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System Diagrams and Reliability Expression for Coherent Structure
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1. Introduction

Most reliability calculations are performed assuming that components and systems are either
functioning or failed. This dichotomy is often a resonable assumption, but the assumption is
sometimes made simply becasue there are no applicable results dealing with more complicated
state spaces.

The design and reliability analysis of a large complex system is undertaken by decomposing the
system into separate functional subsystems, decomposing each subsystem into components, and
finally decomposing each component into its individual parts. System diagrams and event trees
are used by reliability engineers to find the probability distribution for the state of the
system, The reliability literature of the past 10 years contains many papers with system
diagrams or event trees, Some work has also been done on computer programs for ternary
components and systems. '

First parts of this paper shows that binary state components and systems can be analyzed using
system diagrams and event trees.

Main part of this paper shows that correctness of reliability expressions can be proved in a
systematic way, though indeed for long expressions it is a formidable task., Two exhaustive tests
are given.

Test 1 is the analogue of the method of perfect induction in switching theory. Test 2 handles
the problem of checking an expression by breaking it down into disjoint subproblems which are
more manageable and for which correctness can be verified separately.

2. Systea diagrams

The word “System diagram” as used here refers to the reliability block diagram, not to a
schematic, or physical diagram, A system diagram is a logic diagram composed of series and
parallel operators, However, a system diagram is not limited to systems which have only series
and parallel combinations of components since it is well known that a systems can be represented
in terms of its minimal path sets or minimal cut sets. Each component in a system diagram
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represents a binary random variable. The series operator replace n components in series with

n
¢(X)=_n]m =min ( X,...,% ) (1)
i=
while the parallel operator replace n components in parallel with

$(x)

n n
Ux,:l—ﬂ(l-x,)
i=1 i=1

i= i=
=max ( Xi,...,% ) (2)

where "®(x) is system structure function and x; is state of component i:
0 = failed, 1 = function .

And a k-out-of-n structure functions if and only if at least k of the n components function.
The structure function is given by

1 if 2k
! igl H (3)
o(x) =
0 it &% <k
i=
or equivalently
n
o(x) = T x for k =n
i=1
while
$(x) = (xp.....%) U (.o oxteer ea) U o U(Xaeker,. . o0 Xa)
= max{(x;,...,x), (X1..., X1 X)), ..., (Xngets ..., Xa)}

If components are statistically dependent or if the same components appears in multiple place
in the system diagram, conditional probability expansions are used

¢(x) = x;0(1i,x) + (1-x;) ¢(0y,x) for all x (4)

E{ ¢(x) } =pE{ ¢(x)] x; =1} + (1 - p; ) E{ ¢(x)1 x; = 0} (5)
where

(15, %) = (x1,.... %0, 1, Xiety ..o Xn)

(01, Xx) = (Xl....,X;-l. 0, xm,...,xn.)

(0 %) = (X1,..0 Xt ) Xiety.. . Xn)

Minimal cut sets are useful to reliability engineers since they provide a qualitative measure
of the most important components in the system, Let K; be the minimal cut set j: j=1.2,....k.
The value of ¢(x) is calculated from

k
e(x) =N {1- D(1-x)} (6)
J=1 XEKJ
and system reliability given by
k
E{eo(x)}=N{1-0¢€(1-p)} (7)
j=1 iEk;

System diagrams are used to calculate either the probability that system functions or the
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probability that the system fails, depending on how the model is formulated,

Example 1. Consider the system shown in fig. 1. If component 1 functions, then the system
functions. If not, then 2-out-of-3 of components 2-4 must function and one of components 5 and 6
pust functions in order for the system to function. A conditional probability expansion must be
used to calculate system reliability, because components 2-4 appear in two place in the system
diagram.

#(x) = 3 U (xaxa U x2%q 1 xaxa) (x5 Ul xe)

1 - (1 = %41 - (xoxa U xaq 1 xaxa) (x5 U x6)}

1 - (1 - x){1 - {1- (1-xaxa}(l - xax )1 - xax4)}
{1 - (1 - xs)(1 - %)}]

=1 - (1 -x)01 - {(xs+x -z + ¥l - x2)}
{xsxs - Xsxs)]

E{¢(x)} = pz E{¢(x)1 pz = 1} + (1 - pp) E{p(x)1 p2 = O}
=1 = (1 - p)[1 - {(ps + Pe-p3pd) P2 + papu(l - p2)}
(ps + ps - psps)]

O—O
23
[ 2 4]
3 4

Fig.1 System diagram

Example 2. Suppose that an airplane engine will operate, when in flight, with probability p
independently from engine to engine: suppose that the airplane will make a successful flight if
at least 50 percent of its engines remain operative, For what values of p is a 4-engine plane
preferable to a 2-engine plane?

Solution. Let ¢,(x) be system structure function of 2-engine plane and ¢(x) be system
structure function of 4-engine plane. Then ¢;(x) is a 1-out-2 structure function and ¢2(x) is a
2-out-of-4 structure function given by

¢i(x) = ﬁ X
i=1

2
1-1(1- x)
i=1

1-01-x)(1 -~ x2)

xp x2 + x{l - x) + (1 - x1) x

1 if X = 2
¢2(x) 1}; i

0 it 5 x <2
if1

or equivalently

02(x) = xixa ll xixa U staseg U xoxs U 3o U xaq



= XXXy + XiXaXs (1 - x¢) + xixz (1 - xa)xq + (1~ X2)xaxq
+ (1 - x)xaxaxy + xixa(l - x3)(1 - xq) + x1(1 - xz)xa
(1« x) + xi(1 - %)(1 - xa)xq + (1- x:){(1 - X2) xa x¢
+ {1 - x))x%2(1 - xa)xa + (1 - x1)xsxa(1 - x4)

Now, we calculate system reliability

E{¢(x) }=p’+2p(1-p)

E{oox) } =p' + 40" (1-p) =6p"(1-p)*
Hence the 4-engine plane is safer if

E{ ¢20x) } 2 E{ ¢u(x) }
By above inequality we get

p = 2/3

Hence the 4-engine plane is safer when the engine success probability is at least as large as
2/3.

45
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Pig. 2 2-engine plane Pig. 3 4-engine plane

3. Event Trees
Constructing the event tree is often itself a useful exercise in understanding a system. When

system failure, rather than success, is stressed, the event tree is commonly called a fault
tree. Fault trees and event trees are logic diagrams consisting of a top event and a structure
delineating the ways in which top event can occur. The tree structure consists of AND GATES and
OR GATES which perform the same functions in the event tree as the series and parallel operators
in the system diagram,

A system event of major importance will be repreSented by a rectangle called the top event
appearing at the top of the event tree.

Top event
Immediately below each rectangle will be either an AND GATE represented by Fig, 4.

Output

Inputs

Fig. 4 AND GATE
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or an OR GATE represented by Fig. 5.

Output

Inputs
Fig. 5 OR GATE

The output event to an AND GATE occurs if and only if all input events occur. More information
on event trees and a different binary formulation can be found in 2.

Example 3. The event tree for the structure function contained in example 1 is shown in fig.
6.

Example 4. The event trees for the structure function contained in example 2 are shown in
fig. 7.

The event tree aids in determining the possible causes of an accident, and serves as a display
of results. If the system design is not adequate, the event tree can be used to show what the
weak points are and how they lead to undesirable events. If the design is adequate, the event
tree can be used to show that all conceivable causes have been considered. Also, the event tree

provides a convenient and efficient format helpful in the computation of the probability of
system success.

@ sceess

Fig. 6 Event tree of example 1

@: - sceess

Fig, 7 Event tree of example 2



4. Reliability expression

For a coherent system, the success function S(x) is monotonically increasing, and its
complement the failure function S(x) is monotonically decreasing. Hence S is expressible as a
sum of products of the uncomplemented literals x; alone while S is expressible as a sum of
products of the complemented literals X; alone.

The resulting sum of products expression is unique and lead to a minimal coverage of the
function, since each of products appearing in it represents an essential or core prime implicant
of the function.

Test 1. A reliability expression R(P) is correct if and only if it is a multiaffine function
that yields the correct results of 0 or 1 for the value of the input vector P implied by all the
states of the system.

Example 5. The following unreliability expression is given for the small bridge system shown
in fig. 8. n2

n;
Fig. 8 A bridge system having five branches and four nodes

The success function Sy of the system is the union of its minimal s-t paths;
S = s U xoxs U xpxaxs U Xoxaxy (8)

By DeMorgan's law, its complement is
Su = Gaxd) N (xax5) N (Gxaxs) N (Xaxsxs) (9)

Based on (9), the following unreliability expression was proposed

Qu = (1 - pipd(1 - p2ps)(1 - prpaps) (1 - papaps)
=1 - pipy - P2Ps - PIPaPs — PPaPi + PiP2PiPs + PiiPIpePs
+plpz§w«’2+ p:pz;;.vs' s 2x:z’p:«mps + gxpng’pms ; fx’gz:;ap;ps’
“PIP2 PaPa Ps - PIP2PI P4 5 - PiPtPaPuPs + Prp2 Papaps (10)

This unreliability expression yields correct results for all the 2" values of P mentioned in
test 1. However, it yields a wrong result for almost any other valid value of P. The pitfall in
going from (8) to (10) is that minimal paths are assumed statistically independent while they
are not. Test 1 detects that (10) is incorrect by simply finding that it is not a multiaffine
function which is defined

Q¢ = g5 {ae + Quae(qz + Pa3)} + qzas(q + Pi1gaqs) (11)

Expression (10} can be corrected by suppressing all the exponents occurring in it, i.e. by
applying the [-]1° operator defined by

(RRY 1 np (12)



TEREEat ok 268 19924 117 91

So that Qy4 takes the correct multiaffine form.

Quu =1 - piPi - pbs ~ P1PaPs - PrPaps + PiP2Pabs + PID3PDs
+ PipzPape + PiP2Pas ¥ P2PaPaps - 2P102PapaPs (13)

Test 1 is tedious and impractical even for expressions of moderate size. Certain patterns of
repetitions take place in the checks of test 1. To save some work, these repetitions can be
exploited by replacing each group of similar checks by a single one, Reliability expression for
the network in fig. 8 is

R = ((p1*qip2)ps+pipaps) (ps+pads)+ (Praz+dip2 )qspeps (14)
It is in multiaffine form, It yields the correct result of 1 for the 8 spanning trees x;xsx,
X)X4Xs, XgXeXs, XiXzXs, X1XaX4, XoXaXs, XiXaxs, and XzXgxq.
It also yields the correct result of 0 for the 6 network cutsets X%, Xu¥s, XiXaKi, X2XaXs,
XoXaxy, and X;Xs\s
For example, for the spamning tree X;x2x4
Ripi = pz = pu = 1} = ((1+0)p3+qa)(pstqs)+(0+0) = 1
and for the network cut set X:%3G
Ripz = p3 = ps = 0} = ((p1+0)0+0) (0+py)+(p1+0){py)0 = O

Hence, (14} is correct.

Test 2. A reliability expression is correct if it is a multiaffine function that reduces to
the correct reliability expressions of the subsystems derived from the original system through a
Bayesian decomposition with respect to k admissible keystone, elements. Test 2 is useful when
the subsystems obtained are simple. If k=n, test 1 are the same.

Example 6. The following multiaffine expression is (6) for the system in fig. 9.

n2 Xa na

na

Fig. 9 A moderate system having geven s-independent branches
Branches 3 and 5 are bidirectional.

Ris = ps(prtP1q2(patpaas(pstaspr) ) }+aspr{ p2( ps*+paqs( patpiQa) ) #p1q2
(paas*ps(patpqa) )) (15)

An application of test 2 with branches 2,3,5 6 taken as keystone elements, results in table 1
which consists of 16 lines. The results in the 16 lines of this table are correct, as can be
easily seen by considering the corresponding subsystems derived from the original system. The
table could have been shortened by combining some of its lines, for example the entries in lines
1001, 1011, 1101, 1111 are the same, and these lines can be combined as 1..1.



table 1

P2Pabsps Ris
0000 0+pr{O+pi{pa*0)) = pippr
0001 1(0+p:1 (0+pa(0+p7) ) )40 = pipgr
0010 0+p{0+py(0+1(0+p4)}) = pipapy
0011 1(0+p1(0+p4(1+0)))+0 = pypy
0100 0+p7(0+p1(pa*0)) = pipar
0101 1(0+p;(1+0))+0 = p,
0110 0+p7(0+p1(0+1(1+0))) = pipy
0111 1(0+p1(140))+0 = p,
1000 0+p7(1(0+ps(0+p1))) = prpapr
1001 1(1+0)+0 =1
1010 0+p;(1(1+0)) = pr
1011 1(1+0)+0 = 1
1100 0+p7(1(0+pa(1+0))) = pepr
1101 1(1+0)+0 = 1
1110 0+pr(1(140)) = pr
1111 1(1+0)+0 = 1

Example 7. This example illustrates an alternative way of applying test 2 to (15). Initially
branch 2 alone is taken as a keystone elements, When p;=1, the system reduces to a series
parallel subsystem, while when p;=0 the system is still complex and can be decomposed further
with respect to branch 5 to give 2 simple subsystems, Expression (15) is now reduced under the
mutually exclusive and exhaustive conditions {p:=1}, {p2=0, ps=0}, {p2=0, ps=1}.

The results are;

Ris{pe=1} = perasps(pstpaas(pa+piqs))

Ris{p2=0, ps=0} = pepr(pa+aspapr)+aspr{pipd)
= pi{papetpipr(qstpaps)) (16)

Ris{p2=0, ps=1} = pepr(pataaps )} +qepipr (pa*asps)
= pi{parqapd) (Perqepn)

These are correct for the subsystems under consideration.

5. Conclusion

The checking methods be proposed above are very useful for detecting faults in hand
derivations and debugging computer programs. They are initially developed for the case of a
system with perfectly reliable nodes, and then modified to handle node unreliability. The test
1, 2 also apply to a flow network having a capacity constraint. In example 6, 7 computational
efficiency can be enhanced.
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