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ABSTRACT

A model sclection approach is used to find out whether the mean and the
variance of a unique sample are different from the pre-specified values. Normal
distribution is selected as an approximating model. Kullback-Leibler discrep-
ancy comes out as a natural measure of discrepancy between the operating
model and the approximating model. Several estimates of selection criterion
are computed including AIC, TIC, and a couple of bootstrap versions. Non-
parametric, modified nonparametric and parametric bootstrap estimator of
the selection criterion are considered according to the way of resampling. It
is shown that a-closed form expression is available for the parametric boot-
strap estimated criterion. A Monte-Carlo study is provided to give a formal
comparison when the operating family itself is normally distributed.

1. INTRODUCTION

Let Xi,---. X, beindependent and identically distributed random variables with
distribution function 7 such that the mean of F, up and the variance of F, o, , and
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the fourth moment of F' exist. For this sample from F, we want to know whether
the mean and the variance remain the same as some precribed values.

In this paper a model selection approach is used to find out which submodel gives
the best fit to the observed values. The distribution F' described above is therefore
an operating model supposed to generate our observations. Normal distribution is
selected as a popular choice of an approximating model. Then the problem is to
choose the best fitting submodel based on some reasonable selection criterion among
the following four possible candidates; N(uo,02), N(u,08), N(po,0?), and N(u,o?),
where g, 02 are some prescribed values and u, 0% are unknown.

In this setting, Kullback-Leibler discrepancy comes out as a natural measure of
discrepancy between the operating model and the approximating model. Let ¢(-, )
be the probability density function of the approximating model indexed by the pa-
rameter 6. Our selection criterion based on the expected overall discrepancy is given

by

E{—Eplogg(Z,é)}, (1.1)

where Z is a random variable distributed according to F but independent of the
random sample already observed, and 0 is the minimum discrepancy estimator min-
T

imizing the empirical discrepancy, which in this case is given by —Z log g(X;,0)/n.
i=1

Thus 4 is algebraically the same as the maximum likelihood estimator under the ap-

proximating model. But as indicated in Linhart and Zucchini(1986), it has different

asymptotic properties due to different probability structure.

Except for some trivial cases, it 1s not easy to derive (1.1) explicitly. By a
clear recognition that unreserved maximization of the likelihood results in an un-
satisfatory choice between models that differ appreciably in their dimensionality,
Akaike(1973) introduced an information theoretic model selection criterion, AIC,
which is given by

~23 " log g(Xi,0) + 2p, (1.2)
=1

where p denotes the number of parameters estimated. In fact, AIC aims at the
estimation of the quantity 2n x (1.1). So, in our study, AIC/2n will be tabulated
for the purpose of comparison with other estimators of the selection criterion.
Another asymptotic criterion, which we call TIC, to refine AIC is dertved and
fully explained in Linhart and Zucchini(1986). When the approximating model
¢(+,0) 1s quite different from the operating model F', the minimum discrepancy esti-
mator § has a different asymptotic distribution from the usual maximum likelithood
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estimator under the approximating model. This fact plays an important role in the
derivation of TIC, which is given by

— S log g(Xi, 0)/n + tr(Q;15,) /7, (1.3)
i=1

where 0, = -—ZV2 log g(X:,0)/n |4—;

=1
and £, =) {Vlog g(X;,0)}{Vlog (X, 0)}'/n |o_s-
=1

The bootstrap, which is one of a very well-known resampling methods initiated by
Efron(1979), can also be applied to our problem to give several bootstrap estimators
of (1.1). A key idea in using the bootstrap method is to use 0* and F, in place of 6
and F, the distribution of future observation Z, in the expression (1.1), where 6* is a
bootstrap version of 0 computed from the bootstrap sample and F,, is the empirical
cumulative distribution function based on the original sample.

Efron(1983) suggested a number of nonparametric methods to estimate the pre-
diction error in case of logistic regression model including cross-validation and several
different versions of bootstrap. Then the idea was further explored in the context of
generalized linear models in Efron(1986). Efron(1983) proposed double bootstrap
and a couple of bias adjusted bootstrap error rate estimates as improved ones over
the naive bootstrap estimates. His concern was rather restricted to the so called
nonparametric way of bootstrap and its improvement.

In this paper sophisticated ways of boostrap are not considered just for the
purpose of an easy implementation. Three versions of naive bootstrap estimators
are considered according to the method of resampling; the nonparametric bootstrap,
the modified nonparametric bootstrap, and the parametric bootstrap.

In section 2, each estimator of selection criterion is derived. AIC will be modified
in order to be comparable with other criteria. It will be argued that the parametric
bootstrap estimated criterion can be derived explicitly. Whenever a closed form
expression is not available, a stochastic approximation to that estimator of selection
criterion is introduced. The algorithm will be explained in detail. .

In section 3, a stream of numerical work is given. First, an illustrating example
is provided to show its applicability. Next, bias and the mean squared error for
the submodel (u,o?) are derived explicitly. Then, it is shown that the expected
overall discrepancy can be computed explicitly when F' is itself normally distributed.
Furthermore expected values and the mean squared errors of AIC and parametric
bootstrap estimator of the selection criterion are derived explicitly in this particular
case. Finally a Monte-Carlo study is provided to make sure the derivation and to
compare each criterion in terms of the mean squared error.
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2. THE ESTIMATED CRITERIA

In this section each estimator of the selection criterion will be derived explic-
itly for each submodel. For the bootstrap estimator of the selection criterion, it
will be shown that a closed form expression is available for the parametric boot-
strap estimated criterion. Simple expansion argument shows that all these efforts
are aiming at the estimation of the first order correction term. Stochastic approxi-
mation algorithms are introduced whenever a closed form expression is not available.

2.1. AIC

AIC is given by the formula (1.2). The following summary of AIC/2n can be
easily checked.

0 p AIC[2n
(110.08) 1 0 1/2(log 27 + log o2 + 6% /0?)
(p,02) | L | 1/2(log2r + log o2 + 6%/02 + 2/n)
(o, o) | 1 1/2(log 2x + loga* + 1 + 2/n)
(p,0%) |2 1/2(log 27 + log 6% + 1 + 4/n)

In this table, i and 62 are the usual maximum likelihood estimator of u and o
based on the random sample of size n from normal distribution with mean g and

variance o2. Also, 52 denotes the maximum likelihood estimator of o when p = po
n

is known. That is, i = Z\ /n, 6% = (X; - i)?/n, and 62 = Z(.\, — jto)?/n.

=1 =1 =1

2.2. TIC

In order to derive the asymptotic criterion of the form (1.3), we just have to put
the trace term in place of p/n in the above table. To get the trace term we need to

differentiate the log-likelihood with respect to the corresponding parameters.

Let iy = Z(Xi — )Y n, iy = Z(X,- — pto)*/n, then the following can be eas-
=1 =1
ilv checked. Note that the trace term is approximately the number of parameters

to be estimated when the approximating model is really close to the operating model.

0 tr(Q7IN) INle
(1o, 2) 0 1/2(log 2% + logol 4+ ¢*/oi)
(od) | 6ot | 1/2{los2r +logad +6%/ad(1 4 2/n))
(po,0%) | (fra — a*)/26* | 1/2{log 27 + logd? + 1 + (jiy — ') /nct}
| (1, 0%) | (u + 6% /260 | 1/2{log2x + log o + 1 + (f14 + &) /nc'}
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2.3. Nonparametric Bootstrap

A key idea in using the bootstrap method is to put the consistent estimators in
place of unknown parameters. It is important to remember that F, the distribution of
future observation Z, is independent of the original sample observed in the expression
(1.1). This implies that Z is independent of = é(Xl, -+, X,). This idea will be
clarified when we construct the bootstrap estimator of (1.1) for each submodel.

For (9, 0%), it can be easily checked that the bootstrap estimator of the criterion
remains the same as AIC or TIC. Furthermore, in this case the expression (1.1)
becomes

Er —logg(Z) = 1/2{log2r + log o + Er(Z — 1o)*/al}. (2.3.1)

Therefore, in this case AIC, TIC, and the bootstrap estimator of the criterion are
all unbiased.

Remark. Ex(Z — u)? is not in general equal to o%.
For (p,0?), (1.1) is given explicitly by
1/2{log 27 + log o2 + (1 + 1/n)o%/ol}. (2.3.2)

Therefore, in this case bias and the mean squared error of each estimated criterion
can be derived explicitly. Easily the nonparametric bootstrap estimator of the cri-
terion is derived as

1/2{log2r + log o2 + (1 + 1/n)6*/ad}. (2.3.3)

For (po,0?), by noting that F' is independent of the distribution of the original
sample, it can be easily checked that

Er —logg(Z.0) = 1/2{log2x + log 6> + Er(Z — po)?/5%}. (2.34)

Now, plug in 6*% in place of &2 in (2.3.4), which is computed from the bootstrap
sample. The bootstrap sample (X7, -, X}) is obtained from the original sample
(Xi,---,X,) in a nonparametric way, that is, by sampling with replacement. For-

mally 6% = Y (X — po)*/n. Also plug in F},, the empirical distribution function
=1

based on the original sample, in place of F. Then,
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Er, —logg(Z,0%) =1/2 {log 27 +log ™ + D (Xi — uo)Q/n&*z} : (2.3.5)

i=1
Taking expectation with respect to 9%, denoted by E*(-), we obtain a bootstrap
estimator of the criterion given by

E*1/2(log 27 + log 6°2 + 52/5°2). (2.3.6)

As we can see, a closed form expression is not easy to derive. A nice feature of
bootstrap method is that the basic resampling procedure can be repeated, and we
may easily turn to the stochastic approximation to the expression (2.3.6). Repeating
the resampling procedure for a large number of times, say B times, we obtain B of
(2.3.5)’s. By the weak law of large numbers, the average value of these B bootstrap
estimated criteria approximates (2.3.6). Formally the stochastic approximation to
(2.3.6) can be written as,

B
1/BY)_1/2{log2x +log&;* + 6% /57%}. (2.3.7)

i=1

Note that we may write

logd*? = —log{1 + (8%/5"* — 1)} + log &°. (2.3.8)

Recall that 5*2/5% — 1 is O3(n~"/2), and that the function h(z) = 1/z is continuous
at z = 1, it can be checked that (2.3.6) is equivalent to

1/2(log 27 + log 5% + 1) + O,(1/n), (2.3.9)
by expanding log(1 + z) near 0.
Remark. The distribution of (2.3.5) can be approximated by the empirical cumu-
lative distribution function based on B bootstrap estimated criteria by Glivenko-
Cantelli theorem.
Finally for (i, 0?), we have
Ep —logg(Z,0) = 1/2{log2x + log &* + Ep(Z — [1)?/6%). (2.3.10)

Plug in 6~ = (=, &%) in place of = (ft,0%). Formally the bootstrap versions of

n

(fi,67) are given by fi* = > X7 /n, and 6** = (X7 — i*)?/n. Also plug in F, in
=1

=1
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place of F. Then

Er, —logg(Z,0%) =1/2 {1og27r +loga™ + > (Xi— /n”‘z} .(2.3.11)
=1

Again, take expectation with respect to g*, we obtain the bootstrap estimated cri-
terion given by

E*1/2 {log 27 +log 6™ + Y (X: — 4%) /n“z} : (2.3.12)

=1

A stochastic approximation to (2.3.12) is available by repeating the basic resampling
procedure, which can be written as

1/321/0{1og77r+1oga*2+2 (= 1) /n**2}. (2.3.13)

j=1

Note that
SO(X; - i) /ne™? = 6257 4 (i — )2/, (23.14)
i=1

and that
(f= — i)*/6** = O3(1/n). (2.3.15)

Therefore another expansion argument can be used to show that (2.3.12) is equiva-
lent to

1/2(log 27 + log 62 + 1) + Oy(1/n). (2.3.16)
So, up to the leading term, nonparametric bootstrap is equivalent to AIC.
2.4. Modified Nonparametric Bootstrap

A key idea in using the resampling method in the estimation of (1.1) is that
the resampled version 9= will be close to 8. A slight modification of the bootstrap
algorithm in section 2.3 aims at making the bootstrap sample as similar to the
approximating model as possible, since § is used to describe g not F. For (po,0?),
all the parameters are fully specified. So start with (g, al).

For (1, 02), we have a restriction that the variance of the approximating model
is o2, while the variance of X7 is 6%. Let the modified bootstrap sample be denoted
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by (X7*,---, X"). These are obtained from the bootstrap sample as follows:
X" = (00/0) X + (1 —09/0)f2. (2.4.1)

With this modification, the variance of modified bootstrap sample becomes o2, while
the expected value of it stays the same. Then compute the modified bootstrap ver-
sion of the estimated parameter and the modified bootstrap estimated criterion as
usual. The following modified bootstrap estimated criterion will be obtained;

1/2(log 27 + log a2 + 6% /o + 1/n). (2.4.2)

It will be seen in section 3 that this kind of modification in general reduces the mean
squared error of the estimated criterion.

For (p0,0?), the expectation is specified as y. Hence modify the bootstrap sam-
ple in such a way that its mean becomes po. Modify the bootstrap sample as follows;

X = X7 — (i — po). (2.4.3)

Then the expected value of the modified bootstrap sample becomes pq as specified.
With this modified bootstrap sample the derivation of the estimated criterion sim-
ilar to (2.3.6) and its stochastic approximation, (2.3.7) are straightforward. Again,
(2.3.6) under modification leads to (2.3.9) asymptotically. For (u,o?), no specific
restrictions are made regarding the parameters of approximating model. So, no
modification is needed.

Remark. What if we modify the original sample rather than the bootstrap sample
initially obtained? It does not seem to give such a good result as can be easily
checked. The reason seems that ¢ is introduced as an approximating model, and it
may or may not cover the true random mechanism generating the original sample.
Even when we give some restrictions to a submodel, it may not hold true of the op-
erating model. For example, in case of (u,02), there is a restriction that the variance
of the operating model should be o2, while the operating model does not specify the
size of variance. Therefore the situation is different from that of bootstrapping lin-
ear regression model with fixed covariate case where we draw the bootstrap sample
from the recentered residuals to mimic the behaviour of the error distribution.

2.5. Parametric Bootstrap

What if we resample from the fitted approximation model to compute the boot-
strap version of #7 This idea will be explored in the present section. Again the
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motivation of this type of resampling is that 6 is a parameter indexing the ap-
proximating model. Therefore we may obtain the bootstrap sample from the fitted
approximating model g(-, é) instead of just drawing with replacement from the orig-
inal sample.

The following gives an algorithm of the procedure;

Step 1. Draw a bootstrap sample of size n from the fitted approximating model,
that is, draw X7, - - -, X2 from N(f,03) for (4, 0%), from N(uo,5?) for (po, %),
and from N(ji,6?) for (u,0?).

Step 2. From the bootstrap sample obtained in the previous step, compute the
n

bootstrap versions of 0, that is, compute ji* = ZX{‘/n for (u,0?), 6** =

i=1
n n

SY(X? = pa)2/n for (jovo?), and i* = Y0 Xi/n, 67 = (X} — )/ for
=1

=1

(1, 0%).

Step 3. Compute the bootstrap version for the selection criterion similar to (2.3.3)
for (i, 02), similar to (2.3.6) for (g, 0%), and similar to (2.3.10) for (u,o?).

=1

One important feature of parametric bootstrap is that its analytic properties
can be easily derived. Estimated criterion itself can be computed explicitly even for
(0, 0%), and for (p,0?).

For (pg,0?%), bootstrap estimated criterion is expressed as (2.3.6). To compute
E*log 5*?, note that n5**/&* has a chi-square distribution with n degrees of free-
dom. For a chi-square distribution with v degrees of freedom, say V, the cumulant
generating function of log V' is given by

K(t)=tlog?2+logT(v/2+1)—logl(v/2). (2.5.1)
Therefore the first derivative and the second derivative of N (t) are given by,

K'(t) = log2 + ¥(v/2 4+ 1), (2.5.2)

K"(t) = V'(v/2 + 1), (2.5.3)

where ¥(-) and ¥'(-) are digamm function and trigamma function respectively.
Therefore the expectation and variance of log V' are given by
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E(logV) =log2 + ¥(v/2), (2.5.4)

Var(logV) = ¥'(v/2). (2.5.5)
By (2.5.4), it can be easily checked that

E*logc*® =logd® + ¥(n/2) — log(n/2). (2.5.6)

Furthermore, E(6%/n3*?) = 1/(n — 2). Therefore, under parametric bootstrap,
(2.3.6) can be calculated explicitly as

1/2{log 27 + log 6* + ¥(n/2) — log(n/2) + n/(n — 2)}. (2.5.7)

For (¢, 0?), by a similar argument, (2.3.10) under parametric bootstrap can be
calculated explicitly as

1/2[log 27 +log 6>+ ¥ {(n—1)/2} —log(n/2)+(n+1)/(n—3)]. (2.5.8)

Remark. No further modification is needed as in case of nonparametric bootstrap,
since all the parameters are fully specified in the resampling procedure.

3. A NUMERICAL STUDY

3.1 An Illustrating Example

Sakamoto, Ishiguro, and Kitagawa(1986) pp. 143 gives an example regarding the
diameters of ball bearings produced from a certain machine. It has been known that
the diameters of the products are distributed as a normal distribution with mean
1 cm and the standard deviation 0.01 cm when the machine is operating normally.
One day 20 ball bearings were randomly chosen and their diameters were measured.
The following summary statistics were obtained.

it = 0.99985,6% = 0.060168. (3.1.1)
In this example, we don’t really have to specify the operating model in detail.

So, drop the assumption and proceed as in section 2. Usually it is easy to correct
the mean of the diameters but if it turns out that the standard deviation becomes
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larger than specified, it is much more troublesome. The following is a summary of
the estimators.

AIC[2n  TIC NB MNB PB

(1,0.01%) | —2.8475 —2.8475 —2.8475 —2.8475 -—2.8475

(1,0.01%) | —2.7976 —2.7637 —2.8057 —2.8226 —2.8057
(1,0%) | —2.8776 —2.8796 —2.8995 —2.8904 -—2.8918
(p,0%) | —2.8277 —2.8296 —2.8746 —2.8680 —2.8744

100 bootstrap samples are generated to get the stochastic approximation ver-
sions. Standard errors for the stochastic approximations are ranging from 0.003 to
0.008. For (u,o?), it won’t be necessary to compute the modified version of the cri-
terion, but another stochastic approximation is done for the purpose of comparison.

All the estimators indicate that (1,0?) fits the best, that is, the mean of the
diameters stayed the same but the standard deviation increased. With this set of
data we may conclude that the process does not seem to be operating normally.

3.2. Bias and MSE for (u,a?)

Formal comparison of the various bootstrap methods will be made in this section
including AIC and TIC in terms of the magnitude of bias and mean squared error,
abbreviated as M SE for the case of (i, 0?), since an analytic comparison can be
made easily. All the estimated criteria have 1/2(log 27 +log 03 +6%/0%) in common,
which can be regarded as the maximum average log-likelihood. Denote the maximum
average log-likelihood.by [nax. Then the expected value of lmaxs F lnax 1s given by
1/2{log 27w 4 log o2 + (1 — 1 /n)o}/0l}.

Note that the difference between the estimated criterion and the expected overall
discrepancy can be written as the sumy;

(EOD = lnax) + (Imax — E lmax) + (E lmax — EOD), (3.2.1)

where EOD denotes the expected overall discrepancy and EOD denotes the esti-
mated criterion. It is easy to check that lmax—E lmax = 1/2{6% /0% —(1=1/n)o}-[05},
and E lpax — EOD = —o%/no?. Then the bias calculation is straightforward and
will be given below.

MSE is given by E(EOD — EOD)?, and is the sum of the variance of that esti-
mated criterion and the square of the bias. Furthermore we know that the variance
of the sample variance with devisor n is given by;
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Var(6®) = (pra—0op)/n—2(pra—20%)n* + (purps—30%) /0>, (3.2.2)

where pp4 is the 4th central moment of F, that is, Fp(Z — ur)*. The following gives
a summary of the results.

EOD — lpay Bias Var(EOD)

AlIC 1/n 1/n—1/n(c%/0?) Var(6*) /40
TIC 262 [nod —1/n*(ck/d?) (1 +2/n)*Var(6?)/40k
NB 6% /no? —(1/n +1/n?)(0}/202) | (1 +1/n)*Var(5?)/40?

MNB 1/2n 1/2n — 1/n(o%/ad) Var(6?)/40}
PB % [no? —(1/n+ 1/n?)(0%/202) | (1 + 1/n)?Var(6?)/40?

In this summary, N B denotes the nonparametric bootstrap, M N B denotes the
modified nonparametric bootstrap, and PB denotes the parametric bootstrap es-
timator of the criterion. From the summary it is observed that all the estimators
except TIC have bias of order O(1/n), and all the estimators have M SFE of order
O(1/n).

It seems that the effect of using the parametric structure of the approximating
family in drawing the bootstrap sample does not reduce either the magnitude of
bias nor the M.SE. But when the size of the original sample is small, it frequently
happens that most of the resample are identical so that the bootstrap version of the
standard deviation is nearly zero. A parametric bootstrap is a definite alternative
in that case.

A possible improvement in terms of bias reduction may be achieved by the
more sophisticated bias-corrected versions of the boostrap method as suggested in
Efron(1983). But our concern is restricted to naive ones just for the purpose of an
easy implementation.

3.3. Normal Operating Family

Suppose that the operating model F itself is normally distributed. For the sake
of computational simplicity, assume that the mean is 0 and the variance is 1. In
this case FOD can be derived explicitly. Furthermore, for (g, 1) all the biases and
MSFEs can be computed exactly. Besides, expected values and M SEs of AIC and
PB can be derived explicitly.
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3.3.1. Derivation of EOD

Recall that n6? and né? are distributed as the chi-square distribution with n
and (n — 1) degrees of freedom respectively. By (2.5.4), we have

Elog&® = ¥(n/2) — log(n/2), (3.3.1)

Elogé? = ¥{(n —1)/2} — log(n/2), (3.3.2)

(2.3.1), (2.3.2), (2.3.4), and (2.3.10) are the keys to compute EOD. Apply (3.3.1)
and (3.3.2) with the assumption that 0% = 02 = 1, then the following summary will

be obtained. All the submodels have 1/2(log 27 + 1) in common, so we subtract it
from the entries.

0 EOD —1/2(log2n + 1)
(0,1) 0
(p, 1) 1/2n

(0,0%) 1/2{¥(n/2) — log(n/2) + 2/(n — 2)}
a?) | 1/2[¥{(n —1)/2} — log(n/2) + 4/(n — 3)]

3.3.2. Expected Values of AIC and PB

The following gives a summary of the expected values E(AIC/2n) and E(PB).

0 E(AIC/2n) — 1/2(log 27 + 1)
(0,1) 0
(1, 1) 1/2n

(0,0?%) 1/2{¥(n/2) — log(n/2) + 2/n}
(,0?) | 1/2[¥{(n —1)/2} — log(n/2) + 4/n]

6 E(PB)—1/2(log2r + 1)
(0,1) 0
(1, 1) —1/2n?

(0,52) 1/2{¥(n/2) — log(n/2) + 1/(n —2)}
| (e, 0%) | 1/2[¥{(n —1)/2} —log(n/2) +2/(n — 3))
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3.3.3. MSE of AIC and PB

M SFE of the estimated criterion is given by, E(EOD — FOD)?. When we derive
the MSEs of AIC and PB, (2.5.5) is used repeatedly. The following summary of
the results will be obtained.

For (u,0?), it is easy to see that AIC gives a smaller amount of MSF than PB,
but the difference is of order O(1/n?). It will be seen in section 3.3.4 that the M SE
of PB is smaller when n = 5 for the other two cases.

0 AlC
(0,1) 1/2n
(1, 1) 1/2n —1/2n?
(0,07%) 1/4[W'(n/2) + 4{1/n — 1/(n — 2)}?]
(e, 0%) V 1/4[W {(n — 1)/2} + 16{1/n — 1 /(n — 1)}?]
0 PB
(0,1) 1/2n
(i, 1) 1/4(2/n + 3/n% — 1/n?)
(0,5%) /AW (n/2) + {¥(n/2) — log(n/2)}?]
(1:5%) | 1419 {(n = 1)/2) + (¥((n — 1)/2) — log(n/2)}?]

3.3.4. A Numerical Study

From the manual of Mathematica and from Johnson and Kotz(1969), the fol-
lowing recursive relation and the following formulae are obtained.

U(v+1)=¥(v)+ v, (3.3.3)
n-1

U(n)= > 1/k—~, (3.34)
k=1

¥(v) = i /(v + k)?, (3.3.5)
k=0

where n is a positive integer and v is the Euler’s constant, which is around 0.577216.
There are also remarkably good approximation formulae for ¥(-) and ¥'(-), that is,

U(v) ~ log(v — 1/2), (3.3.6)
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V(v)~ (v—1/2)"" (3.3.7)

Remark. From these approximation formulae, it is easy to see that both AIC and

PB have M SEs of order O(1/n).

= —y —2log?2 = —1.963510, the

With these formulae and the fact that ¥(1/2)
20 is obtained.

following summary for the case when n = 5,10,

n (U2 (=172 /2 U{(n-1)/2
5 | 0.7032 0.4228 0.4904 0.6449
10 | 1.5061 1.3889 0.2213 0.2487
20 | 2.2572 2.1977 0.1052 0.1110

Table 1 contains the the summary of EOD, E(AIC/2n), E(PB), MSE(AIC),
and MSE(PB) for n = 5,10,20. As expected in section 3.3.3, it is observed that
AIC gives a smaller amount of MSE for (u,1), but the difference gets smaller as
n increases. It is also observed that for (0,02), and for (g, o), PB gives a smaller
amount of MSE when n = 5, but the situation gets reversed as n increases. It is
clear from the table that the M.SEs are of order O(1/n).

3.4. Monte-Carlo Study

In this section a Monte Carlo study is provided to give a formal justification of
the results given in section 3.3.3 and to give a numerical comparison of each method
when a closed form expression is not available. For this study the standard normal
distribution is taken as the operating model. Sample sizes are set at 5, 10, and 20
respectively. To get the stochastic approximation to the bootstrap estimators of the
selection criterion, 100 bootstrap samples are drawn. This simulation study is run
on Micro Vax II, and the total CPU time used is about 1 hour and a half.
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Table 1. Exact values of EOD, E(AIC/2n), E(PB), MSE(AIC), and M SE(PB)

for n = 5,10,20 when F is standard normal.

9 [ n [ EOD E(AIC]2n) E(PB) MGSE(AIC) MSE(PB)
5 | 1.41890 14189  1.4189 0.1000 0.1000
(0,1) [ 10| 1.4189 14189  1.4189 0.0500 0.0500
20| 14189  1.4189  1.4189 0.0250 0.0250
5 | 1.5189  1.5189  1.3989 0.0300 0.1296
(1,1) |10 |1.4689  1.4689  1.4139 0.0450 0.0575
20 | 14439  1.4439  1.4177 0.0238 0.0269
5 | 1.6457 15124 1.5392 0.1404 0.1340
(0,02) | 10 | 1.4923  1.4673 1.4585 0.0560 0.0580
20 { 14518 1.4462 1.4291 0.0263 0.0268
5| 2.0722 15122 1.9254 0.5212 0.2221
(#,0%) | 10 | 1.5944  1.5087  1.4841 0.0640 0.0743
20 | 1.4665  1.4665  1.4317 0.0278 0.0305

To assess the overall sampling behaviour of each estimator, 1000 replications are
made. Table 2, Table 3, and Table 4 give the average values of the estimated criteria
so obtained and the MSE of each estimated criterion. The results are given right
below the average value of the selection criteria. The standard errors of the average
values are around 0.01, 0.007, and 0.005 for n = 5, n = 10, and n = 20 respectively.

Table 2.  The average value of the estimated criterion and the estimated MSE
when n = 5.

6 AIC/2n  TIC NB MNB  PB
EOD | 14171 14171 14171 14171 14171
(0,1)
MSE | 0.1009 0.1009 0.1009  0.1009 0.1009
EOD | 1.5252 14877 1.4064  1.4252 1.4064
(1, 1)
MSE | 0.0831 0.1637 0.1321  0.0918  0.1322
EOD | 1.5097 1.4221 1.7238  1.8571 1.5357
(0,0?)
MSE | 0.1405 0.1753  3.0829  3.1510  0.1406
EOD | 15773 1.4766 S.1841  8.1841  1.930S
(1. 0?)
MSE | 05164 0.6478 524.1161 524.1161 0.3802
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Table 3. The average value of the estimated criterion and the estimated MSE

when n = 10.

0 AIC/2n TIC NB MNB PB
EOD | 1.4277 14277 14277 14277 14277
0,1
@ MSE | 0.0518 0.0518 0.0518 0.0518 0.0518
EOD | 14776 1.4693 1.4234 1.4276 1.4234
(1, 1)
MSE | 0.0465 0.0669 0.0582 0.0481 0.0582
EOD | 1.4742 14479 1.4447 1.4683 1.4477
(0,0?)
MSE | 0.0582 0.0614 0.0659 0.0679 -0.0600
EOD | 15174 1.4900 1.5334 1.5334 1.4935
(1,0?)
MSE | 0.0694 0.0756 0.0908 0.0908 0.0739

Table 4. The average value of the estimated criterion and the estimated MSE

when n = 20.

] AIC/2n  TIC NB MNB PB
EOD | 1.4299 1.4299 1.4299 1.4299 1.4299
(0’1)
MSE | 0.0273 0.0273 0.0273 0.0273 0.0273
EOD | 14559 1.4546 1.4302 1.4309 1.4302
(e, 1)
MSE | 0.0250 0.0302 0.0276 0.0250 0.0276
EOD | 1.4531 1.4466 1.4321 1.4362 1.4333
(0,0%)
MSE | 00276 0.0277 0.0280 0.0283 0.0281
EOD | 1.4786 1.4712 1.4449 1.4449 1.4436
(1,0
MSE | 0.0283 0.0286 0.0302 0.0302 0.0301

With regards to AIC' and PB, the values from Monte-Carlo study agree very

109

well with the theoretical values obtained in the previous section. For (g, 1) the
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closed form expression obtained is computed directly without bothering stochastic
approximation. Therefore, NB and PB give the same average values.

As expected, N B shows an extremely wild behaviour when n = 5. In fact, it
was observed that there are some cases where the bootstrap version of the standard
deviation is so small that the logarithm of it blew up. In that case, another bootstrap
sample is drawn to go on. The PB can be an alternative to overcome this kind of
problem.

As n increases it can be observed that the M SE decreases in an order of O(1/n).
PB gives smaller M SE in many of cases when n = 5. But as n increases AIC seems
to give the smallest M SE among the estimated criteria.
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