DOI QR코드

DOI QR Code

Conformational Analysis of Catecholamines-Raman, High Resolution NMR, and Conformational Energy Calculation Study

  • Park Mi-Kyung (Department of Chemistry, Chungbuk National University) ;
  • Yoo Hee-Soo (Department of Chemistry, Chungbuk National University) ;
  • Kang Young Kee (Department of Chemistry, Chungbuk National University) ;
  • Lee Nam-Soo (Department of Chemistry, Chungbuk National University) ;
  • Ichiro Hanazaki (Institute for Molecular Science, Okazaki)
  • 발행 : 1992.06.20

초록

The conformational analysis has been done for catecholamines (dopamine, norepinephrine, and epinephrine) in the cationic and di-anionic states. The species responsible for adsorption on silver metal surface is anionic deprotonated at hydroxyl groups of catechol moiety, i.e., di-anionic states of catecholamines. This was deduced from Fourier-transform Raman spectra of sodium salts of catecholamines. High resolution proton NMR (400 MHz) spectra of catecholamines in basic and neutral $D_2O$ solution show that the conformations of norepinephrine and epinephrine in the di-anionic states are preferred in gauche, but not for dopamine in the di-anionic state. However the energy difference between trans and gauche of catecholamines in the protonated cationic states is small enough to rotate freely through C-C bond in ethylamine moiety. The conformational calculations using an empirical potential function and the hydration shell model (a program CONBIO) show consistent with above experimental results. The calculations suggest that the species of catecholamines adsorbed on silver metal surface would be in favor of the gauche conformations.

키워드

참고문헌

  1. Acta. Cryst. v.B24 R. Bergin;D. Carlstrom
  2. Acta. Cryst. v.23 D. Carlstrom;R. Bergin
  3. Tetrahedron v.27 T. M. Bustard;R. S. Egan
  4. J. Pharmac. Exp. Ther. v.174 L. B. Kier;E. B. Truitt, Jr.
  5. The Chemistry of Dopamine C. J. Grol;A. S. Horn(ed.);J. Korf(ed.);B. H. C. Westerink(ed.)
  6. Quantum Mechanics of Molecular Confromation B. Pullman;P. Courriere;B. Pullman(ed.)
  7. Q. Rev. Biophys. v.6 D. Carlstrom;R. Bergin;G. Falkenberg
  8. J. Neurochem. v.18 K. S. Rajan;J. M. Davis;R. W. Colburn
  9. J. Neurochem. v.19 K. S. Rajan;J. M. Davis;R. W. Colburn;F. H. Jarke
  10. J. Neurochem. v.22 K. S. Rajan;J. M. Davis;R. W. Colburn
  11. Bioinorg. Chem. v.6 K. S. Rajan;A. Skripkus;G. E. Marks;J. M. Davis
  12. J. Am. Chem. Soc. v.99 J. Granot;D. Fiat
  13. Anal. Chem. v.60 N.-S. Lee;Y. Z. Hsieh;R. F. Paisley;M. D. Morris
  14. J. Am. Chem. Soc. v.101 L. Que;R. H. Heistand
  15. Characteristic Raman Frequencies of Organic Compounds F. R. Dollish;W. G. Fateley;F. F. Bentley
  16. J. Phys. Chem. v.91 Y. K. Kang;G. Nemethy;H. A. Scheraga
  17. J. Phys. Chem. v.91 Y. K. Kang;G. Nemethy;H. A. Scheraga
  18. J. Phys. Chem. v.91 Y. K. Kang;G. Nemethy;H. A. Scheraga
  19. J. Phys. Chem. v.92 Y. K. Kang;K. D. Gibson;G. Nemethy;H. A. Scheraga
  20. J. Phys. Chem. v.87 G. Nemethy;M. S. Pottle;H. A. Scheraga
  21. KRICT Research Report Confromational Analysis Programs for Biological Molecules (CONBIO) Y. K. Kang
  22. Korean Biochem. News v.10 no.1 Y. K. Kang
  23. Bull. Korean Chem. Soc. v.12 Y. A. Shin;Y. K. Kang
  24. Bull. Korean Chem. Soc. v.12 M. S. Kim;S. H. Lee;U. T. Chung;Y. K. Kang
  25. J. Polym. Sci. Polym. Chem. Ed. v.29 J. H. Yoon;J. M. Shin;Y. K. Kang;M. S. John
  26. FEBS Lett. v.67 J. Granot
  27. J. Chem. Ed. v.57 R. M. Silverstein;R. T. LaLonde
  28. J. Chem. Ed. v.51 A. Ault
  29. High Resolution NMR, Theory and Chemical Applications E. D. Becker

피인용 문헌

  1. Molecular dynamics in solid L-adrenaline by proton NMR vol.10, pp.3, 1992, https://doi.org/10.1016/s0926-2040(97)00077-5
  2. A conformational study of protonated noradrenaline by UV-UV and IR dip double resonance laser spectroscopy combined with an electrospray and a cold ion trap method vol.19, pp.17, 1992, https://doi.org/10.1039/c6cp08426e
  3. Probing the selectivity of Li+and Na+cations on noradrenaline at the molecular level vol.217, pp.None, 1992, https://doi.org/10.1039/c8fd00186c