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Scaling Limits for Associated Random Measurest
Tae-Sung Kim! and Kwang-Hee Hahn?

ABSTRACT

In this paper we investigate scaling limits for associated random measures
satisfying some moment conditions. No stationarity is required. Qur results
imply an improvement of a central limit theorem of Cox and Grimmett to
associated random measure and an extension to the nonstationary case of
scaling limits of Burton and Waymire. Also we prove an invariance principle
for associated random measures which is an extension of the Birkel’s invariance
principle for associated processes.

KEYWORDS: Association, random measure, central limit theorem, invariance
principle, cluster random measure.

1. INTRODUCTION

Many recent papers have been concerned with various limit theorems for asso-
ciated random elements. Newman[10] has established the central limit theorem for
stationary families of random variables indexed by Z¢, the set of all d-tuples of in-
tegers (d > 1, a positive integer), under simple summability decay rate condition on
the correlations by exploiting an often natural additional condition of association.
Also Newman and Wright[11, 12] have improved it to an invariance principle for

! Department of Statistics, Won-Kwang University, Iri, 570-749, Korea.
2 Department of Computer Science, Chun-Buk San-up University, Kunsan, 573-400, Korea.

t This research is supported by Korea Science and Engineering Foundation Grant under KOSEF
911-0105-017-1.



128 Tae-Sung Kim and Kwang-Hee Hahn

stationary sequences of associated random variables under the same conditions for
d = 1,2. Analogous results hold in the case of random measures. For example
Burton and Waymire[4] have proved scaling limits for stationary associated random
measures which are an extension of Newman'’s ideas in the case of nonlattice ran-
dom fields. Cox and Grimmett[5] have proved a central limit theorem for a family
of associated random variables indexed by the lattice Z¢ by replacing the stationary
property with conditions on the moments of the random variables ; this is an exten-
sion of the Newman-Wright’s invariance principle for associated stationary sequence

[oe]
{X, : n > 1} satisfying Cov(X1,X1) +2)_ Cov(Xj, X;) < oo. Moreover, Birkel{2]
=2
has investigated an invariance principle fojr nonstationary associated processes ; this
result implies an improvement of a central limit theorem of Cox and Grimmett(1984)
and an extension of an invariance principle of Newman and Wright(1981).

In this paper we investigate Cox and Grimmett’s idea in the case of nonlattice
random field by the similar method to that of Burton and Waymire[4] and prove an
invariance principle for nonstationary associated random measure in dimension one.
Preliminary definitions and previous results are given in Section 2. An extension of
Burton and Waymire’s scaling limits to the nonstationary case and an invariance
principle for nonstationary associated random measure in dimension one are derived
in Section 3. Finally we apply this scaling limit to Poisson center cluster random
measures in Section 4.

2. PRELIMINARIES

Let B? denote the collection of Borel subsets of d-dimensional Euclidean space
R%. The set M of all nonnegative measures u defined on (R? B?) and finite on
bounded sets(i.e.,Radon measures) will be equipped with the smallest sigma field
M containing basic sets of the form {u € M : u(A) <r} for A € B%,0 < r < co.

Definition 2.1. A random measure X is a measurable map from a probabil-
ity space (2, F,P) to (M, M). In the special case when the distribution of X is
concentrated on the class N of nonnegative integer valued Radon measures we re-
fer to X as a point random field(point process). M becomes a Polish space when
equipped with the vague topology and the sigma field M coincides with the Borel
sigma field for this tolopogy (cf.,Kallenberg, 1983). Moreover N is closed in the
vague tolopogy for M (and therefore measurable ). We shall denote the restriction
of the sigma field M to N by A. A random measure X (-) may also be defined by
specifying the finite dimensional distributions of the random variables X (B) where,
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for different choice of the bounded Borel subset B and R?, X (B) represents the mass
of the random measure X. A point random field may alternately be considered as
an nonnegative integer valued random measure and the most well known random
measure is the Poisson random measure with parameter p. X has this distribution
if whenever Bj, - -, B, are disjoint bounded Borel sets then X(By),---, X(B,) are
independent Poisson random variables with respective parameters p|Bi|,-- -, p| B,|
where | | denotes Lebesgue measure. Another example is a Gaussian random mea-
sure which is a mean zero Gaussian process X(A), indexed by set A in a o-field,
such that X(UA;) = ¥ X(Ai), where A;’s are disjoint and the series on the right is
required to converge everywhere [8]. M has a partial ordering defined by p < v if for
each bounded Borel set B, u(B) < v(B) (See Kallenberg(1983) for more complete
discussion of random measures).

Recall that an infinite family G of random variables is associated if for every
finite subfamily {Y;,---,Y¥,} C G and for every pair of coordinatewise increasing
functions f,¢g on R, Cov(f(Yy, --,Ys),9(Y1,---,Y,)) > 0 (See Esary, Proschan,
and Walkup(1967)). Burton and Waymire [4] extended this notion to random mea-
sure.

Definition 2.2.(Burton, Waymire, 1985) A random measure X is associated
if whenever F,G : M — R is measurable and increasing with respect to the partial
ordering on M then Cov[F(X),G(X)] is nonegative whenever the covariance is de-
fined. It follows from works of Bmton and Kim[3], Burton and Waymire{4] that X
is associated if and only if the family of random variables {X(B) : B bounded Borel
set } is associated.

Definition 2.3. (Burton,Waymire,1985) If X is a random measure we
define the A-renormalization of X to be the signed random measure X where
X,(B) = A™¥?[X(AB) — EX(AB)]. We consider X as a random element of D[0, 1)
by setting X\(t) = X1([0,¢]) where [0,¢] is the rectangle [0,%,] x ... x [0,24].

Definition 2.4. (Burton, Waymire, 1985) Let X be a random measure. X
satisfies a classical scaling limit if for all disjoint rectangles A,,---, Ay,

([X(AAy) = E(XQAAN/AY, - [X (A AL) = E(X(AAL))]/AY?)

converges in distribution(as A — o0) to a multivariate normal with mean vector

0 and diagonal covariance matrix whose diagonal terms are g?|A4,],---,0%|A,]| for

some positive parameter o?, where |A;| equals the Lebesgue measure of A;.
Newman([10] proved that the renormalized block sums of stationary associated
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random variables indexed by Z? converge in distribution to independent Gaussian
random variables if the covariance function is summable. Burton and Waymire[4]
extended this notion to associated random measure as follows.

Theorem 2.5.(Burton, Waymire, 1985) Suppose that X is a stationary as-
sociated point random measure with EX(I) = 0, EX?(I) < oo and X satisfies

0< > Cov(X(I),X(I+k)) = 0" < oo, (2.1)
kez¢

where I = (0,1]? is the unit cube. Then
(1) X satisfies a classical scaling limit with parameter 2.
(2) X fulfills an invariance principle for d = 1, 2.

Moreover the assertion remains true if X is a stationary associated(finite addi-
tive) random interval function satisfying (2.1).
Note that whether an invariance principle for associated random fields for d > 2 is
still open[9].
Before discussing Cox and Grimmett’s central limit theorem we introduce some no-
tation. If x € Z%, we write z; for the ith coordinate of x. For X,y € Z¢, we write
x <y (respectively x < y) if z; < y; (respectively z; < y;) for all i. We define
|x —y| =sup{|z; —yi| : ©=1,2,...,d} and write 1 for a vector with unit entries. If
Cox and Grimmett(1984) weakened the assumption of strict stationarity and re-
placed it by certain conditions on the moments of the random variables. They also
used the coefficient

u(r)y = sup 3y Cov(Xj,Xk),r e NuU{0} jke Z¢ (2.2)
kez¢jj-kixr -
which is the covariance structure and obtained the following central limit theorem.
Theorem 2.6. (Cox, Grimmett, 1984) Suppose that for each n € N, {Xj :
j € A(nl)} is a family of associated random variables with EX; =0, EXj2 < 0.

Assume

u(r)—=0, u(0) < oo, (2.3)
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_inf  Var( \J) >0, n€N, (2.4)
JEA(n]) =
sup E(|X I’) <00, nEN, (2.5)
_]GA(nl)

Then {X’J : ] € A(nl)} satisfies the central limit theorem.
Ford =1,1 =1 and the Xj ’s stationary, this is the central limit theorem of Newman

and Wright(1981), but subject to a superfluous third moment condition.

3.RESULTS

Cox and Grimmett[5] have proved a cental limit theorem for nonstationary asso-
ciated random variables indexed by the lattice Z¢ as in Theorem 2.6. We extend this
theorem to associated random measures(i.e. the case of nonlattice random fields) as
follows: First we define the coefficient which is a covariance structure for L,j € VA

v(r) = sup Z Cov(X (I +))), X(I +1),r € NU {0}, (3.1)
i J-ir

where [ is the unit interval. And using the coefficient (3.1) we obtain the following
central limit throrem.

Theorem 3.1. Let X be an associated random measure with E(X?*(I+j)) < oco.
Assume

v(r)—-0,v(0) < oco. (3.2)
inf VarX(I +j) > 0, (3.3)
jez?
sup E(|X(I+i)|3) < 00, (3.4)
Jez¢

where [ is the unit interval. Then X satisfies a central limit theorem.

Proof. Let I = (0,1]¢ and let X denote a random interval function(a family of
random variables X'(.J) indexed by the family I of all finite intervals J, see page
317,(6]) subject to the conditions of the theorem. Put \’ =X(J+j-1)-EX(T+

—1). Then for n € N, {J\J :] € AMnl)} is a famlly of associated random
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variables with EXj = O,EXJ-2 < oo and satisfies conditions (2.3), (2.4) and (2.5)
in Theorem 2.6 and hence {XJ : j € A(nl)} satisfies a central limit theorem. Let
D={j€ez:je AN} = {l € Z? :j € A([N]1)} where [A] denotes the greatest

integer in A.

Then

ATX (M) — EX(AD) = XX (1°) - EX(I°) + >_ X;],  (3.5)
jeD
where, 19 = AI\[A]1.
Since 1° C ([A] + 1)I\[M]{ and X is associated we obtain

VarX(I°) < VarX(([A] + DI —[A]])
= Cov( Z X([+i)a Z X(I+J_))
(M-nl<jgmil (N-nl<j<pil
(A= (N =) sup 3 Cov(X(I+)), X(I+k))
kezjik-ji>o0

= (N7 = (] = 1))w(0)

= 0(A*YHas A — o0
and hence by Chebyshev’s inequality A~ X(I°) — EX(I°)] converges in probabil-
ity to zero as A — oco. Thus since [A]¢ ~ A? as A — oo, X satisfies the central limit
theorem.

IN

Remark. Note that if we put Xj =X(I+j-1)-EX(I+j-1)and A €N

then Theorem 3.1 coincides with Theorem 2.6.

Theorem 3.2. Suppose that X is an associated point random measure and sat-
isfies the conditions in Theorem 3.1. Then X satisfies a classical scaling limit.

Proof. Let I = (0,1]¢. By Theorem 3.1 X,(I) converges in law to normal as
A\ — oo. For arbitrary disjoint unit intervals Iy,- -, I, the same consideration may
be applied to the random vector (X\(/y),--- , X(1,,)) and the result follows.

Note that for a wide sense stationary associated random measure conition (2.1)
implies that (3.2) and (3.3) are automatically satisfied. Therefore in the stationary
case Theorem 3.3 is scaling limit of Theorem 2.5 except the superfluous third mo-
ment condition (3.4).

Next we strengthen result of Theorem 3.1 to get a functional scaling limit in
dimension one by an application of results in Birkel(1988).
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Let {X; : j € N} be a sequence of random variables on some probability space

(Q,F,P) with EX; =0,EX? < oo. For n € N put
S, =Y X;,02=FS., and define W,(t) = 0, 'S}y, t € [0,1]
J=1

where Sy = 0. Then W, is a measurable map from (2, F) into (D,B(D)), where
D is the set of all function on [0, 1] which have left hand limits and are continuous
from the right, and B(D) is the Borel- o-algebra induced by the Skorohod topology.
{X; : 7 € N} fulfills the invariance principle if W,, converges weakly to standard
Browian motion W on D.

Theorem 3.3.(Birkel,1988) Let {X, : j € N} be a sequence of associated
random variables with EX; = O,EX;-" < oo . If 072E(SkSn) — min{k,l} for
k,l € N and {X; : j € N} satisfies the central limit theorem then {X; : j € N}
fulfills the invariance principle.

Forn € N,put U, =3 [X(I+j—1)—EX({+j—1)],u2 = EUZ, where U, = 0,
J=1

and define the rescaled random measure by Xy(t) = A~Y2[X ((0, At]) — EX ((0, At])].

Theorem 3.4. Let X be an associated random measure with EX?(I+;j—1) < oo
. Assume

n" 2 "u? € (0,00) (3.6)
U2 E(Unk, Unt) — min{k,!} for k,l € N, (3.7)
v(r)>0,v(0) < co,r € N U {0}, (3.8)
inf Var(X(I +7—1)) >0, (3.9)
JEN

sup E[|X(I +7 — 1] < 00, (3.10)
JEN

where I = (0,1]. Then X, converges for the Skorokhod topology on the appropriate
function space to Brownian motion as A — oo.

Proof. Let X denote a random interval function subject to the conditions of the
theorem and consider the distribution of

ATV2X(AtD)] — EX(At])] as A — oo. (3.11)
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Forje N,put X; =X(I+7—-1)—EX(I+j—1),then {X;} satisfies the cen-
tral limit theorem by conditions (3.8),(3.9), and (3.10)(see Theorem 3.1) and we have

(]
ATMVRX(MI) — EX(MI)] = AV2[X(I%) = EX(I9)] + 27123 X; (3.12)

1=1

where I® = AtI\[At]I. Since I° C (([At] + 1)I — [At]]) by association we obtain
VarX(1°) < VarX(([M] + 1)I — [M]I) = VarX (I 4+ [M]) = EX?(] + [AM]) < o0

and hence by Chebyshev’s inequality the first term in the right of (3.12), A=V/2[ X (I°)—
E X (I%)] converges in probability to zero as A — oco. Next the second term in the

right (3.12) yields

(A]

uw Z X;.

\-1/2 “[A] J¥( [A
EX W

Ml—l

]
Since [A]7?upy) — u as A — oo from (3.6) and [A]J/A — 1 as A — oo, AT12N X

=1
converges weakly to Brownian motion as A — oo by Theorem 3.3. Thus by Theorem

4.1 in Bilingsley(1968) X, converges for the Skorokhod topology on the appropriate
function space to Brownian motion as A — oo

Remark. Note that if we put X; = X(/+j—-1)—EX(/+j—1)and A€ N,
then Theorem 3.4 coincides with Theorem 3.3.

4. CLUSTER RANDOM MEASURES

In this section we apply Theorem 3.2 to Poisson center cluster random mea-
sures. These have been used as models of infinite divisibility and self-similarity as
well as models of natural phenomena such as storm systems and galaxies (Burton,
Kim(1988) and Burton, Waymire(1985)). These are constructed as follows. Let
U be a Poisson point random field (which is not necessarily stationary) with pa-
rameter p . Let V = {Vi : x € R%} be a collection of iid random measures with
E[Vx(R?)] = v < oo . Then we say that X is a cluster process with centers U/ and
members V if

X(B)= Y W(B-x)

X:U(X)>0
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for each bounded Borel set B. We denote X by [U,V]. It is natural to hope that
moment conditions on V will imply moment conditions on X regardless of the shape

TS FOR ASSOCIATED RANDOM MEASURES

B in R%(see Burton and Kim (1988)).

Theorem 4.1. Let X =

[U,V] as above. Assume

E[Vx(I +j)] = 0, E[Vx(R*)?] = £ < oo,

sup Z

Cov(Vx(I+j—x), Vx(I+k—x))->0, r € NU{0}. (4.2

124 kj-Kki>r

Then the coefficient (3.1),

that is v(r) =

|§—m

N U {0} satisfies the conditions v(0) < co and v(r)—

Proof. Like in the proof of Theorem 5.3 of Burton and Waymire(1985)

v(0) =

T

v(r)

<

sup > Cov(X(I+]j),X(I+k))

JGdeezd
sup 3 [ EIVx(I +] - 9)Vx(I +k — x)lpdx
J€Z%kez4
sup [ 57 E[Va(I +j— )Vl +k — x)}ods

jez¢ ™ ke za

sup [ E[Vx(I +] — x)Vx(R%)]pdx

jeze /R ) )

pE[Vx(R%)?] = pf < 0o, by assumption(4.1).

sup > Cov(X(I+]),X(I+k)),re NuU{0}
Je24 i Kin

sup ¥ [ BOA 4] - x)V(I +k — x)}pds
IEA NN

/ sup

J€Z4 ki -kp>

M

E{Vx(l +i = x)Vx(I +k - x)}pdx

where p is the intensity of U. Thus v(r)—=0 by assumption (4.2).

The first part of the next theorem appears in Burton and Waymire(1985) and the

second part is in the joint

Theorem 4.2. Let X =

work of Burton and Kim(1988).

[U, V] as above. Then

(1) X is associated.

p Z Cov(X(I +j),X(I+k)),re
zd) Ll ki>

135



136 Tae-Sung Kim and Kwang-Hee Hahn

(2) For a rectangular box B in R? and for 0 <6 <2, there is a constant K
depending only on é and |B| so that E[|X(B)[**°] < K E[(Vx(R?))?*°].

Theorem 4.3. Let X = [/, V] as above and satisfy (4.1) and (4.2). Assume

inf VarVx (I +j—x) >0, (4.3)
Jezd )
E(IVx (BY)P) < oo. (4.4)

Then X satisfies a classical scaling limit.

Proof. First note that by assumption (4.1), EX(I +j) = [re E(Vx({ +]j —
x))pdx = 0, E[X(I +))?] < pE[(Vx(R?))?] < o0 and also by Theorem 4.1, v(0) < oo

and v(r)—0. To see inf VarX (I +j) > 0 simply we use
Jez¢ B

VarX(I +j) = Cov(X(I+j), X(I +]))

= Jpa E[Vx (1 + ] — x)*]pdx
(See the proof of Theorem 5.3 of Burton and Waymire(1985))

= fRd VaI'V)_((I +l — x)pdx,
so that

inf VarX (I +j) = inf ) VarVx (I 4+ ) — x)pdx

jezd jezaJR
> fpa p inf VarVx(I +j — x)dx > 0 by assumption (4.3).
Jezd -
From (2) of Theorem 4.2 we have sup E(|.X (1 +)I?) < KE(Vx(R%))? < o0.

Jeze
Thus by (1) of Theorem 4.2 and Theorem 3.2 X satisfies a classical scaling limit.
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