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Criteria of Sea Wave Breaking in Basins of Complex Topography
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Abstract (1 Empirical criteria for wave breaking on the coastal slope are substantiated theoretically
for complex-shape basins. The theory developed here is a generalization of Carrier-Greenspan theory
for a plane beach. The place and role of the linear theory for the description of run-up problem
is discussed. The height of run-up on the beach of the basins with a “parabolic” profile is calculated

for originally monochromatic wave.
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1. INTRODUCTION

A number of empirical criteria of sea wave brea-
king on a plane beach were described by Galvin
(1968), Mei (1983), Battjes (1988) and Massel (1990)
who related the height and length (period) of brea-
king wave to the slope of the beach. The first theo-
retical model which enables researchers to deter-
mine the condition of monochromatic wave brea-
king was developed by Carrier and Greenspan
(1958) back in 1958. Their model was based on the
nonlinear theory of shallow water and on one-di-
mensional wave propagation over a plane slope.
This model was adapted for calculation of tsunami
waves in the coastal zone (Spielfogel, 1875; Synola-
kis, 1987; Voltzinger er al, 1989; Kaistrenko et al.,
1991). It will be shown below that the ideas put
forward by Carrier and Greenspan are applicable
to basins that obey more complicated laws of depth
variation. We describe also a simple way of run-up
characteristic calculation (Pelinovsky, 1991) which
can be applied to basin with complex geometry.
The place and role of linear approximation in the

solution of nonlinear problems of wave run-up des-
cription is discussed here.

2. CARRIER-GREENSPAN
TRANSFORMATION

Consider a nonlinear system of equations for
shallow water:

CLENPIN LS LS Ll R )
ot ox ay ox

ov Fu ov Fy ov : g an =0, (2)
ot ox oy ay

an

2 : _
b+ hv =0, )

where h(x, y) is the unperturbed depth of the basin,
u and v are the horizontal components averaged
over depth, and n stands for free surface elevation.
We will restrict ourselves to the analysis of wave
processes in basins having bottom topography of
the form
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h(x, y)=ax—vlyl” _ @

with arbitrary parameters a, v and m, which allows
for the description of a broad class of bottom relief
such as narrow bays, admission channels, etc. As-
sume that the wave propagates along the x-axis and
its length is greater than the transverse size of the
channel. This assumption enables us to write down
the following one-dimensional equations for the
flow velocity. U, averaged over cross-section (hyd-
raulic approximation):
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where H is the total depth of the basin at y=0.
Note that the cross-section in (5), (6) is described
by a single parameter m. Being a hyperbolic system,
(5H6) is effectively solved by Legendre transform,
that was earlier used by Carrier and Greenspan
(1958) for the calculation of waves on a sloping
beach. In particular, substituting the variables (Go-
linko and Pelinovsky, 1990).
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reduces system (5)6) to a linear equation:
FP 9o’ m+22 4P
A 9 m o go =0 (an

3. DYNAMICS OF RUN-UP ZONE

The wave field may be calculated rather easily
in this case: first, the wave equation (11) is solved
using standard procedures, and then space-time dis-
tribution of the wave field elements is calculated

by means of (7)(10). In practice, however, one has
to employ numerical methods because of implicit
dependencies of coordinates in (7)4(10), consequen-
tly, results are not so transparent. Nevertheless,
many characteristics of the process can be found
explicilty. This refers, first of all, to the run-up zone
and to the determination of the criteria of wave
breaking. Consider this problem that is significant
for applied purposes, in more detail. The boundary
of the run-up zone corresponds to ¢=0, because
physcially ¢ is a squared total depth (see (7)(10))
and in the language of run-up, the total depth turns
to zero. As a result, the formula (10) can be written,
for 6=0, in the form

UM)=Ft+——U) (12)
ga.

The physical meaning of the function F may be
clarified analyzing a linear system of equations for
shallow water:
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for which a linear equivalent of (7){(10) has a
form
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As a result of these substitutions the physical va-
riables, actually, become dimensionless. The rela-
tions (15)«(18) reduce the linear system of equations
(13)-(14) to the wave equation (11) again. Now the
motionless shore line (x=0) corresponds to the
point a=0. By virtue of their simplicity linear prob-
lems are widely used in the literature, especially in
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the processing of experimental data. Our analysis
demonstrates that they have a fundamental mea-
ning too. Indeed, the flow velocity along the shore
line considered within a linear theory is the func-
tion F(t) in (12). Consequently, the solution of a
linear problem may be used for the construction
of the solution of a nonlinear problem. Knowing
the flow velocity along the moving shore line, one
can readily find the displacement of water level by
simple integration of (12):
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where ¥ is the corresponding linear solution for
the elevation of water level along the shore line.
From (19) we arrive at a significant conclusion: the
maximal heights of run-up (or run-down) are equal
within linear and nonlinear theories because the
flow velocity turns to zero at the extreme points
corresponding to the maxima of run up and run-
down. Thus, the solution of the linear problem may
be used for correct calculation of maximal height
of run-up and of maximal depth of rundown. This
explains that the expressions of linear theory are
verified, to a good accuracy, in experiments, parti-
cularly so in the region of very long waves when
the effects of breaking are insignificant.

4. CRITERIA OF BREAKING

In contrast to extreme, the time evolution of the
moving shoreline is different within linear and non-
linear theories, in particular, “ture” record of flow
velocity contains a sharper leading front. This conc-
lusion is verified by direct calculation from Eq. (12)
of the steepness (time derivative) of velocity field:
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In particular, for a regular (monochromatic) wave
with the run up amplitude R=¥,, and frequency
o, Eq. (20) takes on a simple form
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where
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stands for the parameter of breaking Its physical
meaning is clear from (21): for Br=1, the derivative
dU/dt vanishes to infinity, which corresponds, wi-
thin the theory of shallow water, to wave breaking,
This definition of the parameter Br agrees with the
known criteria of Iribarren, Battjes and others, that
were found empirically for a plane slope (Mei, 1983;
Berkhoff, 1976; Battjes, 1988). Thus, the criterion of
breaking is substantiated theoretically for arbitrary
relief of coastal zone. Theory, however, enables us
to advance further and obtain the criterion of brea-
king for waves of arbitrary shape, which is signifi-
cant for the interpretation of data of observations
of irregular waves or tsunami. Indeed, solving a li-
near problem we can find oscillations of the shore-
line, ¥(t). The horizontal velocity F(t) is readily cal-
culated in an explicit form: F(t)=(1/a)d¥/dt. Substi-
tuting this expression into (20) yields an unbounded
derivative dU/dt (which corresponds to breaking),
provided that
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To be more exact, Eq. (13) contains the maximum
of d*¥/dt2. The parameter Br represented in this
form allows one to evaluate the probability of brea-
king of waves of arbitrary shape.

The parameter of breaking has a clear physical
interpretation. The value ¥W/a corresponds to the
horizontal run-up of the wave or, to be more exact,
to the run up that is counted along the slope when
y=0. Then

a=(l/a) d°¥/d¢ 24

is the acceleration in the wave that is positive towa-
rds the beach. With this value taken into account,
the condition of breaking takes on a form

a=ga (25)

ie. the wave breaks when the “run-up” acceleration
in the wave a exceeds the “run-down” component
of acceleration of gravity yo. There is an alternative
interpretation: from the linear equations (13)«(14)
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follows a simple relation between time and space
derivatives of the level along the shoreline (x=0):
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Consequently, the condition of breaking (23) takes
on the form
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ie. the wave breaks if its slope along the shoreline
is comparable to the slope of the bottom. This cri-
terion is known as the empirical Miche criterion
and the theory presented here substantiates it.

Thus it has been ascertained that the known em-
pirical criteria of wave breaking in- the surf zone
are substantiated within the nonlinear theory of
shallow water.

There is another, extremely important conclusion.
The expressions presented above depend only on
the mean slope of the bottom, ¢, and are not affec-
ted by details of the bottom topography (the coeffi-
cients v and p in. (4)). Therefore empirical criteria
of breaking include only the mean slope of the bot-
tom and theory confirms the predominant role of
this parameter. At the same time, the bottom topog-
raphy significantly affects the wave field itself and
its structure, because the parameter m enters Egs.
(5H6). In particular, in the case of monochromatic
wave run up, the solution of Eq. (11) that determi-
nes the wave dynamics in linear and nonlinear
theories is

Y¥(o, }»)=A—I':’:%:)— Sin (IA), (28)

where A and | are arbitrary constants determined
through initial conditions and I, is Bessel’s function.
Consider also an expression that follows from (7)-
(10) and (18) for the height of monochromatic wave
run up (Golinko and Pelinovsky, 1990):
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where £ is the original wave height at a distance
L from the shoreline, A is its length, and T is ga-
mma-function. As m decreases, the dependence of

the wave height on L/A becomes sharper. Thus we
arrive at a conclusion that the range of run-up in
narrow bays is greater than on plane slopes. The
expression (29) is valid only in the region of nonb-
reaking waves.

5. CONCLUSION

Therefore, we have shown that empirical criteria
for wave breaking on the coastal slope can be subs-
tantiated theoretically for basins of complex-shape.
The theory developed here is a generalization of
Carrier-Greenspan theory for a plane beach. We
have shown also that the linear theory describes
correctly extreme characteristics of wave run-up.
The height of run-up on the beach of the basins
with a “parabolic” profile is calcualted for the origi-
nally monochromatic wave.
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