-[厂蛆기—厂乂宀。_如)1
4nz>ro I 2a L J

-I----으---夕2（宀厂2。）

1 + oa
(3.33)

Figure 1. Variation in the transient kinetic behavior with the 

changes in the ratio of the gate-opening rate to the gate-closing 

rate.

where a= (z/DY12. Hence,

G(o, z|o) = {^rn-a(2ZD)1/2]}-1 (3.34)

where &=4tt迎,the well-known expression for the rate con­

stant of ungated diffusion-controlled reactions first derived 

by Smoluchowski.7

The Laplace transform expression for the time-dependent 

rate coefficient kf(t) in Eq. (3.32) together with Eq. (3.34) 

constitutes the principal result of the present work. The ex­

pression can be inverted numerically to give the time-domain 

results. For large t, a steady state is attained in which the 

rate coefficient has a con옹taut value. An analytic expression 

for the steady-state rate constant can be readily obtained 

as follows26:

罗三燉&(t)=㈣而(z)

/ 시边 \ J K&j k[) Keq K 1 )-1
\ k+如 丿 [너' k+如 + k+齢 rn-a(VD)1/2H

(3.35)

This expression for k/ was obtained previously by Szabo et 

al)3 but through a different analysis based on the considera­

tion of concentration gradient around a sink.

It is of interest to consider some limiting expression for 

kf. First, Eq. (3.35) reduces to the well-known expression, 

[以q/(kT갸也) 丄 for ungated diffusion-influenced reactions.8 

Second, for completely diffusion-controlled cases in which 

reaction takes place immediately upon the encounter of A 

and O molecules (i.e., when LQ。)，we have

痔=如+----- -- -----  } 1 (3.36)

The factor in the curly brackets gives the correction to the 

Smoluchowski result. Finally, for the fast diffusion limit ", 

when 屁厂，8), Eq. (3.35) reduces to

^=k/(1 十 7爲) (3.37)

LOG1O t(in sec)
Figure 2. Variation in the transient kinetic behavior with the 

changes in the fluctuation rate of the gating mode.

which is the intuitively expected expression.

Numerical Calculation of the 
Time-Dependent Rate Coefficient

Inverse Laplace transformation of the expression for 

in Eq. (332) with Gfa z|g) given by Eq. (3.34) has been car­

ried out numerically by using the IMSL subroutine FLINV.27 

In Figures 1 and 2, we display the variation of the rate coef­

ficient k/(t) with time in gated diffusion-influenced reactions, 

and compare the results with that for the ungated reactions. 

The calculation was performed with the following mod이 par­
ameters: o=32 A, D—131 A2/ns, and k = 3.0X 1012 1-mol-1* 

s-1. These values are taken to model the reaction between 

superoxide dismutase and Oi, which is one of the fastest 

enzyme-substrate reactions.28,29 But no attempt has been 

made to analyze the experimental data since no transient 

kinetic data is available. For the present, we just take the 

above values for motional and reaction parameters as a rea­
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sonable choice for the input to model calculations to illustrate 

the possible effects of an gating mode in the transient kine­

tics.

Figure 1 shows that the transient time before reaching 

the steady state is shorter in general for gated reactions 

when compared with the ungated reactions. In particular, 

as the ratio of the gate-opening rate to the gate-closing rate 

decreases down to a factor of 1/10, the steady state is estab­

lished within 100 ps. The value of kc was fixed at 1.0 ns-1.

In Figure 2, we fixed the ratio of k(/kc to unity, and instead 

changed the magnitudes of both rate constants. As the gating 

mode fluctuates more rapidly, the transiency in the dynami­

cal variation of the bimolecular kinetics becomes less promi­

nent.
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Preparation and Structure of CH2CH2OOCCHCH2S11CI3

Ok-Sang Jung, Young-A Lee, Jong Hwa Jeong, and Youn Soo Sohn*

Inorganic Chemistry Laboratory, Korea Institute of Science and Technology, 

Seoul 130-650. Received April 2, 1992

A new estertin, CH2CH2OOCCHCH2S11CI3, was prepared and its structure was determined by X-ray crystallography 

(P2]2i2i； a — 9.439(1), 6=9.601(1), c= 10.779(1) A, Z=4) and refined to R=0.0356. The coordination geometry around 

the tin atom approximates to a trigonal bipyramid with the intramolecularly coordinated oxygen 0(1), (Sn-O(l), 2.482(6) 
A) and Cl(2) occupying mutually trans positions (O⑴-Sn-Cl((2), 176.4/2)°).

Introduction

Since a novel synthetic route to ^estertin" was reported1, 

a large number of estertin compounds and their derivatives 

have been investigated because of their interesting bonding 

mode and industrial applicability2^8.

In continuing efforts to extend the estertin chemistry9, this 

paper reports the preparation and structure of the title com­

pound.


