[b Gt T20d 1992 1T H 67

Ty

A STUDY ON THE MODIFIED GRADIENT METHOD FOR
QUASI-DIFFERENTIABLE PROGRAMMING
- fAb 0 &E7Hs A3 Aol dolM 3 FAS Pl A AT -

2 & ¥

2 A

WMo oW ZtEol it =8 M 4 g @948 AUl ke F. R oM A8 4%
o] Eajgirt o)A L Convex Analysis[12]o]4 o]23Ql differential calcuius & ZA I3}
Non-differentiable Optimization ¥ Non-smooth Optimization & 33t Zo] Hr) olzigt 2/
2] mjo] 7He3la] ¢} AAUENE AKUTF HYU FAY AAgo g T YA g gl
= d4d2 HAE IRY 4 grh mEbd, ol FMHE P37 9l Demyanov[4]7t A
quasi~differental function?] 2|2} olF ol W R7ix] Fa YN ES I3, 2RES B
£ Non-differentiable optimization problem® 4213<Ql W¥g 4+33}7])) UF 2 nodified
gradient H& ATk o|F ol &3MAM numerical experimentE $I¥ whH& FAEBA,
unrestricted non-differentable optimization problemol 2 &3}, 2 4x|3] AXE VoA 1 el
A& HE3Ich

1. INTRODUCTION

Consider the following optimization problem,

Min f(x), s.t. h{x)<0 for i=l, - -, m.,

where the objective function f and constraints h;{x) are real valued functions defined

on k",
Regarding to classical theories for differentiable functions, a basis and well-known
optimization method is gradient method. Gradient method generates a sequence of points (xy)eS ,
where keN, and S is feasible region for constraints, with non-increasing (f{(x)).keN, which
shall converge to the required optimal solution. Usually the stationary point %, is chosen from
S, and at the k-th iteration the point xy calculated by Xe=Xg-1+Qx By, 0{axeR. The vector ge
k" is a direction in which the objective function value decreases, at least in a small
neighourhood of xx. For this, two subproblems, direction gy and stepsize ax, have to be solved.
In the case that f,hy are smooth, we have no problem to find a direction g and stepsize a, Many
highly effective algorithms have been developed for those[l].

But unfortunately some problem cannot be represented as smooth, convex, and maximum functions.
The function is subject to feasible set ScR" where the objective function and the set S do not
have to be continuously differentiable. These problems could not be covered by the classical
method, but are used to quasi-differentiable theory that has been introduced by V.F.Demyanov
{4].(5], and it offers especially in the numerical point of view many advantages over Clarke's
theory[2].

It provides formulae involving equality relation for many important operations, such as
sum, product, quotient, maximum or minimum of finite number of functions while other calculi
generally can insure only inclusions. [t contains explicit definitions of how to calculate a
steepest descent (ascent) direction. With a help of quasi-differentiable calculus, one cannot

% Dept. of Industrial Engineering, The University of SuWon, SuWon, Korea
A4 0 1992, 10, 17,
4 1992, 10, 30,

. .
68 4 w %

only determine stationary points where the direction of optimization can be ignored, but one can
distinguish the so called inf-stationary points from the sub-stationary points. The classical
calculus for differentiable functions is included in the quasi- differentiable calculus.

In the following we will give a short survey of basic definitions and theorems.

2. CALCULUS FOR QUASI-DIFFERENTIALS

The calculation of quasi-differentiable functions is described to its full extent in [5]. In the
following a brief description of this calculus is given, and it will be needed for subsequent
statements and arguments.

Definition 2.1 A function f defined on an open set SeR" is said to be gquasi-differentiable at
a given point X.€S, if it is directionally differentiable in any

arbitrary direction geR" at X,, and if there exist two convex, compacts set af(x,),3f(x,)eR” such
that the directional dervative is given by:

3 g 1
Tgf(xn) = lim o f(xvag)-f(x)
- i in <w,g> . VaeR", lgl=1,
vgg (xo<)v & “wea (:35 & .V 8

The pair Df(x,) = [4f(X.),3f(x.)] is called a guasi-differential of f at the point x,, and
the two sets af(x.),dT(X,) are called a sub- and super-differential, respectively.

Remark The quasi-differential is not unique, becaue if A is an arbitrary convex, compact

set, then [af(x.)+A,df(x,)-A] is also a quasi-differential for f at x, .

Definition 2.2 A real-valued function f defined on an open set S is said to be uniformly
quasi-differential at a given point xS, if it is quasi-differentiable and uniformly
directionally differentiable at X,.

The following theorem does not only state that the class of quasi-differentable functions is a
linear space and closed with respect to taking pointwise maximum and minimum, but also specifies
the quasi-differentiable obtained by these operations. It is therefore of major significance to
the theory of quasi-differentiable functions.

Theorem 2.1 Let the function f;:R">S— R be quasi-differentiable at x,€S, then the following
statements hold:
1. f(x) :,glk(ﬁ(x), LR is quasi-differentiable at x, and Df(x,) is given by
i=
Df(x) = 5 ADfi(x) .

2. f{x) = f)(x) -f2(x) is quasi-differentiable at x, and Df(x,) is given by
Df(xo) = f1(xo) -Dfz(x,) + fa(xa)-Dfi(x,) .

3. fi(x) = %EXX—;— f2{x,)#0 is quasi-differentiable at x, and Df(x,) is given by
2
fl(xo)'ufz(xo) * f2(xo)'Dfl(xo)
f =
Dftxe) (fa(x) 2
4, f(x) =_gﬁx {fi(x)} is quasi-differential at x, and Df(x,) is given by
i
Df(x,) =

[af(x,), 3f(xs)] . where af(xo) = col af(xa) - % 3fi{xa) },
kep iep, i#k

af(xe) =), afi(xo) for P= {jeN] f(x,)= f;(x.)}.
k#p

FISE 2ol 10920 11H 6y

5. f(x) = ?éﬂ {fi)} is quasi-differentiable at x and Df(x,) is given by
Df(xa) = [8f(xe), Bf(x.)] , where af(x,) =);(Epgfx(xo).

af(xa) = co { af(x) - 3 pfix) } and P = {JeNlf(xo) = f(x)}.
kep iep, ¥k

Leama 2.2 Let f:R"—R be a quasi-differentiable function x%eS, S open. Then the steepest
descent direction g* of f at %, is given by:
VotWe

———————— where livetwoll = max_ { min ly+wl }
IVetwol e weaf(x,) veaf(x,

S’(Xo) = -
The vector, v.-w,, is the analogy of the qlassical steepest descent direction. In contrast to
continuously differentiable functions, however, the direction of steepest descent of a

quasi-differentiable function is not necessarily unique.

proof: The proof is straightforward and is omitted here.

Leama 2.3 Let f be quasi-differentiable at x.eScR”. For X, to be the argument of a local
minimum of f it is necessary that

- 3f(x.) ¢ af(x,) .

Remark Point x,6S satisfying Lemma 2.3 are said to be inf-stationary.

A sufficient condition for x, to be the argument of a strict local minimum of a uniformly
quasi-differenriable function f is given by

Lemma 2.4 Let f be uniformly quasi-differentiable at x,eSck’. For x, to be the argument of a
local minimum of f it is sufficient that

- 3f(x,) ¢ int(af(x)) .
Proof for Lemma 2.2 and 2.3 are given in Threorem 16.2 amd Threorem 16.7 in [5].

Based on these propositions and theories, we can now make an approach to optimization problems
which are not covered by the classical classes of differentiable, convex or maximum functions.

3 A MODIFIED GRADIENT METHOD FOR QUASI-DIFFERENTIABLE FUNCTION

Assume that a factory where m units of products i,i=1,2,---,n, have to be distributed by a
crane. Fach product i should be carried to a place x;. The crane, however, can transport the
products in the plane’s x- or y-direction only. In addition, it can carry more than one at a
time. To determine the intitial position from where the distribution starts, the following model
may be used :

Minimize the function f: R*—R , where f(x) = 2’_ mi|x-x}, meN, x, xieR? .
Obviously, this function is quasi-differentiable and it can be defined as follows:

min f(x), xeR", where f: R"—R is quasi-differentiable at every point xekR".
This problem is called an unrestricted quasi-differentiable optimization problem. The following
problem is called the restricted quasi-differentiable optimization problem:

min f(x), xeR", s.t, hy(x)s0, i=1, --,m , where the function f:R"R and h;(x):R"—R

are quasi-differentiable functions.
The restricted quasi-differentiable optimization problem is less complicated than expected., It
can be shown that the feasible set S={xeR"|h;(x)s0,i=1,---,m.} can be rewritten by S={xek"|
max{h;{x)}<0,i=1,---,m.}. The restricted quasi-differentiable optimization problem can be
reformulated as follows:

r

ofo

Min f(x), xeR", where S = {xeR"|max{h{(x)}<0, i=1, -, m.}.
This seems to be very convenient because the restricted problem can be reduced to a problem with
only one constraint. This means that the problem with many restrictions is as difficult as the
problem with one restriction. By means of one quasi-differentiable function, this method also
allows the representation of feasible regions which are not necessary convex.

Theorem 3.1 Let function f, H, hy(x), i=l,---,n., be quasi-differentiable on K" and S= {xeR"|
max{h;(x)}<0, i=1, - -, m }= H(x)<0. Let x.eS, H(xq}=0.
Calculate the quasi-differential of the function ¥(x)= max{f(x)-f(x). H(x)}, where

3¥(%,) = co{af(x)-dH(xo), aH(Xo)-3T (x0)}, 8¥(%e) =31 (%) +dH(e).

It is necessary for a point to be a minimum point of f on S hat -3¥(x,)ca¥(x,).

Proof: see[2].

If this condition is not satisfied we can get a feasible descent direction g of f by
taking a steepest descent direction of ¥ as the direction g To solve this kind of problem
basing on the theoretical concept of previous section the two parts for the algorithm are

recommended that the one is a criterion to decide whether a given point xeR" is optimal and the
other is which have to be done, if a optimal solution is not reached. The logic answer to this
subproblems is to choose a direction in which the function is decreasing campared with the
actual point. For this we have to solve to two sub-problems: (1)How do we get such a direction?
(2)How long do we have to progress in that direction until we check again whether another point
is optimal?

This question is not a typical non-smooth problem, but for practical reasons we many have to
modify the classical line search method, because it usually results in a one-dimensonal
non-smooth optimization problem. So we have seen that quasi-differentiable theory can be used to
answer these questions in a constructive search, The following generalized gradient method for
unrestricted quasi-differentiable optimization problems is proposed.

Algorithm
Given the problem: min f(x), xeR"
1. k:=0, x¢ arbitrary.

2. Compute a quasi-differential Df{x) = [af(x), aT(x)].

3. Check whether the necesary condition for a local minimum -3f(x,)caf(x,) is satistied.
If satisfied, go to 6.

VotWo

{verwoll

+wll),

4. Compute steepest descent direction g"‘)(xk) = with

IVotWoll = melééf(xo)(m‘:ggf(xolgv

5. compute an c'eR, where «' = min f(xa g(xc)), VaeR.
X1t = Xeta-g(xg), ki= k+#1. go to 2.

6.x":= x. stop.

Since the real number cannot be precisely represented on the computer, &-technique has to be
used for numerical calculation[9]. The setting up of an algorithm may require a lot of time.
For this reason, a sophisticated and efficient implementation of the algorithm of the algorithm
is very important for practical application.

For an algorithm to solve the quasi-optimization problem the steepest descent direction, a
direction g in which the objective function value decreases,is to be determined,

At first, determine the two sets af(x,),df(x,) . then we get a steepest decent direction

Vet da il iia s oest 10920 111 71

VotWo

by &(%o) = ——"— . Vo, WER", VotiWex0
lve+vell (*)
where [vo*+w,ll = max mip fAyswl}. el .
ool eEnt(xe) vedfixe)
This can be reformulated as follows: g(x,) = - _I\T‘:EE%:’T-‘ Vo, WoER" |, Vo~Wox0,
) o
vhere llve-woll = in bv-wll}., e (*)

welng%((x.,) ve{gﬂxo)

Theorem 3.2 There exist an extremal point w,e-3f(X,) and a vo(w,)eaf(x.),
which satisfies equations (%),

Proof : Let w, be an arbitrary element of -3f(x.) satisfying(#). Take the set PcR" of
points x whose distance from -af(x,) does not exceed (vo-®ll,i.e.

Piz {xeR*|lIx-yll Slive-wo!, yeR"}= -3f(X,)+lv,-W,ll-B, where B denotes the n-dimensional Euclidean
bail. Let H be a supporting hyperplane to P containing w,.

It is sufficient to show that at least one extremal point w; of -3f(x,) is an
element of H n -3f(x,) ¢ Hn P.

Since %, are the extremal points, every point xe-df(x%,) can be represented by

x = Eli(ﬁi"" , Eli(zf“ =1, A0,

Let neR" be a vector which is normal to H and beyond -4f(x,).
Then for every point xeH, the following applies: <n, w,-x>=0.

Assumtion:w; ¢ H n -3f(x,) & w; € {xeR"[<n, wo-x> > O},
) . . . Gk k k
However, since w.e-df{x,). it follows w, = }%glw, Z,;}, =20 w, - }Hv._o.

Contradiction: 0 = <n,0> = <n, wo~§li(_kll~w;>: }ik_fi'm, wo-wy> > 0,

Hence follows: wy € H n -af(x,). #

Since the set -3f(x,) is given by a finite number of points w:={w;, - >, W},
wie co{ext(-df(x.))} ., where ext(-aT(x,)) denotes the set of all extremal points of
-3f(x,) , we can rewrite equations (%) as

Vo - W
g(X.) = - _II_;/—:-:‘T:—T \ Vo, WR" | VoW, # 0,
I vo -~ Wo I = max { min fv-wil} .

welW veaf(x,

Besed on the proof in the Theorem 3.2, the problem is now reduced to finding the minimal
distance between a point weR" and a polyhedron V:= co{vy, ---,v;}. The difficulties obviously
result from the fact that the polyhedron V is not given by a system of inequalities describing
the intersection of affine halfspaces, but by a finite number of points which are not
necessarily extremal points,

Let h:V — B, h(v)=(lw-vIl}* , weR", V0, and
dh(v) dh{v)
h{v) = —_— 'Wj]

the gradient of h at v,
dVl
To minimize h, we may proceed as follows:

Start: Let ki=0, Vo= {v;, - - - vj}, veV, arbitrary.

Iteration 1.Find the set of all points Vcvi such that {w} and V are subsets of the
same affine halfspace determined by the hyperplane Hy:= {xeR"| <Vh(w),x-x>
= 0} i.e. V =i{xeVy, x#w| sign(<Vh{w),w-v>) = sign (<Vh(w), x-w)},

If V=, vk minimizes h,

Iteration 2.Minimize the function Ix:V—K, where v—rllx-vi? ,erk.
Since the distance between a point xeR" and a hyperplane H={yeR"|f(y)=a} is
1f(x)-al

given by: dist(x,H) = T

1<9h(w), v> - <Th(w), vl
ITh(w) I

Jh(vy)=0 indicate that v,=w is a minimizer of h. Thus, suppose that Vh(vy)=0.

This can be calculated by: minimize

Now since ITh{w)l=constant for all veV, it is sufficient to calculate
v’z arg mip (1<Th(v), v-wo1).
ve

Iteration 3.Minimize the function T:[0,1]-R, where t—>Iw-t-v-(1-t)-v*I' Using classical
calculus, we obtain the minimum for

= min (1, max (0, —<Ewey'>)

Iteration 4. Vi:=t*-viet(1-1) V', wvaizvou{wa}, k=k+1, and perform the next iteration.
Stopping rule: Consider weV ©@ llvi-wil<e.

Remark: Numerical experience has shown, that this algorithm can be improved by modifying
step 2. i.e. be replacing V' = arg lv'n (1<9h(wy), v-vio |)
ve

vh , X
vwith v* = arg nj _Khlve) X%l W), X%
ve vl

4 IMPLEMENTATION

To implement an algorithm solving optimization problems by the method described in the previous
section, we will consider to three basic phases: (a) calculation of the funtion value and a
quasi-differential, (b) finding a steepest descent direction, and (c)solving the line search
problem,

4.1 Calculation of the function value and a quasi-differential
To calculate a function value, it needs to a method for recognize, analyse and evaluate the
function describing the optimization problem. Because the quasi-differentiable functions do not
have a fixed structure in contrast to linear functions where the these functions are represented
by its coefficients, the structure is not known run time of the program in advance. Thus, by
using a special technique from the field of compiler construction which is the interpretation of
arithmetic expression, we use a method to recognize the function during run time of the program.
Language implementation depends always ‘on language‘ definition, because a compiler has to know
which structure is permitted and which is prohibited. The syntax of a language determines which
character strings constitute well formed programs in the language and which do not. The
syntactic rules of a lanuage can be assigned to different levels according to their meaning. The
lowest level contains the spelling rules for basic symbols. They describe the strucure of
logical units which cannot be further divided, such as keywords, identifiers or special symbols.
This lowest level is handled by lexical analysis or scanning. The second level of syntactical
rules is called concrete syntax. Concrete syntax rules describe the assembling of language
structures such as statements or expressions which are made up of basic symbols, i.e. they split
up the structure into units which can be recognized by scanner, This process is called
structural analysis or parsing.

For the more detail survey of this technique is described complehensively by Davie and
Morrison[3].

115% Hi268F 19929 117 73

4.1.1 Evaluation

The parsing process provides an evaluation tree. An inner node is always marked by an operator
and a leaf is always indicated an operand[3]. The tree is stored in a chained list, this is,
each node is represented by an array which contains some information which is name of
operator, value of operand, type of node, and, at the same time, two elements which provide the
addresses of the nodes to the left and right. To calculate the value of an arithmetic express
from this tree, we use a cellar technique.

Definition 4.2.1 A4 cellar can be described as an area of storage where the data can be
entered only at top. Thus, data already stored there, will be pushed down. Accordingly one can
only reference or change the top elements. When no longer needed, the top elements are deleted,
thus popping up the elements below. This is simply an implementation of the principle
Last-In-First-Out,

The usual method of implementing a cellar is to use an array S and a counter i. If i=n where
n}0, then the cellar contains S[1],-:-,S[n] is the top elements, For calculation purposes, we
now travel the evaluation tree such that we get successive a Postfix notation in the cellar. If
we get an operand from the tree, we just move it to the cellar. If we get an operator, then the
two operends on top of the cellar will be evaluated, the two operands will be deleted and the
result is placed on top of the cellar, Having traveled through the whole tree, the cellar is
reduced to one element which now contains the final result.

4.2 Computation of a steepest direction
As mentioned in section 2, two sets can be calculated by taking the differentiable parts of the
function as primitives, and constructing the higher parts with help of these rules to calulate
the quasi-differential function. Consider a complehensive example as follows:

f: B® — R, where (x1. xz) = max (x + Xz, min { x1, X2)).
The first thing we have to do is divide the formular into several simpler parts in order to get
the differential parts of the expression. We can calculate the quasi-differential at the point
% = (0,---,0).
Ve define: f(x), %z - max (hy(xy, X2), ha{xy, X2))

hixy, xz) = Filx, x2)+f2(x1, %2))

ha(x1, X2) = min (£1(x), %2), f2(x, xz))

f1(x1,%2) = %

fa(x1, X2) = Xa.

In order to simulate this problem on a computer, we need a criterion of how to divide an
arbitrary expression analogously, that means we need a method of defining the functions hy, -
“hy, f,---,f; automatically. When looking at the evaluation tree shown below it becomes obvious
that these functions correspond to the nodes of the tree. Thus, this problem is not a real
problem since we automatically get the correct divisions when we travel the tree and call the
procedures for the calculation rules in accordance with the actual node. Theoretically, this
proceeding can be continued until there are only the variables x),xz ---,% left on the lowest
level of the tree. The program will be then calculate the quasi-differential parts, i.e. the
lowest level in our program consists of the differential parts of the function. As above
example, we achive the correct division into differentiable parts by parsing the function f.
Considering the two rules in section 4.1, this is exactly what we need in order to calculate a
quasi-differential. In fact, this is the very simple solution for the problem of calculating
quasi-differentials. The only difference between calculating the function value and calculating

the quasi-differential is that, there are not only real number in the case of
quasi-differentials but matrices or convex hulls of vectors. Thus,it needs two cellars instead
of one, namely one celtar for the sub-differential and one for the super-differential.
Furthermore, the new procedures for addition, substraction and scalar multiplication of convex
hulls are to be implemented.

Since we do not know an algorithm which is fast enough to determine the convex hull of a set
of points, we do not eliminate inner points of a convex hull, i.e. we store all points except
identical ones which we get during the calculation process, But this does not cause any
problems, since we only need a kind of modified distance between convex hulls to determine the
steepest descent.

4.3 Line search method for quasi-differentiable programming
Based on the above determination of direction g in quasi-differentiable optimization problem,
stepsize is to be determined by a given point xx and a given direction g. This problem is
usually called the Iine search problem. To be more specific, let us solve the one dimensional
optimization problem:

Min h:UeR—R , where t—f(x+t-g).
This can be achived by constructing a sequence (t;),ieN, which has to converge to the minimum of
function hy. The optimal solution t* is the required value ax. Then, two subproblems, recursion
rule and stoping rule, are suggested. The algorithm is supposed to approach the neighbourhood of
the optimum with a minimal number of steps. The is particular important when a large distance
has to he covered, since compulational time is limited. Thus, a sufficiently large step size
must be selected. Selecting of a very small step size in the neighbourhood of the optimum in
order to get as much exact result as possible.

We can now test the function hy inside the interval by means of several methods, and we do not
have to consider other points outside. One possibility to examine the function hy inside the
interval may be approximate the function by simpler functions. These can be calculated much
faster and we can get the minimum by one calculation. Sequential search methods are widely used
for differentiable functions. They can also be applied to quasi-differentiable functions for the
following reasons: Because these search techniques are not analytical, we get a finite number
of function values only. This also means that we do not need any derivatives but just compare
function values and then decide how to shrink the interval by elimlnating portions of the
current interval,

Sequential search methods for the quasi-differentiable case require the unimodal property,
that is, the interval is presumed to include one and only one point at which the function has a
global minimum for this interval to guarantee the approximation of a global optimum. Obviously
this property is not generally fulfilled for the quasi-differentiable case, but since we do not
search for global optima, we may ignore this property for our purposes. We will provide a
description of specific sequential searchs, Fibonacci search.

The Fibonacci sequence (F,),neN, may be used for searching on intervals. The Fibonacci search
is initialized by determining the smallest Fibonacci number Fye(F,),neN, that satisfies: Fy-&¢ =
t)-t,, where € is a prescribed tolence and [t,, t;] is starting
t - te

Fy
The first two points in the search are located within the interval [to, t;}Fnx-1-€ units from the
endpoints of the interval. Take the interval again formed by the two subintervals to the left
and right of the point of the minimal objective value as new current interval.

Successive points are positioned within the current interval F;-€(j=N-2,---,2) units from the

interval. £ =

TGS aE FIDE F2688 109277 118 75

latest endpoint. Note that with the Fibonacci search procedure we can state in advance the
number of function evaluations that will be required to achive a certain accuracy. Moreover,
that number is independent from the structure of the particular quasi- differentiable function.

5 COMPUTATIONAL OBSERVATIONS AND RESULTS

The following example will be briefly demonstrate the behavior of our algorithm,
Given the unrestricted optimization problem:

f R — R where f(x) = é’llxin. x=(x1, - . X).

The following is succesive iteration values by computational results.

i x) f(Xl), Bl a4 ?
0 (132, 45,-33,7,0, 90, 88, -21, -900) 1316 0.3535(-1,-1,1,-1,0,-1,-1,1,1)} 127
11 (87,0,12,-38,0,0, 45, 43, 24, -855) 1104)0.3779(-1,0,-1,1,0,-1,-1,-1,1) 114
2| (44,0,-31,5,0,2,0,-19, -812,) 913(0. 4082(-1,0,1,-1,0,-1,0,1,1) 64.5
3)(17.6,0,-4.6,-21.4,0,24.4,0,7.4,-785.6) 8610, 4082(-1,0,1,1,0,1,0,-1,1} 43.4
4{(-0.1,0,13.1,-3.6,0,-6.6,0,-10.4,-767.9){ 802{0.4082(1,0,-1,1,0,1,0,1,1) 24.8
5{(10.0,0,3.0,6.5,0,3.5,0, -0. 25, ~757. 8) 781)0.4082(-1,0,-1,-1,0,-1,0,1,1) 8.6
6| {6.5,0,0.5,3.0,0,0,0,3.25,-754.3) 767.6| 0.4472(-1,0,1,-1,0,0,0,-1,1) 7.25
71 (3.3,0,2.7,-0.25,0,0,0,0,-751.0) 757.3; 0.5(-1,0,-1,1,0,0,0,0,1) 5.5
8 (0.5,0,0,2.5,0,0,0,0,-758, 6) 751.3] 0.5(-1,0,1,-1,0,0,0,0,1) 1.1
9| (0,0,0.5,2.0,0,0,0,0,-747.75) 750 0.5773(0,0,-1,-1,0,0,0,0,1) 3.35
10 (0,0,-1.4,0,0,0,0,0,-745.8) 747 0.7071(0,0,1,0,0,0,0,0,1) 1.9
11 (0,0,0,0,0,0,0,0,-744_4) 744. 4 (0,0,0,0,0,0,0,0,1) 744. 4
12 (0,0,0,0,0,0,0,0,0)

We think that this method seems very promising for first order algothms. It may be extended to
include some other problems such as global optimization or vector optimization for the
quasi-differentiable case. For higher order type algorithms, however, you should better use
other methods which do not require sets to calculate a descent. The algorithm seems to be the
first which has been implemented for the general case of quasi-differentiable optimization.
Thus, it is only a matter of course that it is very convenient for simpler problems with a
special structure, linear quadratic or convex optimization problem, because of its time and
space requirements.

The implementation was performed by means of the programming language FORTRAN 77. The
nugerical results was supposed to provide only an experimental code for treating
quasi-differentiable optimization problems. For commercial purposes, it has to be elaborated
therefore in order to speed up execution time and reduce main memory. The parameters of the code
are designed for problems up to dimension 16 and for 250 constraint functions. Then the
parameters will be able to cope with problem up to dimension of 50 and a number of 500 for the
constraints. But since this code has been specifically developed as an experimental code for
scientific purposes, further research in this field may considerably speed up the algrithm.

76

10.

11

12,

N
ool

LITERATURS

. Bazaraa,M.S., Shetty,C.M. "Nonlinear Programming”, John Wiley and Sons, 1979.

Clarke,F.H., "Generalized gradients and applications”, Trans. Amer. Math. Soc.,
Vol.205, 1975.

Davie,A.J.Y.T. Morrison,R.,” Recursive descent compiling”, Halsted Press, New York,
1978.

Demyanov, V.F., Rubinov, A.M. " On quasi-differentiable mappings”, Optimization Vol.14,
No.1, 1983.

Demyanov, V.F. ,Rubinov, A.M,,” Quasi-differentiable calculus”, Optimization Software,
Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1986.

Demyanov, V.F.,Vasilev,L.V.,” Non-differentiable optimization”, Optimization Software,
Springer-Verlag Berlin, 1985.

Demyanov,V.F., A.M.Rubinov, "On quasi-differentiable functionals”, Soviet Mathematics
Doklady, Vol.21, P.14-17,1980.

Demyanov, V.F., L.N,Polyakova, "Minimization of a quasi-differentiable funtion on a
quasi-differential set”, USSR Computational Mathematics and Mathematical Physics,
Vol.20, No.4, P.34-43, 1981.

Pallaschke,D. ,P.Recht, "On the steepest descent method for a class of quasi-
differentiable optimization problems” Nondifferentiable Optimization: Motivations and
Applications Preceedings, Sopron, Hungary, 1984, pp.252-263, Springer-Verlag Brelin,
Heidelberg, New York, Tokyo 1985,

Poljak,B.T., "Subgradient methods: A survey of soviet research”, Nonsmooth
optimization, Pergamon Press, Oxford, 1978.

.Polyakova,L.N., " necessary condition for an extremum of quasi-differentiable

functions”, Vestnik Leningrad University Mathematics, Vol, 13, P.241-242, 1981,
Rockafellar,R.T.,” convex analysis”, Princeton Unversity Press, Princeton, 1979,

