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Some Orthogonal Factorial Row—column Designs!)

D. K. Park?

ABSTRACT

It is shown that a structurally complete row-column design has orthogonal
factorial structure if each of its component designs has orthogonal factorial
structure. It implies that such designs are most easily constructed via the
amalgamating of one-dimensional block designs which have orthogonal factorial
structure. However, this does not always hold for structurally incomplete
row—column designs. A structurally incomplete row-column design is derived
from the design with adjusted orthogonality, by simply interchanging row and
treatment numbers.

1. Introduction

Row-column designs are those that involve two crossed, non-interacting
blocking factors. A row-column design is called structurally complete (SC) by
Stewart and Bradely (1990) if the design has no empty cells and structurally
incomplete (SIC) otherwise. Many results for SC-designs, Latin Square designs
being the simplest case, exist in the literature in their construction and
properties. The construction and analysis of SIC-designs has been discussed
recently by Stewart and Bradely (1991b), and Park and Dean (1992).

We restrict our attention to experiment in which v treatments (or treatment
combinations) are observed r times each, and at most one treatment is observed
at each combination of levels of the blocking factors. We will consider
row—column designs with the same number of empty cells for each level of a
blocking factor so that each component design ( ie. the design which is obtained
by simply ignoring any one of the blocking factors) has constant block size.
Suppose that a set of two component designs consists of two block designs such
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that the i™ design has b blocks of size k (=vrbi-1; i=1,2). Since our designs
have the same number of empty cells (=bib;~vr) for each blocking factor, vr
should be divisible by b; for all i=1,2 so that k's are positive integers.

A design is disconnected if the treatments can be split into groups such that
no treatment from one group occurs in any blocks with any treatment from a
different group. A design which is not disconnected is said to be connected. The
designs considered in this paper are all connected, and it is well known that
every contrast of treatment effects in a connected design is estimable from
within-block comparisons. The usual linear model is assumed to hold for all
connected row—column designs considered in this paper

y=Xou+X1B1+X2B2+X3t+e (1.1)

where y is a vrx1 vector observations, # is a constant, r is the vector of v
treatment effects, B; (i=1,2) is a vetor of effects of the b; levels of the i
blocking factor, and e is a vector of independent identically distributed random
variables with mean zero and common variance o2 Following Stewart and
Bradely (1991b), the information matrix Cq of row-column design d is

Ci=C1-MP™M' (1.2)

where M=Nz-ki'NiN1z , P=kol-ki 'NaiNiz , Ni=Xa'X1, No=Xs'Xz , Niz=Nar''=X,"Xz ,
and P™ is a generalized inverse of P.

Once the effects of the treatment combinations have been adjusted for blocks,
the estimates (main effects and interactions) may now be correlated, so that
interpretation of the analysis becomes difficult. However, this problem can usually
be solved since there are a large number of block designs with orthogonal
factorial structure (OFS). A factorial design is said to have OFS if the treatment
sum of squares adjusted for block effects admits an orthogonal splitting into
components corresponding to different factorial effects, so that any effect can be
estimated and assessed independently of any other effect. Several methods of
constructing SC designs with OFS have been developed based on Kronecker
product (see Gupta, 1983) and by the use of a generalized cyclic design (see John
and Lewis, 1983).
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2. SC-design with OFS

Following Mukerjee(1979), for an n-factor experiment with factor F; at m;
levels (i=1,",n), the treatment structure is given by

1= 2.8xt (2.1)
X

where the summation is over all binary numbers x=(x;,"xs) and

Sx = Sx1 ® Sx2 ® -———- ® Sy,

where ® denotes Kronecker product and

g [mim if x=0
a lm;“m;l-’nln if xi=l

Inis an n x n identity matrix and J, is an n x n unit matrix.
In Theorem 2.1, we show that a d-dimensional factorial SC design (especially
when d=2, row-column) has OFS whenever each component design has OFS.

Lemma 2.1 (Mukerjee, 1979) For a block design, OFS holds if and only if the
information matrix commutes with S, for every x=0.

A design is called to be completely symmetric if information matrix of the design
has the form of al.+bJ,. Such designs satisfy the condition of Lemma 2.1 and
have OFS. Thus, randomized complete block designs and balanced block designs
are examples of one-dimensional designs with OFS.

Theorem 2.1 A factorial SC-design has OFS whenever each component design
has OFS.

Proof. Cheng (1978) has shown that the information matrix C4 of an SC-design
d can be expressed as

Ci= é:lc,.—r(d— 1(I-v1) (2.2)
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where Cp is the information matrix of the h™ component design. Assume that
each of d component designs has OFS. Then Lemma 2.1 implies that CaS:=S:Cs

d d
for h=1,"d and so hglC;.SFh;leC;.. Therefore, from (2.2)

{Ci+ rd-D)Uv)) )} S = S { Ci+ nd-1)UvY) } (2.3)

Note that since all Sy matrices, apart from So, are contrast matrices and
symmetric, they are proper matrices, so that

SJ=J8:=0 (2.4)

Hence, from (2.3) and (24), CsSx = Si«Ca for all x. Thus, the d-dimensional
SC-design has OFS from Lemma 2.1.

The theorem tells us that Latin square designs, Youden designs, generalized
Youden designs, Pseudo-Youden designs, generalized cyclic designs, and Youden
hyperrectangles are examples of two- or higher—dimensional orthogonal factorial
SC-designs with component designs having OFS. Those designs are most easily
constructed via the amalgamating of one-dimensional block designs which have
OFS.

3. A class of SIC-designs with OFS

Theorem 2.1 guarantees that an SC-design has OFS, provided that each of its
component design has OFS. However, even if each of the component designs has
OFS, the corresponding SIC-design might not have OFS, as shown by the
following example.

Example 3.1 Take two SIC-designs with v=4 and r=3 with treatment labels 00,
01, 10, 11 as follows. In the design, x denotes the cell is empty.
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00 01 X X

01 x 11 x

10 x x 00
X 11 10 x
x 00 x 1
X X 01 10

Two component designs have OFS since they are balanced incomplete block
designs. However, since S1Cy # CsSio where Sio = (I2-0.5]2)®(0.5]z), we can
conclude that this SIC-design does not have OFS, even if the two component
design have OFS.

In this paper, we will construct a class of completely symmetric SIC designs
that have OFS. In the equation (1.2) if M=0, Cq is same to Ci. Estimates of
treatment parameters, therfore, are the same to those obtained from a model in
which the column parameters have been deleted. These row-column designs will
be said to be column-orthogonal. It implies that if its row-component design is
completely symmetric, the column-orthogonal SIC design is completely symmetric
and has OFS. In section 4, we construct such kind of designs.

4. Construction of column-orthogonal designs with OFS

Let Nig(x,7) denote the row x column incidence matrix in the reduced normal
equation after adjusting for z and r. Following Eccleston and Russell (1975),
blocking factors adjusted for z are orthogonal if and only if Niz(z,r) is the
same whether or not B; is included in the model (j=1,2). Corollary 2 of
Eccleston and Russell (1975) implies that a design 8 has adjusted orthogonality if
and only

Niz=(r) "' NiN; (4.1)

For an SC-design 5, the equation (4.1) becomes
J,=(r)"'N'Nz (4.2)

An SIC-design can be derived from the design 3 with parameters v, bi, bz and
r, by simply interchanging row and treatment numbers. Such ideas were
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originated by Agrawal (1966) and developed by Stewart and Bradely (1991b).
The resulting design so constructed, say , has v(@)=bi, bi{@)=v, b2 w)=b,
ki(w)=r. Let the corresponding incidence matrices of the design @ be Ni(w),
Nz(@), and Niz( w). Then the equation (4.1) becomes

kWN2(0) =N1 (0)N1z (0) (4.3)

and M=0, so the design @ is column-orthogonal.

However, such designs are not necessarily to be completely symmetric. An
example will make clear this point. Take an SC-design 5 that was given by
John and Eccleston (1986) with v=12, bi=4, bs=6 and r=2 : for simplicity, each
treatment combinations is represented by the numbers 0,...,12.

0 4 8 3 7 11
1 5 9 0 4 8
2 6 10 5 9 1
3 7 11 10 2 6
We get the following SIC column-orthogonal design « with v(w)=4, bi(@)=12,
b ®)=6, ki{®w)=2, ko(w)=4, and r(w)=6 by arranging the treatments in the
rows and the row blocking labels in treatments.

0 x x 1 X X
1 x x x x 2
2 x x x 3 X
3 x x 0 x x
x 0 x x 1 x
x 1 x 2 x x
Xx 2 x x x 3
x 3 x x 0 x
x x 0 x x 1
x x 1 x 2 x
x x 2 3 X X
x x 3 x x O

The above resulting design @ 1is column-orthogonal but not completely
symmetricc. We define three special classes of SIC-designs amalgamated from
binary component block designs. Designs with OFS are selected in each class.

Definition 4.1 An SIC-design in which one component design is a complete block



175 g

design and the second component design is a balanced block design is called a
Youden Square Type design.

Definition 4.2 A Latin Square Type SIC-design is a square matrix of the treatment
labels such that each treatment labels occurs in each row exactly once and in
each column exactly once.

Definition 4.3 An SIC-design is defined to be a generalized Youden Square Type if
two component designs are both balanced designs.

Whether the resulting design @ is whether completely symmetric or not is
determined by the structure of row component design of the selected design 5. If
every block of row component designs has a constant number of treatment labels
in common with every other block of the component design, the resulting design
@ should be completely symmetricc We can see that many of the row-column
designs with adjusted orthogonality in the literature satisfy the above condition
(for example, Park and Dean (1990)) and we can construct an SIC-design with
OFS from the existing design with adjusted orthogonality, by interchanging row
and treatment numbers. Some examples are shown below.

The design © in Example 4.1 with parameters v()=b1=5, bi(@)=v=10, ba( )
=bz=6, and ki(®)=r=3 is a column-orthogonal and completely symmetric Youden
Square Type design.

Example 4.1
(a) SC-design & (b) derived 'Youden Square Type' o
x 0 x x 4 1
0 x x 4 2 x
1 0 9 5 4 3 x x 4 1 3 x
5 6 3 2 7 0 x x 1 2 x 0
7 4 6 3 1 8 x 2 3 x 0 x
9 5 4 8 2 7 1 3 x 0 x x
6 8 2 1 0 9 4 1 2 x x x
2 x x x 1 3
x 4 x 3 x 2
3 x 0 x x 4
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A Latin Square Type SIC-design @ can be constructed from Youden Square
design 5. Since the design 3 has v=br and r=b; and so the design @ derived
from the method has bi(@)=bx(@)=r(w) and ki(w)=k( ). The following
example with parameters v(@)=bi=4, bi(@)=v=T, b @)=bz=7 and ki(w)=r=4
serves as an illustration.

Example 4.2

(i) Youden Square 3 (ii) derived Latin Square Type ®
0 x 2 x 3 x 1
1 2 3 0 x x X

1

2 E,;? g f g ; Z 2 3 x x O 1 x
x 01 x x 2 3
x 1 x 3 2 x O

Design (i) is column-orthogonal and since Cw=Ci(=C2)=TI-(4/7)] it is completely
symmetric. Note that all Latin Square Type designs are column-orthogonal and
completely symmetric since N1=Nz=J and so M=0 in the equation (1.2).

A generalized Youden Square Type design @ can be derived from SIC-design
5 which was constructed by Park and Dean (1992). The following completely
symmetric generalized Youden Square Type design with parameters v(w)=5,
bi( @)=10, bz(@)=5 and ki(w)=2 is derived from the design 3 in Example 3 of
Park and Dean (1992).
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Example 4.3

X xx 1 0

x x 0 x 3

x 0 3 x x

2 x x x 1

1 x 3 x x

x 3 x x 2

x x 1 3 x

3 3 x x x

x 2 x 0 x

3 x x 2 x
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