DOI QR코드

DOI QR Code

Molecular Dynamics Simulation Studies of Zeolite-A. Ⅰ. Structure and Dynamics of $Na^+$ Ions in Rigid Dehydrated Zeolite-A Framework

  • Moon Gyeong Keun (Department of Chemistry, Kyungsung University) ;
  • Choi Sang Gu (Department of Industrial Safety, Yangsan Junior College) ;
  • Kim Han Soo (Daesung Cryogenic Research Institute, Daesung Sanso Co.) ;
  • Lee Song Hi (Department of Chemistry, Kyungsung University)
  • Published : 1992.06.20

Abstract

Structure and dynamics of $Na^+$ ions are investigated by molecular dynamics simulations of rigid dehydrated zeolite-A at several temperatures using a simple Lennard-Jones potential plus Coulomb potential. A best-fitted set of electrostatic charges is chosen from the results of simulation at 298.15 K and Ewald summation technique is used for the long-ranged character of Coulomb interaction. The calculated x, y, and z coordinates of $Na^+$ ions are in good agreement with the positions determined by X-ray crystallography within statistical errors, their random movings in different types of closed cages are well described by time-correlation functions, and $Na_Ⅰ$ type ions are found to be less diffusive than $Na_Ⅱ$ and $Na_{III}$. At 600.0 K, the unstable $Na_{III}$ type ion pushes down one of nearest $Na_{I}$ ions into the $\beta-cage$ and sits on the stable site Ⅰ, and the captured ion in the $\beta-cage$ wanders over and attacks one of 8 $Na_{I}$ type ions.

Keywords

References

  1. Zeolite Molecular Sieves D. W. Berk
  2. J. Am. Chem. Soc. v.102 J. J. Pluth;J. V. Smith
  3. Mineral Mag. v.38 G. W. Smith;R. Walls
  4. Z. Kristallogr. v.133 V. Gramlich;W. M. Meier
  5. J. Chem. Soc., Faraday Trans. 2 v.74 A. G. Bezus;A. V. Kiselev;A. A. Lopatkin;P. Q. Ku
  6. J. Chem. Soc., Faraday Trans. 2 v.77 A. V. Kiselev;P. Q. Du
  7. J. Chem. Soc., Faraday Trans. 2 v.77 A. V. Kiselev;P. Q. Du
  8. Zeolites v.5 A. V. Kiselev;A. A. Lopatkin;A. Shulga
  9. Nature v.318 P. A. Wright;J. M. Thomas;A. K. Cheetham;A. K. Nowak
  10. Molecular Simulation v.1 A. K. Nowak;A. K. Cheetham;S. D. Pikett;S. Ramdas
  11. Nature v.331 S. Yashonath;J. M. Thomas;A. K. Nowak;A. K. Cheetham
  12. J. Phys. Chem. v.92 B. Smit;C. J. J. den Ouden
  13. Studies in Surface Science and Catalyst v.37 Innovation in Zeolite Materials Science L. Leherte;D. P. Vercauteren;E. G. Derouane;J. M. Andre;P. J. Grobet(ed.);W. J. Mortier(ed.);E. F. Vansant(ed.);G. Schulz-Ekloff(ed.)
  14. Gazz. Chim. Ital. v.116 P. Demontis;G. B. Suffritti;A. Alberti;S. Quartieri;E. S. Fois;A. Gamba
  15. Dynamics of Molecular Crystals P. Demontis;G. B. Suffritti;S. Quartieri;E. S. Fois;A. Gamba;J. Lascombe(ed.)
  16. Zeolites v.7 P. Demontis;G. B. Suffritti;S. Quartieri;E. S. Fois;A. Gamba
  17. J. Phys. Chem. v.92 P. Demontis;G. B. Suffritti;S. Quartieri;E. S. Fois;A. Gamba
  18. J. Phys. Chem. v.94 P. Demontis;E. S. Fois;G. B. Suffritti;S. Quartieri
  19. J. Chem. Soc., Faraday Trans. v.87 P. Demontis;G. B. Suffritti;S. Quartieri;A. Gamba;E. S. Fois
  20. J. Chem. Phys. v.90 E. Cohen de Lara;R. Kahn;A. M. Goulary
  21. J. Phys. v.42 E. Cohen de Lara;R. Kahn
  22. Chem. Phys. Lett. v.153 S. Yashonath;P. Demontis;M. L. Klein
  23. Molecular Simulation v.4 C. J. J. den Ouden;B. Smit;A. F. H. Wielers;R. A. Jackson;A. K. Nowak
  24. J. Phys. Chem. v.93 S. Yashonath;P. Demontis;M. L. Klein
  25. Chem. Phys. Lett. v.145 L. Leherte;G. C. Lie;K. N. Swamy;E. Clementi;E. G. Derouane;J. M. Andre
  26. J. Molec.Catal. v.54 L. Leherte;J. M. Andre;D. P. Vercauteren;E. G. Derouane
  27. Computers Chem. v.15 L. Leherte;J. M. Andre;E. G. Derouane;D. P. Vercauteren
  28. J. Chem. Soc., Faraday Trans. v.87 L. Leherte;J. M. Andre;E. G. Derouane;D. P. Vercauteren
  29. J. Phys. Chem. v.94 S. D. Pickett;A. K. Nowak;J. M. Thomas;B. K. Peterson;J. F. P. Swift;A. K. Cheetham;C. J. J. den Ouden;B. Smit;M. F. M. Post
  30. J. Phys. Chem. v.95 A. K. Nowak;C. J. J. den Ouden;S. D. Pickett;B. Smit;A. K. Cheetham;M. F. M. Post;J. M. Thomas
  31. J. Phys. Chem. v.92 J. M. Shin;K. T. No;M. S. Jhon
  32. Proc. Roy. Soc. London v.A373 S. W. de Leeuw;J. W. Perram;E. R. Smith
  33. Comput. Phys. Commun. v.25 N. Anastasiou;D. Fincham
  34. Mol. Phys. v.45 O.Steinhauser
  35. J. Chem. Phys. v.60 F. H. Stilinger;A. Rahman
  36. J. Chem. Phys. v.86 M. Berkowitz;W. Wan
  37. J. Phys. Chem. v.69 E. Huheey
  38. Chemical Periodicity R. T. Sanderson
  39. J. Chem. Phys. v.86 S. H. Lee;J. C. Rasaiah;J. B. Hubbard
  40. J. Chem. Phys. v.85
  41. J. Reine Angew. Math. v.Ⅳ K. F. Gauss
  42. Numerical Initial Value Problems in Ordinary Differential Equations W. C. Gear
  43. ORTEP, Report ORNL-3794 (2nd revision, 1970) C. K. Johnson
  44. Bull. Kor. Chem. Soc. v.12 C. B. Moon;G. K. Moon;S. H. Lee
  45. Bull. Kor. Chem. Soc. v.12 S. H. Lee;G. K. Moon;S. G. Choi
  46. Phys. Rev. v.136 A. Rahman

Cited by

  1. Ionic conductivity and dielectric response of dehydrated zeolites vol.95, pp.3, 1992, https://doi.org/10.1016/s0167-2738(96)00590-5
  2. The role of polarization of Xe by di- and monovalent cations in 129Xe NMR studies in zeolite A vol.9, pp.2, 1992, https://doi.org/10.1016/s0926-2040(97)00063-5
  3. Molecular Dynamics Studies of Sodium Diffusion in Hydrated Na+-Zeolite-4A vol.102, pp.52, 1992, https://doi.org/10.1021/jp981801f
  4. Molecular Simulation Study on Adsorption and Diffusion Behavior of Ethanol/Water Molecules in NaA Zeolite Crystal vol.37, pp.1, 1992, https://doi.org/10.1252/jcej.37.67