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Abstract

In this paper, extreme tensions in a snapping cable are studied and systematic parameter
studies are made in the selected cable using the clipping-off model. The anticipation of inc-
ipient clipping frequencies of a cable are of use in giving an indication of the behavior of
cables for marine applications in which large dynamic tension build-up in rough seas may
cause the total tension to become negative.
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1. Introduction

The result and computer program development
of the cables used in marine operations such as
towing and mooring have been made in the last
two decades. The problem of large dynamic tension
amplication in rough seas is particularly severe for
snapping cables, thus necessitating a detailed
analysis.  Goeller and Laura(1970), in a study of
the dynamic response of stranded steel cables,
found that maximum cable forces nine times the
static payload weight in water were developed in
snap condition [1]. Kirk and Jane(1976), in their
numerical simulations of anchor chain dynamics
of tension-leg single buoy mooring system, found
that the change in chain length was of the order
of 1.7m(the unstrained chain length=152m) which
corresponds to an increase in tension of 6.2 MN
[2]. Also, Fylling and Wold(1979) presented the
comparison of cable dynamics in their paper which
included the cases when the dynamics force exc-
eeded the static force[4]. Shuara et al.(1981), found
that the dynamic tensions of oscillating chain
become maximum in the snap condition [5]. Mil-
gram et al. (1988), developed simplified models for
the horizontal towline dynamics and showed the
experimental and theoretical results of the dynamic
towline tension [9]. Shin (1991) made an theoretical
analysis of extreme tensions in a horizontal snaping
cable and compared with experimental results
[41[10].

This paper presents a brief description of sim-
plified cable dynamic equations with a clipping-off
model as an analysis technique. In order to grasp
full meaning of numerical results and their comp-
arison with experimental ones, systematic parameter
studies of the horizontal cable which was already
used by Fylling(1979) [4] are made.

2. Description of Simplified Cable Dynamic
Equations

It is assumed that the dynamic tension is almost
uniformly distributed along the cable for frequen-
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cies which are in the range of water wave freq-
uencies, l.e. a quasl-static stretch assumption is
employed. Also, the axial motions of the cable
much smaller then the transverse motions when
a horizontal cable is forced to move at the excit-
ation of the first few natural frequencies imposed
on the end of the cable[7][8].

Excitation

Fig.1 Excitation and lagrangian coordinates

Then a relatively simple mathematical model
for' a horizontal. cable is constructed as follows
(10}

2, 2
Maq =(To+ T Zsczl _+_d¢o )+Fq—-Tg—¢L

at? “ds * ds
(1)
with
T,:%-A« pL)— S- q%— ds+
3oy a @
where

T, static effective tension

T, dynamic effective tension

p tangential displacement based on the static
configuration

q normal displacement based on the static
configuration

s  Lagrangian coordinate

¢, static angle

¢, dynamic angle

m mass per unit length
added mass per unit length(M=m-+m,)

E  Young's modulus

A cable section area
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F, normal component of the fluid drag force

» mass density of water

p(L) tangential displacement imposed on the end
of the cable

Cp drag coefficient

D cable diameter

Large dynamic tension build-up in rough seas
may cause the total tension to become negative
in certain parts of the cable. This cannot be
sustained by a cable due to their low bending
stiffness. The appearance of even a small negative
overall tension sets in action a buckling mechanism
very quickly. On top of the formation of a buck-
ling mode, there occurs a free-falling of the cable
opposed only by the action of the drag force,
unlike a string with zero static curvature.

In order to get a model of a slack and then
snapping cable, we assume that the buckling
mechanism keeps the tension at near zero levels
until a positive value is regained, while its dynamic
behavior is governed by the balance of inertia and
drag forces as soon as the total tension in an
element of the cable reaches a negative value.
Then the governing equations are reformulated
as {10]:

#q _ 28, L dds 4 d
MEZL =T+ THZEE +S£2 )4 4, (To+T)

dg
T dso +Fq (&)
=M 3; t? =—T0d—d¢s—°— +F4 as To+Ti—0

3. Numerical Applications

For the numerical scheme, the responses are
expanded in terms of Chebyshev polynomials(3];
a collocation method spatially and Wewmark’s
mathod for the time integration[6}

3.1 Spectral Method Using Chebyshev Polynomials

dy
X dx
satisfied by the nth Chebyshev Polynomial, y=

. n 4%y . .
The equation (1—x%) T +n? y=0 is

83

T (x), when n is a positive integer or zero.
Then it Is conventional to take Ty(x)=1 and
the following results.

Tox)=1, Tyx)=x, Tx)=2x"—1, )
Ty(x)=4x—3%,---, Ta(X)==cos(n cos™x)

If it is assumed the required solution of equation
(3) exists, variables and their derivatives with
respect to Lagrangian Coordinates of the Cheby-
shev Polynomials (4) and the expansion coefficients
can be determined.

T0=2; an Ta(x)
a()=32 dn Ta(x) ®)

¢ 1(X)=§) ba Ta(x)

To determine the coefficients, the expansion
series (5) are introduced into equation(3).

The collocation method can be considered as one
of the cases of the general criterion that weighted
average of the residual should vanish. Then, for
acceleration forms of q, Newmark’s Method is
employed and for the nonlinear terms like fluid
drag the iterative numerical technique is used.

The principal parameters of the horizontal cable
used in the experiment of the Ship Research
Institute of Norway are found in Table 1 [4].

Table 1 Cable used in the experiment of the Ship
Research Institude of Norway [4]

To,=88N M=0.666kg/m
W=5.05N/m EA=7,854,000N
L=10.9774m D=0.01m
Cd=1.5

In order to provide further insight the numerical
results have been plotted for a range of parameter
values. The parameters employed are the catenary
stiffness e=T,/WL, the excitation amplitude ratio
to cable diameter #=A/D.(T,=68N, 78N, 88N, 9
8N, 108N, A=2.5D, 5D, 7.5D, 10D, 12.5D, 15D,
17.5D and 20D)
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4. Numerical Resuits and Parameter Studies

In Figures (2) to (b). extreme tensions predicted
using equations (1) to (3) are plotted as a function
of system parameter «=A/D and excitation fre-
quency w when the static tensions are 68N, 78N,
88N, 98N and 108N, respectively.

Extreme tensions shown in Fig.4 were already
compared with experimental results from the Ship
Reseach Institute of Norway {4] by Shin (1991)
(10).

In Figure (7), the incipient clipping frequencies
of horizontal excitation at which the total tension
become negative and the slack-and snapping begins
are plotted as a function of system parameters,
the catenary stiffness e=T /WL and the excitation
amplitude ratio to the cable diameter «=A/D. Also
Fig.7 shows that the incipient clipping frequencies
of horizontal excitation decrease as the catenary
stiffness ¢ and the ratio of excitation amplitude
to cable diameter « increase. Especially it is found
that, in the small excitation amplitudes(for example,
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Fig.2 Extreme tensions : horizontal excitation amp-
litude=2.5D, 5D, 7.5D, 10D, 12.5D, 17.5D,
20D, D=0.01m, static tension=68N
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Fig.3 Extreme tensions : horizontal excitation amp-
litude==2.5D, 5D, 7.5D, 10D, 12.5D, 17.5D,
20D, D==0.01m, static tension=78N
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Fig.4 Extreme tensions : horizontal excitation amp
litude=2.5D, 5D, 7.5D, 10D, 12.5D, 17.5D,
20D, D=0.01m, static tension=88N
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Fig.5 Extreme tensions : horizontal excitation amp-
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Fig.6 Extreme tensions : horizontal excitation amp-
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Fig.7 Incipient clipping frequencies of horizontal
excitation imposed on the end of the hori-
zontal cable{4]
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Fig.8 Comparison of extreme tensions : horizontal
excitation amplitude=2.5D, 5D, 7.5D, 10D,
D=0.01m, static tension=88N[4],[10]

x=5.0), the incipient clipping frequencies decrease
rapidly as € increases.

Considerable information can be gleaned from
these plots. It is possible to predict the incipient
clipping frequencies of the horizontal snapping
cable. They are conservative and smaller than the
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experimental incipicent frequencies of the horizontal
cable due to the delayed onset of zero tension from
the bending stiffness effect.

In the region over the incipient clipping frequ-
encies numerical difficulties may arise in the form
of high frequency oscillations, that eventually lead
to divergence. Therefore smaller time steps must
be needed to ensure numerical accuracy for high
excitation frequency and after clipping-off sets in.

5. Conclusions

It is possible to predict conservatively incipient
clipping frequencies by employing the clipping-off
model suggested as an analysis technique for the
horizontal snapping cables in this paper.

From the trend of rapid decrease of incipient
clipping frequencies with the catenary stiffness
€ increase in small amplitudes of excitation, it is
very important to keep the prescribed static tension
In marine operations like towing.

Also the anticipation of incipient clipping freq-
uencies as a function of the elastic stiffness EA/L
(which is another important parameter in cable
dynamics) is needed in order to make full descr-
iptions of the frequency regions where the cable
snapping phenomena occur.
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