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DETECTING INFLUENTIAL OBSERVATIONS
- ON TRANSFORMATION PARAMETER
IN BOX-COX MODEL!

Choongrak Kim? and Meeseon Jeong?®

ABSTRACT

On Box-Cox transformation, one or few responses are influential on transfor-
mation parameter estimator. To detect influential observations, several diagnostics
(Cook and Wang 1983, Hinkley and Wang 1988, Lawrance 1988, Tsai and Wu
1990) have been suggested. We compare these diagnostics and denote the necessity
of multiple cases deletion which is important especially when the masking effect is
present. Also, analytic expression of Tsai and Wu'’s diagnostic is given. We suggest
a computationally feasible and useful algorithm based on the basic building blocks,
and present descriptive examples using artificial data.

1. INTRODUCTION

When errors in regression models are not normally distributed, transformations of the
response are considered. Let y denote an n-vector of observable responses, 3 be a p-vector
of unknown parameters, and X be a n x p design matrix. Box and Cox (1964) suggested
power transformation which assumes that the power transformed response
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v = XB e (1.1)

where

W _f @ =1D/x ,A#£0
Yi —{logyi , A=0 (1.2)

is normally distributed. The maximum likelihood estimator(MLE) X of transformation
parameter A is obtained by minimizing

Q()) = ZW' (I - H)ZW (1.3)

where H = X(X!X)™'X¢, 2™ = yW/JU/n and J denote the Jacobian of the trans-
formation from y to y. In fact, computation of A requires iterative minimization of
Q. )

As pointed out by Andrews (1971), A is very sensitive to outlying responses and influ-
ential observations. To identify cases that influence A, Cook and Wang (1983) suggested
one-step diagnostic using the mean-shift outlier model. Hinkley and Wang (1988) mod-
ifled Cook and Wang’s method, and provided an alternative power estimator. Tsai and
Wu (1990), however, argued that both methods do not explain the deletion effects on J,
therefore, accuracy can be rarely achieved. Instead, they considered diagnostic using the
deletion model which takes into account the deletion effect on J, and claimed that diagnos-
tic based on the deletion model could provide more accurate and reliable transformation
power estimator. Further, they insisted that their estimator almost always converges to
the true estimator. A quite different method using Cook’s (1986) local influence approach
was done by Lawrance (1988).

Ideally, Tsai and Wu’s (TW) method should be better than Cook and Wang’s (CW)
or Hinkley and Wang’s (HW). However, it is not necessarily always true since all three
methods are based on A which itself may not be true. Also, Tsai and Wu’s suggestion have
several defaults. First, their estimator should be calculated by the symbolic manipulation
programs MACSYMA or SMP, i.e., analytic expression was not given. Secondly, the
accuracy of the estimator is not guaranteed when k-step iteration (k¥ = 4 in their paper)
is not allowed. Therefore, computational feasibility could be a serious problem in this
approach. Finally, they did not consider multiple cases deletion. When observations are
jointly influential, case-deletion is not enough to detect jointly influential observations
(influential set).

In this paper, we provide an analytic expression of Tsai and Wu’s estimator and extend
it to the multiple cases deletion. Also, we suggest some practical uses of the estimator
providing basic building blocks of which the estimator consists. In Section 2, summaries
of four estimators are given and an analytic form of Tsai and Wu’s estimator is derived.
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Multiple cases deletion and basic building blocks are considered based on artificial data,
in Section 3. Section 4 gives our concluding comments.

2. DIAGNOSTICS IN TRANSFORMATION PARAMETER

2.1 Four Diagnostics

To detect influential observations, we generally compare A with ;\( 1), Where :\(1) is the
maximum likelihood estimator of A based on n —m observations after deleting m observa-
tions in I = {1,1%5,...,%,,}. However it is computationally difficult because the Jacobian
J differs for each value of I. To overcome this difficulty, Cook and Wang (1983) used the
mean-shift outlier model,

yN=XB+E/y+e (2.1.1)

where E; is a n X m matrix containing 1 in the ¢;th position as indexed by I and 0’s
elsewhere and + is unknown constructed variable. Under the outlier model, the MLE of
A is obtained by minimizing

QC(A) = ZWY(I - Hp)Z™ (2.1.2)

where Hg = XE(XEtXE)_IXEt and Xg = (X, E;). To obtain one-step estimator of the
MLE, Z® in QC()) is replaced by its first order Taylor expansion about A,

ZM ~ 2™ 4 (A - Hw

where W) = 9ZOW /9). The corresponding one-step estimator ASY can be expressed as
()

e e on (2.1.3)

) I'th'W—I‘W‘I'(I—HI)_lI‘W’I

where Hj is the m x m submatrix of H indexed by I, rz; and ry are the indicated
m x 1 subvectors of rz; = (I — H)ZM and ry = I-HW®, respectively.

Hinkley and Wang (1988) also used the mean-shift outlier model and considered
quadratic approximation providing

ZW >~ 720 4 (A = YWD 4 (A = 1)’UuD 2

where UM = §2Z() /§)A2. Then, they obtained the modified one-step estimator
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AHVV 5‘ l‘z[t(l HI) rw,r (214)

twitwtrz ry—rw (I-Hp) Trw, -1z (I-H) T 'ry,

where ry ; is the indicated m x 1 subvector of ry = (I— H)U(A) Since )‘(1) and /\(I)
do not explain the Jacobian effect for each value I, they may not be accurate when the
observations in I are outliers or influential cases.

To obtain ;\(1), Tsai and Wu (1990) used the case-deletion model

A
v = X8 +eq

The MLE :\(1) of A(ry from case-deletion model minimizes

Qin(A) = (Tier v/ {2V (1 - Hp)ZM} (2.1.5)

where Z(*") = y(N/J1/(n=m) Then the one-step estimator of 5\(1) is given by

~

STW _ n})
DY = A= erf7>(_) (2.1.6)

where Q(ny()) = 9Q(1)(1)/9A and Qn()) = 9°Q(;y(1)/8X?%, by using the first order
Taylor expansion of Q y(A) about A,

Quy(N) = Qury(A) + (A - NQn (V).

On the other hand, Lawrance (1988) obtained diagnostic using local influence ap-
proach of Cook (1986) instead of deleting cases. The diagnostic for the influence of the
ith case is

Iy = —=t28TWs i =12 .. ..n (2.1.7)
© ;;2?_—_1(1'2,1'1'W,i)2

which is the case direction that has the greatest effect when the constant model variances
are perturbed.

2.2 Analytic Expression of 5\{1‘;"

Tsai and Wu insisted that their estimator provides a more accurate approx1mat10n
than /\(1) and )\fg/v, through results for artificial data, and that the calculation of )\(1) is
not difficult because Q( n(A) and Q( n(A) can be computed analytlcally with the symbolic
manipulation program MACSYMA or SMP. Similar to )‘(1) and /\(1) , however, it would

be very useful to express >\ (1y s a function of basic building blocks. Using the following
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notations
Szzg = rz/(I—Hp) 'rz;
Swwr = I'W,lt(I - HI)—lrW,I
Sgwi = rz/(I- HI)_lrW,I
Szug = rz;(I-Hp) ry;
Gy = log ([Ties%:i/y™)/(n — m)

where y is the geometric mean of y;’s, we obtained the analytic expression of Tsai and
Wu's diagnostic as follows;

~ ~ -1
T™W _ Y\ _ [o l‘w‘l‘w+1‘z'ru—Sww,I—Szu,1—2Glszw,1]
/\(I) =A [“GI + Gr{rz'rz—Szz1}-Szw,I (2'2'1)

The detailed proof is given in the Appendix. For Tsai and Wu'’s artificial data, the
results using equation (2.2.1) equal up to third decimal of theirs.
2.3 Summaries of Four Diagnostics

For easier comparisions of the diagnostics mentioned above, note that

: < Szw,i.
)\CW =\ 4+ . v
rw'rw — SWW,I

SHW _ 3 Szw,1
A = A+ y -
rwirw + rziry — Sww,r — Szur

STW 5 _ [QGI N rw'rw +rz'ry — Swwr — Szug — 2G1Szwa
Gi{rz'rz — Szz1} — Szwi1

rz:rw,;

VL, (rzrw,)?

Liy
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From the final form of each diagnostics, we note that /\(1) can be obtained by adding
the information of rz'ry — Szy; to /\(I) and that )\(I) is the same as ;\5;” if Gy is small

enough. Also, ;) is equal to Szw,, numerator term in 5\(6}1)”, except the leverage effect

H;.

3. MULTIPLE CASES DELETION
3.1 Masking Effect

When a data set contains more than one influential observation, they may not be
detected by a single case deletion. This phenomenon could be serious especially when
they are masked. As an illustration, we create an artificial data by a method similar to
that of Cook and Wang (1983). The second and third columns of Table 1 contains this
data. (The remaining columns will be discussed later). These data were constructed by
arbitrarily choosing 22 X values and generating the first 20 responses through the model

logy; = x; + 5,0 = 1,2,...,20, where the ¢;’s are pseudo-random normal variables with
mean 0 and variance o? = 0.01. The last two responses yz;,y22 Were selected so that yo;
and y3, are influential set, and the log transformation is appropriate for y;,7 = 1,2,...,20.

Plot of these data is given in Figure 1.

For simplicity, let d(;) = P /\ d(f) =A- /\ d(I) =i- :\HW and dTW A :\TW
First, we delete one observation and obtain four diagnostics ( d(,) ,d(z) ,d() and l( )
which are listed in Table 1. As shown in this table, none of them suggest that both
ya1 and yz9 are outliers. Note that A (21,22) = 0.0172 implying log transformation. Also,
A= —0.5434. Therefore, true difference d(2; 22y is -0.5606. Corresponding values for three
diagnostics are d(CISV = — 48§, dg}v = —.37, and d(TI‘)}V = —.45. These values are not close
enough to the true difference to be used safely. Also, no one is consistently better than
the others. Hence, accuracy cannot be guaranteed in these diagnostics. Tsai and Wu
(1990) argued that this accuracy can be achieved by k-step estimation (4-step iteration
in their paper), however, this iteration scheme is almost computationally infeasible. This
infeasibility is certainly getting worse as n and m increases. Therefore, it is necessary to
have some computationally feasible algorithm.
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Figure 1. Artificial Data
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3.2 Outliers Detecting Algorithm

As mentioned in the previous section, none of suggested diagnostics provides an accu-
rate estimate of the transformation parameter. Therefore, we first decide candidates of
potentially influential sets, and, for I's chosen as candidates, compute A1) by the k-step
iteration using equation(2.2.1). To decide those candidates, we need some measure to
obtain them. This measure could, of course, be one of the diagnostics mentioned above,
however, computational burden is too much unless n is small. For example, Szw,r and
Sww,1, common terms in ;\8’)‘/, :\g;’v, and :\z}‘;", require the computation of (I — HI)_1 for
each I. As alternatives to Szw; and Syw s, we suggest using

—_ t
tzwy = rzi Hirws

— t
twwi = rwr Hirwg
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based on the idea that Hy « (I-— HI)_1 in some sense. The use of H; instead of
(I— H;)™" in the classical linear model diagnostics was discussed by Draper and John
(1981), Cook and Weisberg (1980), and Kim (1989). The use of tzw, and tww, has
a great computational advantage over the use of Szw,s and Sww, because tzw, and
tww. 1 can be expressed as functions of basic building blocks resulting from the estimation
process of X. In fact,

tzw = Z rzrw,hi + Z hij(rw,irz; + rwirz;:)
el (i.7)€l,i#]

tww,r = er,i2hii +2 Z rw,iTw,;hi;
i€l (ii)el,i#s

Now, we plesent an algorithm based on 2 measures tzw,, tww, at each m. When
m=1, compute /\( y for s with large values of tzw,; and tyw,;. Observations with large
dgy = =\- /\( ) are influential. When m = 2, compute /\ y for I’s with large values of {zw;
and tww,. Sets with large d(;y = A=A (1) can be 1nterpreted as follows. If I contains an
observation, say ¢, which is already detected as influential, and d(;) = d(;), then I cannot
be claimed as inﬂuential since d(y) is large due to swamping by 1. On the other hand, if I
does not contain any influential observations and djy is large, this set is influential. We
can proceed this step for m = 3,4,

To illustrate the algorithm easxly, \ was -.54 suggesting inverse square root trans-
formation, and candidates could be 1, 2, 21, 22 as shown in Table 1. But d;’s for
these observations are small, i.e., no observation is influential when m = 1. For m = 2,
candidates could be (1,2) and (21,22) (see Table 2). For these sets, d;2) = .10 and
d(2122) = —.96, theref01e only set (21,22) is influential. When m = 3, all candidates
contain (21,22) as subset, and the most influential set is (9,21,22) with d(g 21,22) = —.97
which is almost equal to d (21,22)- Therefore, we can conclude that (21,22) is the most and

the only influential set with A (21,22) = —.54 — (—.56) = .02 suggesting log transformations.

4. CONCLUDING REMARKS

Masking effect is more serious in Box-Cox transformation model than in the classical
linear model. Therefore, it is necessary to obtain the effect of multiple cases on the
transformation parameter. Previous suggestions by many authors are computationally
infeasible, and accuracy is not guaranteed. This article develops a useful algorithm using
computable measures. Also, we derived analytic expression for the Tsai and Wu’s (1990)
diagnostic which can be used to estimate the correct value of A(;) by the k-step iteration.
Of course, that formula is easily implemented in FORTRAN, and it is much easier to
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usc than the symbolic programs such as MACSYMA or SMP. As pointed out by referees,
the accuracy of our algolithm cannot be guaranteed unless we use k-step iteration using
the analytic expression of Tsai and Wu’s diagnostic in Section 2.2. Therefore, accurate
estimate of A(jy should be calculated by the k-step iteration for those sets detected as
potentially influential via our algorithm.

Table 1. One case deletion in artificial data
yi | Swwi | Sawi | d [ df) [ dfy" Tdl" T 1y |
1] 06| 1.07 1.90 331 03] .04 03| .03]-46

‘ case I x;

2] .10 1.11 143 -23| .02 .02 02 .02(-33
31 25| 1.28 36| -.03( .00] .00 00 .00 (-.05
41 41| 1.53 01 01]-00] -00| -.00| -.00 [ .02
5| 50| 1.67 01| -.02} .00| .00 .00 .00 |(-.03
6| 57| 1.76 04 -03; .00 .00 00| .00 (-.04
7T .70 2.04 14 -08) 01| .01 01 .01 (-13
81 82| 2.27 210 -07) 01 .01 01 .01(-11

9 .88 | 2.37 231 -04 00| .00 .00} .00|-.07
10| .92 2.52 2510 -07) .01 .01 01 .01 (-11
11 11.001 2.66 25| -.01] .00 .00 00| .00 -.02
12 ({1.04 ] 281 251 -02| .00} 00| .00 .00|-.04
13 | 1.10 | 3.00 241 -01] .00| .00 .00 | .00 |-.02
14 | 1.15| 3.18 22 .00} 00{ .00} .00} .00)-.01
15 1.18 ] 3.22 22 .03(-00f -00]| -.00| -.00 .05
16 | 1.22 | 3.37 .20 .04 |-00| -00| -00) -.00] .06
17 11.28 | 3.60 .16 05 -.00{-00| -.00| -.00 | .08
18 | 1.32 1 3.66 15 .03(-01}-01} -01]| -.01] .14
19 | 1.36 | 3.87 A2 .08j-01| -01| -01]| -.01] .12
201141 | 4.04 .09 091-01|-01| -01] -01] .14
21 | 1.85 | 13.50 3.07 53 | -061 -07 | -.06 -.06 .75
22 11.95 | 14.50 3.81 05]-00} -01 -01]| -.00| .07

Table 2. Four largest (in absolute values) tzw, 1, tww,1, and d(p
when deleting two cases, i.e, m = 2

[ set l tZVV,I ” set I tWW’,I ” set l d([) ]
(21,22) | 20 (21,22) | 229 [ (21,22) | -.56
(1,2) | -17( (1,2 102 (1,2)| .10
(13) | -08 (6,22)| .69 (18,21) |-.06
(10,21) | -.08 | (5,22)| .69 (19,21)|-.06
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APPENDIX : DERIVATION OF EQUATION (11)
Q(n(A) in (2.1.5) can be written as
QN = (Miery:)?07™ x

{ZV'(1 - H)Z™ — (BY(I - H)ZW)' (1 - Hy) 7 (B{(1 - H)ZW)} .

Note that Z(M = c()\)l/2Zm where ¢(A) = J~ 2/ (n(n=m))

Let k(A) = (Ties %)™~ and f(A) = (EY(I - H)ZW)' (1 - H;) ™ (BY(I-H)ZO)
by supressing the index 1. '

Then,
Qn(A) = k(A {e(V) ZW' (T -H)ZW - (1)}

and, can easily show that

Quy(A) = rz'rz [k(\)e(M)]is — BV F(M)]acs
and

Qun(A) = rz'rz [k(Ne(Mlizs — BV FV)es + 26(0)e(A) {rz'ru + rw'rw }
Since f(A) = ¢(A)p()) where
p(3) = (E4(I - H)Z™) (1 - H;) ™ (Ej(1 - H)ZW),
we have k(A)f(A) = k(M)e(A)p(A). Now, let g(A) = c(A)k(}), then,
Q) = ¢ (xz'rz = p(}) = P (R)a(N)

and

Qin(}) = (rz'rz — p(N)g"(A) =20 (V)¢ () + 2¢(N)(rw'rw + r2'rv — p"(3)/2).

To get explicit form of Q and Q, note that

= (H%/Z)m

)2(A—1)/(n—m)
i€l

2
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3 ol 2
¢'(A) = ¢(A)log (gyz/y ) =24(\)G
¢"(}) = 4¢())G?
where G = (G; is defined in Section 2.2. Note that

A

p(A) = Szzi,

P(A) = 2Szwy

and

P'(N) = 2 {Swws + Szur}-

Therefore, _ R R i A
| Qin(Y) = ¢ {26(rz'rz — p(1)) — ¥ (1)}

and

Qn(\) = 2GQ(A) +2¢(}) {Pwtrw +rziry - L é)‘) - Gpl(j‘)} .

Hence, we have the ratio Q(I)(:\)/Q(I)(;\) equal to the second factor in the right-hand
member of the equation (2.1.1).
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