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BOOTSTRAPPING GENERALIZED LINEAR
MODELS WITH RANDOM REGRESSORS !

Kee-Won Lee, > Choongrak Kim, * Keon Tae Sohn* and Kwang Mo Jeong®

ABSTRACT

The generalized linear models with random regressors case are studied for
bootstrapping. Only the natural link functions are considered. It is shown
that the bootstrap approximation to the distribution of the maximum likeli-
hood estimators is valid for almost all sample sequences. A slight extension
of this model is also considered.

1. INTRODUCTION

Some asymptotic theory for applications of Efron’s(1979) bootstrap to gener-
alized linear models with random regressors case is considered. For an extensive
review of generalized linear models, see, for example, McCullagh and Nelder(1989).
For consistency and asymptotic normality of the maximum likelihood estimator in
generalized linear models, see Fahrmeir and Kaufmann(1985).

The bootstrap approximation to the distribution of the least squares estimates
in linear model context is studied by Freedman(1981), and the less metrical version
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of the same result can be found in Beran(1984), which gives more examples. Nice
reviews of bootstrap methods developed so far are given by Hinkley(1988), and
DiCiccio and Romano(1988), where many references are cited. In this paper some
asymptotic results will be given in the context of generalized linear models with
random regressors case. Our attention will be restricted to the case of natural link
functions.

Section 2 introduces the model with some asymptotic properties of the estima-
tors, and summarizes the way of bootstrapping and its validity. Section 3 introduces
a slight extension of this model and some asymptotic properties of the estimators,
and the way of bootstrapping and its validity. Even though the estimators are al-
gebraically the same, different probability model leads to the different asymptotic
results. Proofs are sketched in Section 4.

2. MODEL, MLE, AND THE BOOTSTRAP

Suppose we have n independent and identically distributed random vectors (Y;, X})
for i = 1,2,...,n such that the covariates X’s are p-variate random vectors with
distribution function G(z), which is unknown, and there exists a positive number
M such that | X]|| < M with probability 1.

Given X = z, the response Y belongs to a natural exponential family with den-
sity given by

f(ylz) = c(y) exp[yd — b(9)}, (2.1)

where 0 belongs to a natural parameter space © in R'. For more properties of
natural exponential families, see Lehmann(1986).

The random regressor X is connected to the response Y through a natural link
function 8 = X8, where 3 is a p-vector of unknown parameters. Our attention will
be restricted to A’s such that X! belongs to © with probability 1. Throughout
the paper w.p.1. will be an abbreviation for with probability 1, which refers to the
random mechanism generating the original sample. In the sequel, 8, denotes the
true but unknown parameter, which is supposed to generate our observations.

The log-likelihood for a single observation is given by

LB, G; y, z) = yz'B — b(z'B) + constants. (2.2)

It can be shown, by chain rule, that the the first derivative of £ with respect to
3 is given by
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Ve =a(y — p), (2.3)

where u = Vb(2*8) = E(Y|X = z). Hence the first derivative does not depend on
the unknown cumulative distribution function G, so the efficient score function for
estimating 8 when G is unknown is.the same as that when G is known. Therefore
the solution of the likelihood equation

Txi(yi —pi) =0, p; = V(zif), (2.4)

which can be obtained by any iterative method is asymptotically efficient. McCul-
lagh and Nelder(1989) describes one typical algorithm in detail. Here 3~ denotes the
summation over all the observations. We have the matrix of second derivatives

V? ¢ = —z 2'0%, where 0% = V2b(z!8) = Var(Y|X = z). (2.5)
So the information matrix regarding 3, denoted by I(5), is given by
E[V{VY)] = E[XX'(Y — u)?]. (2.6)

Or, equivalently,
—E(V¥) = E(XX'a?). (2.7)

Now we have the following asymptotic properties for the solution of the likeli-
hood equation, which are easy consequence of more general results given in Fahrmeir
and Kaufmann(1985).

Lemma 2.1. In addition to the assumptions regarding the model just described
above, suppose that there does not exist a vector of constants a = (a1,...,a,) and a
real number ¢ such that aX = ¢ w.p.1. Then the solution of the likelihood equation

Y iy — i) =0, pi= V(zi), (2.8)

which is unique if it exists, satisfies the following;

~

Bn—PBo—0 wp.l, (2.9)

where [3,1 is the solution of the likelihood equation, furthermore,

a

n# (B, — Bo) = N,(0,17(8o)) in distribution. (2.10)
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Remark It can be easily checked that the additional condition is needed to
guarantee that the information matrix () is invertible.

There are at least two ways of estimating (). One uses the first expression
for the information matrix, and the other uses the second expression, which gives
the same matrix under our model. Let

S Xt 2
j= ZXXiol (2.11)

n

and let

_ TXXHY - ju)?

n

2

, where fi; = Vb(X!8,), 6% = V2b(X!B,). (2.12)
We have the following lemma whose proof will be sketched in section 4.

Lemma 2.2. Under the assumptions of Lemma 2.1, both estimators of the
information matrix I(8;) are strongly consistent. Therefore studentized versions of
second part of Lemma 2.1 also hold by Slutsky’s theorem.

Now for the bootstrap, note that we have an independent and identically dis-
tributed probability structure in this case and the unknown parameters are (o and
G(:), and they can be consistently estimated by the MLE S, of 8, and the empirical
cdf based on X’s. The bootstrap goes as follows.

Step 1. From the original sample X’s and Y’s, compute the MLE of 3, by
any iterative method and construct an empirical cdf based on X’s only.

Step 2. Generate bootstrap sample X*’s and Y*’s as follows. X*’s are a simple
random sample with replacement from the original X’s. Given X* = z*, choose Y*
from a natural exponential family with density given by

f(yle*) = c(y) exp[yf* — b(6*)], where §* = z*4,. (2.13)

Step 3. From the bootstrap sample, compute B,’:, which maximizes the boot-

strap version of the log-likelihood, say ¢*. Explicitly, 32 is the solution to the
equation,

Ve =3 XYY — pf) =0, where uf = Vb(X). (2.14)

The following theorem tells us that the above bootstrap approximation is valid
for almost all sample sequences.
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Theorem 1. Assume that F(X X!) exists and is positive definite in addition
to the assumtions of Lemmma 2.1. Then, given the original sample, for almost all
sample sequences, all the bootstrap versions of the previous lemmas hold. That is,

n3 (37 — B.) = Ny(0,17(B)) in distribution, (2.15)
I*(32) — 1(Bb) in conditional probability, (2.16)
I(32) — 1(B) in conditional probability, (2.17)
R 3 ()3 — B) — N,(0, 1) in distribution, (2.18)
i (387 = B) = N,(0, L) in distribution, (2.19)

where I, denotes the p x p identity matrix, and the starred items denote the boot-
strap versions of the original ones, for example,

I*(B) = © X X'V2H(X ), etc. (2.20)

3. AN EXTENSION

In this section, a slight extension of the model described in section 2 is considered.
Regard all of the n observations, (¥;,X}) for i = 1,...,n as independent and
identically distributed according to a (p + 1) dimensional distribution function F
such that there exists a positive number M satisfying || X|| < M with probability 1
and the 4th moment of Y exists.

If we use a model selection terminology, this F' belongs to an operating family,
and the generalized linear model structure discussed in the previous section now
becomes an approximating family. Linhart and Zucchini(1986) gives a good intro-
duction to model selection.

Therefore the only unknown parameter in this case is F', and the functional
Bo(F) is a minimizer such that the Kullback-Leibler divergence, which is a natural
choice for measuring discrepancy between the operating family and the approxi-
mating family in our case, between F and the previous generalized linear model
structure, takes its minimum. That is to say,
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ol F) = argmin { - Ex(t(8)]}- (3.1)

A natural and consistent estimator of the above discrepancy, called an empirical
discrepancy, is the one with an empirical cdf, call it F,, in place of F. Now that
estimator of the discrepancy coincides with minus times the log-likelihood described
in the previous section.

An empirical version of Bo(F), which gives a minimum of the empirical discrep-
ancy, coincides analytically with the maximum likelihood estimator described in
section 2. But, since we have different probability model, different asymptotic re-
sults will be developed unless F includes the generalized linear model described in
the previous section. For the simplicity of notation, the same notations will be used
as in the previous section, but we have to keep it in mind that we are working on a
different probability model. Now let

O = —Ep(V20), Y = Ep[VE(VE). (3.2)

Note that = ¥ when F coincides with the generalized linear model. Now we
have the following lemma which is parallel to the Lemma 2.1. For the regularity
conditions and the proof, see Huber(1967), or the appendix of Linhart and Zuc-
chini(1986).

Lemma 3.1. Under proper conditions, which can be checked using the as-
sumptions on F', the following holds.

Bn = B0 wp.l, . (33)
13 (B — Bo) = N,(0,271£Q7Y) in distribution, (3.4)
where f; is an abbreviation for Gy(F'), and B, = Bo(Fy).

Natural estimators of 2 and ¥ are

. X;X!5?
Qu(5) = BT (33)
and S XX — i ¢
En(ﬂn) = o in ! Hi 5 (36)

where ji; = Vb(X!3,), 67 = V2b(X!3,), respectively. Both of these were used to
estimate the information matrix in section 2.
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Lemma 3.2. Both of the above estimators are strongly consistent. Therefore
a studentized version of the second part of Lemma 3.1 also holds.

For the bootstrap, note that the only unknown parameter is F, which can be
consistently estimated by the empirical cumulative distribution function F,. The
bootstrap goes as follows.

Step 1. From the original sample, compute 3, and construct an empiri-
cal cumulative distribution function F, based on the whole sample, that is, assign
probability mass of 1 to each of the observations, (Y;, X}) fori=1,2,...,n.

Step 2. Choose a bootstrap sample from the original sample, that is, a simple
random sample with replacement from the original sample of the same size. For
notational simplicity write them, (¥;*, X}*) instead of (¥}, X})*.

Step 3. Compute a bootstrap version of Bn, say B; from the bootstrap sample.

Theorem 2. The following holds under the assumptions of the Lemma 3.2.
For almost all sample sequences, given the original sample, as n tends to infinity,

n3 (B — B.) — N,(0,27'S071) in distribution, (3.7)
Q:(82) — O in conditional probability, (3.8)
2x(7) — ¥ in conditional probability, (3.9)

nF L E () (B0 () (B: — Bu) = N,y(0, 1) in distribution,  (3.10)
Y Xr Xt XeXr (v —p)r .
BT wp = BRI e o)

where Q2 (8) =
n
and o!* = V(Xp).

4. SKETCH OF THE PROOFS

4.1. Proof of Lemma 2.2.

E A’,")x,-tO'2
n

Let T.(8) = ‘L with 0? = V2b(X,f), then we may write
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I —1(Bo) = [I — Tn(Bo)] + [Tu(Bo) — I(Bo))- (4.1.1)

The second term of the right side hand side tends to a matrix of zeroes by the
strong law of large numbers. On the other hand the first term of the right hand side
also tends to a matrix of zeroes as follows. The (4, k)th element of the first term
can be written as, using Taylor expansion and the analytic property of the function

b()$

I = I(Bo)lisl = 1(Bn— Bo)t Y Xis Xr XiV3b(X !B, ) /|
< (K3/3V3)1Ba — Boll o NIX:lP/n
— 0, w.pl (4.1.2)

where |8, — Bol| < [|Bn — Bol| and for some positive number K3 such that
sup |V36(X;8)| < K3 for all B with |8 — G| < e (4.1.3)

The second part of the lemma can be shown by a similar argument to the one
given above. Note also that a similar argument can be used to prove Lemma 3.2.

4.2. Proof of Theorem 1.
Let £*(B) be the log-likelihood based on the bootstrap sample, that is,
e(B) = T yizi'B — b(ai' B). (4.2.1)

The following expansion will be used.

Ve (B2) = VE(B) + (B2 — Ba)V2(BY), (4.2.2)
where |82 — Ball < 118z — Ball.

Using the fact that VZ*(B;) = 0, the above equation can be rewritten as

Ve (Ba)/nt = nF (B — Ba) =V (B2)/n]. (4.2.3)
For any vector of constants a = (a,,...,a,), we may write
Ve (B,) nt =3 U, (4.2.4)

where U7, = a' X} (Y;" — i)/n? with if = Vb(X78,).

77
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It can be easily checked that the conditional mean and variace of U}, given the
original samples are

N atla .
EWU:) =0, Var(U}) = - respectively. (4.2.5)

Furthermore, we can find a positive number C3 such that the third absolute
moment of Y given X is bounded by Cj3 in a neighborhood of 8y by the analytic
property of b(-). Then

B(ULI) < CafndlalP S X /n. (4.26)

Therefore

E(ULR)/s3 =0 wp.l, (42.7)
where s2 = ¥ Var(Uy) = a*la.

Since a'] a tends to a'l(fp) a with probability 1, the Lyapounov’s condition for
a triangular array is checked and we have established that, with probability 1,

VO (B.)/n* — N,y(0,1(Bo)) in distribution. (4.2.8)

By a similar argument, with the aid of weak law of large numbers for triangular

array, a bit more complicated though, to the proof of lemma 2.2, it can be shown
that, with probability 1,

—V26*(83,)/n — I(Bo) in conditional probability. (4.2.9)

Now (4.2.3), (4.2.8), (4.2.9), and Lemma 6.4.1 in Lehmann(1983) completes the
proof of the theorem.

4.3. Proof of Theorem 2.

Proof parallels that of Theorem 1. The same steps can be followed except in
(4.2.8) and (4.2.9) in the proof. The difference can be summarized as;

Ve (B,)/nt — N,(0,X) in distribution. (4.2.8)

—V2¢*(3,)/n — Q in conditional probability. (4.2.9)
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and we will get the desired result.
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