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ABSTRACT

This paper presents a new and easy method to obtain the Fourier transforms of the n-th order co-
sine-pulses whose maximum amplitudes are uniform. The new method is focused on deriving a for-
mula which is recursively related following their orders and can be well applied to some numerical
solutions, On the other hand, this method also offers more compact procedures in view of analytical
solutions than the conventional methods because the results are consist of the sum of two functions
which are easily calculated. Especially, the formula can be represented as a complete recursion by
the separation of coefficients originated by the authors and the resulting difference equation is
given by the sum of the original ‘sinc’ functions shifted by some symmetrical factors and multiplied
by some constants. The constants are easily decided from the binomial coefficients and the shifting
factors from the corresponding exponential differences in the expansion of (a<b)".
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I. INTRODUCTION

It is common to analyze the system functions
and the signals used in communcication systems
by means of the Fourier transform. Analytical
developmants and some numerical solutions for
the transform can be easily located in the
literatures of communication theory [1-3]. The
n-th order cosine-pulses are used frequently to
represent the transfer functions or the time
responses of some systems. Nevertheless, if the
order of the function is increased, the procedure
to derive the Fourier transform using conven-
tional methods will be complex and difficult.
Although the method of consecutive differenti-
ations or by the convolution theorem can be used
to derive the transforms of the n-th order cosine
pulses, the higher the orders of the function, the
more tedious procedures become {2]. In general,
the method of consecutive differentiations be-
come terribly complex since the function has
more than 3-rd order, and the method by the con-
volution theorem since 4-th, or 5-th order. More-
over, these methods can not offer the forms of
recursive formula.

On the other hand, the class-I PRS(partial re-
sponse signaling) system was introduced in 1963
by the name of duobinary [4]. It is a transmission
technique for digital data using the concept of
controlled amount of interference between adjac-
ent samples, In 1975, P.Kabal and S.Pasupathy
generalized this concept and proposed a model
separated into two parts, namely, the transversal
filter and the bandlimiting filter [5]. We present
an easy iterative process to derive the Fourier
transforms of the n-th order cosine pulses by
means of this model for class-I PRS system modi-
fied for our purpose,

Throughout this paper, we describe the prob-
lem and some prerequisites for the foundation of
later developments. In section I, the produ-
cedure of conventional methods using consecu-
tive differentiations and the convolution theorem
are represented briefly. And we attend the fact
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that the method by the convolution theorem
gives us a clue for the separation of coefficients
developed in section V. Continuously, we derive
an iterative formula for the transforms of the
n-th order cosine-pulse using modified class-I
PRS model, and we separate the coefficients
from the formula to develop a completely recur-
sive relationship in a more compact form. These
formulas are expressed as propositions, which are
proved by induction in Appendix.

II. Problem Description and Some Prerequisites

The functions of our interests are the truncated
cosine-pulses which have the same amplitude for
any order n=1, 2, 3, ---. We define the n-th order
cosine-pulse as follows :

(Definition 1: The n-th order cosine-pulse)

pn(t)EA[cos—zl:' ! H[-th] ,
forn=1,2, 3, - (1)

where
5]

Deriving the frequency-domain function P,(f)
from (1) is just the problem we will solve
throughout this paper.

In addition, we establish some propoerties of

{ 1, ifltl<«t
0, elsewhere

Iit

sinc function and new-defined ‘cosinc’ function
for later developments,

(Definition 2:The sinc function and the cosinc

function)
sinc (x) = —S2XX (2)
X
. _ COSTX
cosinc (x) = x| (3)

It is well known that the sinc function is an even
function and it can be easily shown that the
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cosinc function is odd. Other properties of them
used in this paper are as follows : +A[ ]{5(t+‘r)+5(t—r)}

Property 1:f(x) =sinc (ax=+b) +sinc(ax —b)
1s also an even function, where a,b
are real.
f1(x) =sinc (ax+b) +sinc (ax — b)
can be simplified as
2(ax)?
b? — (ax)?
b is an odd number
2{ax)?
(ax)2 —Pp?
b is an even number,
where a is real and b is a positive in-

Property 2.

sinc (ax), when

sinc (ax), when

teger,
fo(x) =sinc (ax+k /2) +sinc (ax
—~k /2) can be simplified as
4k (ax)
kZ — (2ax)?
whenk=1,5,9,
4k (ax)
(2ax)2 — k?
when k=3, 7, 11, -,
where a is real and k is an odd number,

Property 3.

cosinc (ax),

cosinc (ax),

It is straightforward that these properties are
clearly true from the definitions (2) and (3).
They are convenientiy used to calculate the
transforms resulting in one-term styles in the
later sections.

II. Brief Review of the Conventional Methods

A. Consecutive Differentiations

We can obtain the Fourier transform of the
function (1) by the method of consecutive
differentiations when the order of the function is
relatively low.

For the 1-st order, we have first two deriv-
atives of the function as follows :

dpl(t) A[z ]51 n[ 2r] @
i?;)le(t“)—“f"[z :ICOS H[Zr]

The first term of (5) can be rewritten with a con-
stant multiple of the original function p;(t) and
the second term contains a constant multiple of
shifted impuises only. Therefore, we have

Genp2Py(D =~ [ 57 I"Puth +2a[ 5= |

cos 2nfr

(6)

and after a few steps, we obtain

8Af1?

PO =1 o

(N

cosinc (2ft)

where the functipn cosinc(-) has been defined in
(3).

For the 2-nd order, we need first three deriv-
atives and they are given by

@l(t—) —A[z ]sm I'I[ 21] (8)

2py(t)

dé’;t —oAlE Pes®n[5] @
(t) .

dg’;t =4a[ 5= P sin2H n[%] (10)

+2al 5 | {stt+0 —st -0}

Similarly, if we check (8) and (10), we can see
that the first term of (10) can be rewritten with
a constant multiple of (8) and the remainings
contain a constant multiple of shifted impulses
only, Terefore, (10) gives

(j2n)* Po(H) = —4[ 5= |* (2af) Po(f)

. 2 .
+3 4A[—2—— sin 2nft (11
After somewhat tedious steps of calculations, we
can find the Fourier transform of p.(t) in a com-

pact form as

At

Pl =1 0pe

sinc (211) (12)
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where the function sinc(-) has been defined in
(2).

As the order of the function is increased, the
situations are quite different, In other words, the
processes like above and the forms of equations
corresponding to (6) or (11) will be more and
more complicated to perform analvtically,

B. Convolution theorem

As another method to derive the Fourier trans-
form of the n-th order cosine-pulse, the convol-
ution integral has been introduced in many books
{1,2]. In this subsection, we derive the trans-
forms of the functions given above using the
method by the convolution theorem and show
that the procedure presented here is much sim-
pler than that of consecutive differentiations and
so we can have the transforms of higher order
functions. In addition, we can find a clue for the
separation of coefficients described in section V
during the process of derivations,

When the order of the function is relatively low
(n=1, 2, 3, or 4), we can easily obtain the
Fourier transform considering (1) as a product of
two functions so that they are convolved in the
frequency-domain.

pn(t) =x4{t) y(t) , forn=1,2, 3, - (13)
where

Xn(t) :A[cos —g% ]n , forn=1,2 3, - (14)
and

y(t)=I [—t; , foralln (15)
With this manipulation, we can see that only the
form of x.(t) is varied but y(t) is fixed for its or-
der. In addition, the Fourier transform of y(t) is

easily obtained as

Y (f) =21 sinc (21f) (16)
1346

For n=1, 2 and 3, it is relatively simple to derive
the transforms of x,(t). We have

X =2 foti-1/40+s6+1/40}) ()

Xo(f) = % {stt-1/20+25 (D +8(t+1/200 } (18)

Xu(6) = 2 {8(6=3/40) +5(6-3/40) }
3A
+5 {ot-1/40+et+1/40 ) (19)
By the convolution theorem, we can obtain the
Fourier transforms of ps(t), for n=1, 2 and 3 as

follows :

Py(f) = At {sinc(2¢f+1/2) +sinc(21f ~1/2)} (20)

Py(f) = '/;—T {sinc(sz—1)+2 sinc(27f)
+sinc(2ef+1) } (21)
Ps(f) = :% {sinc(er—S/Z)+sinc(21f+3/2)}
+§%’ {sinc(2ef —1/2) +sinc(2ef+1/2) }

(22)

Applying the Property 3 and 2 in section II to (20)
and (21), we can see that (20) and (21) are
equivalent to (7) and (12) respectively. We can
also apply the Property 3 to (22) so that the form
of Ps(f) will be more compact as

48 A% f

A=) l9—(aepry cosine (2D

(23)

Pi(f) =

In general, as the order of the function (1) is
increased, the form of X,(f) will be more and
more complicated and the process for convolving
and calculation will be tedious and difficult. Mo-
reover, we can not find an iterative property from
the trends of (20), (21), and (22). But if we ig-
nore the coefficients, Pa(f) contains shifted sinc
functions only for any n. It will be a clue for the
separation of coefficients presented in section V,
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IV. Deriving the Recursive Formula

It is well known that the transfer function of
the form of a truncated cosine function [4,5]. We
present a modified model of class-1 PRS to obtain
an iterative formula for deriving the Fourier
transforms of the n-th order cosine-pulses as
shown in Fig.1.

(1t + Ti2)

*

Ha

Fig. 1 Modified Model of Class-1 PRS for the n-th Or-
der Function

The model consists of a tapped delay line corre-
sponding to the polynomial Kn.(D)==(1+D) in
cascade with a filter with frequency response
Hn-1(f) which is equivalent to the overall trans-
fer function of the system for the (n—1)-st order.
We call the first half marked K, the transversal
filter and the second half marked G. the
bandlimiting filter. We alter the form of the
bandlimiting filter along with the order n system-
atically. On the other hand, the transversal filter
is fixed for all n,

In addition, we assume that the frequency re-
sponse of the bandlimiting filter is the same as
that of minimum-bandwidth PRS system[5] for
the 1-st order function. In other words, we set

which shapes a Fourier transform pair with

1(6) =ho(t) =1 sinc [ - ] (25)

With the assumptions above and the model in
Fig.1, we can have the following proposition.

(Proposition 1)
P(n) :Ha{f) =20 T, (cos 7 £T1)" TI( T, £) (26)
Shalt) =ha-1(t+T,/2) +he-1(t =Ty /2)  (27)

foralln=1, 2, 3, -
with Hy(f), ho(t) in (24), (25) respectively.

The symbol ‘&’ denotes that the two functions on
both sides form a Fourier transform pair. The
proof of the (Proposition 1) is discussed in Appen-
dix A.

Clearing the fact that the functions Hy(f) and
ho(t) are even, it can be easily shown that H,(f)
and ha(t) are also even for all n=1, 2, 3, --- using
the mathematical induction[6] and the Property 1
in section II. We are now ready to derive an iter-
ative relationship for the Fourier transform of the
funtion (1).

From the dual property of the Fourier trans-
form pair{1-3] and the fact that (26) and (27) are
even functions, we have another transform pair
as follows :

Ha(t) =22 T; (cos nTit)" TI{Tyt) (28)
& ho(f) =hg-1(f+T1/2) +he1(f — T1/2) (29)

with Ho(t) =T, IT(Tyt)

T o[£
& ho(f)—-*,-r—l— sinc [ T, ] (30)

If we set the parameters as T;=1/21 and T,=
A/27 in (28), (29) and (30), for n=1, 2, 3, -,
another recursive formula we want appears

pr(t) =A[cos 25 |" 1[5 ] =Ha(t) (3D)

& Pa(f) =half)

=t [ 1+ b [ -5 ]
(32)
forn =123, -
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with ho(f) :ZA—T sinc (2¢f) (33)

n—1
Applying the formula in (32) with (33) to derive
the Fourier transforms of the functions in (31)
and calculating by means of the Property 2 and 3
in section I, we can see that the analytical
processes for compact forms of the transforms
are very much simpler than the conventional
methods discussed in section [I. Moreover, the
equation (32) with (33) can be easily solved by
computer-aided numerical methods because of its
recursive characteristics [7].

V. Separation of coefficients

Glancing at (20)-(22) and after a few inductive
steps, we can say that the construction of the
transform derived from the relation (32) with
(33) is a product of a constant determined by the
order n and a sum of shifted sinc functions with-
out loss of generality for n=1, 2, 3, :--. There-
fore, we can write the relationship given in (32)
as follows :

Pn(f) :Cn . Rn(f) (34)
where C,= Zé‘rl (35)

- L - L
Ro(f) =Rum [ f+- |+ Rot [ 1= ]
(36)
forn=1, 2, 3, -~ with Re(f) =sinc (27f)  (37)

The relation (36) with (37) have no coefficients
which hinder us from solving the difference
equation resulting in a more compact represen-
tation. Developing the relationship in (36) for
some n and comparing with the expansion of (a-
b)?, we can find very interesting facts, The bi-
nomial theorem, which can be proved by math-
ematical induction, gives the general expression
for the expansion of (a—+b)" [8].

(a+b)"=zn [?]a"‘ibi= [r(l) :Ia“b0

=
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n B n .
+[] Jap e+ [ e 39
where the binomial coefficients are given by
n n!iv
[ i 1= i (n=1i)!

In addition, if we define the exponetial difference
between a and b for the i-th term of the expan-
sion (38) as

fori=0,1,2 -, n (39

d; = (exponent of a) — (exponent of b)
=n-—2i, for1=0,1, 2, -, n. (40)

we obtain a simple and useful representation of
Rn(f). We arrange these interesting things as a
proposition as follows :

(Proposition 2)

0(n) :Rn(f>=§; [? Jre[ £+ 4dri ]

=; [rll :| sinc |:21:f+% (41)

forn=1, 2, 3, -+ with d; in (40).
This proposition will be proved in Appendix B.

We now arrive at the final result from all the
facts discussed above., The Fourier transform of
the n-th order cosine-pulse given in (1) can be
represented as

Py (f) —-Ar \i [? ] sinc |:er+% ] (42)

A

for n.—_lY 2Y 3,

where d is given by (40).

We can deal with the result (42) as three parts,
namely, the constant part, the binomial coef-
ficient part, and shifted sinc-function part. The
constant part is obtained directly from (35) for
any n. But the binomial coefficients are given
differently for the powers of (a-+b). Fortu-
nately, it is well known that the coefficients of
the successive powers of (a+b) can be arranged
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in a triangular array of numbers, called Pascal’s
triangle [8]. The Pascal’s triangle has the follow-
ing interesting properties.
1) The first number and the last number in each
row is 1.
2)Every other number in the array can be
obtained by adding the two numbers appear-
ing directly above it (see TABLE I).
Therefore, we can have also easily the binomial
coefficient part of (42) from the Pascal’s triangle
discussed above. Finally, we know that the
shifted sinc-function part can be completely de-
termined by the wvalues of d; because the
remainings of the part are all fixed. The values of
d; are given by the exponential differences (40) in
the expansion of (a-+b)". From these analyses,
we submit TABLE I for some order. The table
can be easily extended to any order by simple
arithmetics,

+5 sinc[21f~—%] +sinc[2rf—%]} (43)

Applying the Property 3 to the result (43) and
after a few steps, we can obtain the transform in
an one-term style.

VI. CONCLUSION

This paper has proposed a new and easy recur-
sive method to derive the Fourier transform of
the n-th order cosine-pulse using modified class-1
PRS system model. We have discovered that the
procedure is much more compact and simple than
the conventional methods using consecutive
differentiations or the convolution theorem in
both analytical and numerical points of view. The
formula derived for each order consists of a sum
of two functions which are easily obtained from

Table. 1 Parameters for the Fourier Transforms of the n-th order cosine-pulses

Order n Constant Pascal’s Triangle Exponential difference d;
0 2AT 1 0
1 At 1 1-1
2 At/2 1 2 2 0-2
3 At /2% 1 331 3 1-1-3
4 At/28 1 4641 4 2 0-2-4
5 At/ 15 1010 51 5 3 1-1-3-5
6 A1/ 1 6 152015 6 1 6 4 2 0-2-4-6
7 A1 /28 1 7 213321 71 7 53 1-1-3-5-7
8 AT/27 1 8 2856705628 8 1 8 6 4 2 0-2-4-6-8

Ultimately, we need to calculate tediously to
obtain the Fourier transforms of the functions
like (1) any more. Only we need are the order of
problem function and TABLE 1. For example,
given 5-th order of (1), we can find all the
parameters needed on the 5-th row in TABLE 1
resulting in

Ps(f>=—1;ﬁ,—’ {sinc[ 2ef+2]+5 sinc[ 2ef+3 ]

+10 sinc[er—l—-;—] +10 sinc[er—%]

the step for the order just before and we can eas-
ily fabricate the transform resulting in an
one-term style because the formula have only the
sinc function shifted by symmetrical factors. We
have also given some properties of the sinc
functions for the conveniences of such calcul-
ations,

In addition, we have split up the final result
into three parts by the separation of coefficients
and we have shown that the parameters for each
part can be obtained easily from a table which
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has been constituted using the well-known
Pascal’s triangle with (35) and the expansion of
{a+-b)". Now, we need not to perform complex
calculations but need only to fetch the
parameters for each order from the corresponding
row by the table look-up processes.

APPENDIX A

Proff of the (Proposition 1)

From the structure of the system model for the
n-th order function given in Fig.1, we have a
Fourier transform pair for the transversal filter

kalt)=8(t+T,/2)+6(t —T1/2)
&Ku(f)=2cos nfTy, foralln=1,2 3, -~ (A.1)

and from the convolution theorem for the system
theory [7], the system functions for the model
constitute another pair as follows :

ha(t) =Kkalt) % ga(t) =ka(t) % ha-y(t)
=ha((t+T,/2) +hay (t = T, /2)
O Houlf) =Kalf) Gulf) =Kn(f) Ho- ()
=2cos nfT; Ho-(f), foralln=1, 2, 3, --
(A.2)

where Hy(f) and hy(t) are given in (24) and (25)
respectively and the symbol ‘%’ denotes the con-
volution integral of the two functions on both
sides.

Next, we shall prove the proposition by the
principle of mathematical induction in the follow-
ing manner {6].

Basis step : When n=1, using the assumptions
(24), (25) and the relation (A.2), we have

Hl(f) =2 C0Ss nfT1 Ho(f) :2T2 COSs ﬂle H(Tlf)
& h(t)=ho(t+T:/2) +he(t — T, /2)

which indicates that the statement P(1) is true,

Induction step : 1f we assume that the statement
P(m) is true for some integer m > 1, we have a
pair

1350

Hm(f) =2m Tz (COS ﬂfT])m H(Tlf)
& hm(t) :hmAl(t‘}"Tl /2) +hm—1(t - Tl /2)

And after one more step further with (A.1) and
(A.2), we can obtain the relation for m—+1 as
follows :

Hu+1(f) =2cos nfT; Hu(f)
=2m+1 Tz (COS ﬂfT])m+l H(Tlf)
& hpni(t) =hnp(t+T;/2) +ha(t — T, /2)

which proves the validity of P(m—+1).
By induction, the statement P(n) is true for all
n=1,2 3 - (QE.D.).

APPENDIX B

Proof of the (Proposition 2)

This proposition can also be proved by the
princeple of mathematical induction in the follow-
ing manner (6],

Basis step : When n=1, we can obtain the fol-
lowing relationships using (36) and (37)

Ri(f) =Ro(f+1/47) +Ro(f —1/41)
with Ry(f) =sinc (21f)

and they are written as

Ri(f) =Y [} ] Rro [f+—fr‘— ]

170

1 1 ;
=; [ ; ]sinc [21f+-%‘ :I
with di=1-2i(i=0, 1) from (40). Thus the
statement Q(1) is true.

Induction step : Suppose that the statement (
(m) is true for some m > 1, then we have

Rn(f) =Y, (7] Ro[f+% ]
=i§: [n;]sinc [21f+%~ ]

with di=m-—2i(i=0, 1, 2, ---, m) from(40).
Applying again (36) and (37), we have an ex-
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pression for (m 1) as follows :

Rme1(f) =Rm [ £+ | +Ra[ - ]
_;[ ] [f+d.+1

o m di—1
+3 [ IR [+ ]
where di=m—2i, fori=90, 1, 2, -, m.
Expanding the summations in the above ex-

pression and binding the terms which have the
same delay factors, we get

Ron()={[T1+[ ] 1} Re [ £+ 21 ]
HIG 1T R [+ 52 ]
+oooo+{[T ]+ Srfl]}Ro

[f+ﬂ:12_j_t_1 J+oooo
{1+, Re[- 2]
]+ [ ey IR [

m+1

+[g 1R

+£21Ro[f—‘“4—f1]

Using the theorem [8]
m m m
I: s ] + [ S—-I ] = [
and an identity
m+1 m+1

[51=[" 1=[n1=["0]

we can obtain a simple result

+1
¢ ] fors=1,23 -, m

m+1

Rm+1(f)=r§j [ ]Ro[f+ ]

were di= (m—+1)-2i, fori=90, 1, 2, ---, (m+1).
With the help of (37), we arrive at the final re-

sult as follows :

mrkl m+1
Rm+1(f) = E [

]Ro[f+~—]

=Y [ ]smc[21f+ di ]

These prove the statement Q(m+1) is also true.
Therefore, the statement Q(n) is true for all n
=123, . (QED.).
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