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Application of Linear Goal Programming to
Large Scale Nonlinear Structural Optimization
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Abstract

This paper presents a method to apply the linear goal programming, which has rarely been used to
the structural opimization problem due to its unique formulation, to large scale nonlinear structural
optimization. The method can be used as a multicriteria optimization tool since goal programming rem-
oves the difficulty in defining an objective function and constraints.

The method uses the finite element analysis, linear goal programming techniques and successive lin-
earization to obtain the solution for the nonlinear goal optimization problems. The general formulation
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Application of Linear Goal Programming to Large Scale Nonlinear Structural Optimization

of the structural optimization problem into a nonlinear goal programming form is presented. The succ-
essive linearization method for the nonlinear goal optimization problem is discussed. To demonstrate the
validity of the method, as a design tool, the minimum weight structural optimization problems with
stress constraints are solved for the cases of 10, 25 and 200 trusses and compared with the results of

the other works.
1. INTRODUCTION

When applying a traditional structural optimiz
ation algorithm, the user selects a single criterion
which is to be maximized or minimized, and
defines a set of design constraints which delimit
a feasible design space. A set of design variables
must also be defined. This general formulation
does not allow much flexibility and has draw-
backs for application in many design situations.

It is often difficult to define the problem
exactly in the format required for a traditional
structural optimization algorithm. For example,
as the objective function and the costraints are
sometimes mixed up in real design problems,
the designers are often confused which one to
select from the others. Design goals may be
ranked in some specific order of preference but
to select one as the objective of the optimization
and to treat the rest as constraints are often
quite difficult. In addition, design targets are
generally set at optimistic levels which in pra-
ctice may not be achievable. There are, however,
optimization techniques which address multi-
objective optimization problems and have the
capacity to handle rank ordered design objectives
or goals. This technique is known as “goal
programming(1 —6}.”

In a goal programming (GP) formulation, the
design goals are defined and a priority is assi-
gned to each one. The algorithm then attempts
to satisfy as many goals as possible, starting
with the highest priority goal. This removes the
diffculty in defining an objective function and
constraints and makes goal programming an

ideal design tool.

The formulation of the nonlinear structural
optimization problem into a goal form and its
application to a simple 3 bar truss structural
optimization probiem is discussed only in [7].
In this work, so as to handle more realistic
structural design problem, the generalization of
the approach in (7] and its application to large
scale structural optimization problems are treated
intensively and their feasbility is proved by
comparing with known results. The finite elem-
ent analysis is employed to anlayze the response
of the structure during the optimization process.

2. FORMULATION

Traditional optimization models require the
formulation of a single objective function. Linear
programming (LP) is one of the most frequently
used techniques of mathematical programming
for the solution of the optimization problems.
In LP problems the single objective function
and the constraints appear as linear functions
of the design variables. The LP solution proc-
edure is based on the simplex method [8,9].
Linear goal programming (LGP) as an extension
of linear programming also uses the simplex
method which is modified to solve the multi-
objective and multi-conflicting-objective LP
problems. The terminology, basic elements and
the formulation of the LGP problems are treated
extensively in references [5,6] and are omitted
here. In the following we discuss the formulation
of the general structural optimization to LGP

form.
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2.1 General Goal Optimization Problem

The general goal opimization problem is:

Minimize — Z=3 wwPud+d?) k=12, K)
subject to g{x)+di —di*=b;

(i=1,2,--, I)
and xt<x<x¥, d7, d*>0
to find X€E€RN @

where vector Z is the objective function of
GP to be minimized. The dimension of Z rep-
resents the number of pre-emptive priority levels.

The differential weights wy; are mathematical
weights which are expressed as cardinal num-
bers, and are used to differentiate the i* dev-
lational varibles within a single K" priority level.
The pre-emptive priority factors P; represent
a ranking system which places the importance
of goals in accordance with the following rela-
tionship : Pi(The most important goal))Py))) Pk
(The least important goal). di and di* are neg-
ative and positive deviational variables that
express the possibility of deviation from a rig-
ht-hand-side value b{these variables are conce-
ptually similar to slack variables in LP models).
g is the goal constraints function we desire to
minimize its numerical deviation from a stated
right-hand-side value &; in a selected goal con-
straint. 1 is the total number of the goal cons-
traints. This goal constraint is expressed as the
flexible constraint. xL and xV represent the lower
and upper bound of design variable, respectively.
x is a set of N design variables we seek to
determine.

The solution procedure is that we consider
the objective function with the highest priority
(P1) first and determine the solution to mimimiz
e deviational variables which are related to
priority P1. Move to the objective function

having the next highest priority (P2) and det-
ermine the best solutions. Repeat until all priority
levels have been investigated and determine the
best and compromise solutions. More detailed
discussion about the LGP solution procedure is
given in [5,6].

2.2 Linearization of Nonlinear Optimization
Problem

To use the simplex method in solving nonli-
near goal programming problem, the goal con-
straints must be linearized. One of the most
well known linearization methods is the Griffth
and Stewart method [10]. This algorithm employs
the Taylor series expansion[11] of the function
g{x) in Eq.(1) about the point x™. This is exp-
ressed in equation form as follows :

gi{x)=g{x™)+ved{x")0+6(d,)

(=12, D (2

where ¥ is a gradient operator, J, is a vector
representing small variations in the design
variables, and 6(¢,? represents all terms of the
order two and higher in variations. Neglecting
the higher order terms in each expansion results

in an approximate linear opimization problem
[12].

2.3 Structural Optimization Problem

The traditional model of the minimum weight
structural optimization problem is

Minimize — W(x)

subject to  G{x)<0 (i=12,--, M)
and xt<x<x?
to find X € RN 3)
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where W(x) is the objective function, repres-
enting the total weight of the structure. G{(x)
represents the constraint functions including
the inequality and equality constraints and it
may be a function of stress, displacement, Euler
buckling and natural frequency. I is the total
number of constraints. x% and xV represent the
lower and upper bound of design variable, res-
pectively. For simplicity we consider the mini-
mum weight optimization problem of truss str-
uctures with stree constraints. The structural
optimization problem with the cross-sectional area
of the truss members taken as the design
variables becomes :

J
Minimize W(x)=2.1%
subject to  g{x)fe,— 1<0 ( i=1,2,--, M)
and xE<x<xV
to find X € RN @

where g, 1, x; are the density, length the
cross-sectional area of j* truss member, o; and
g, represent the stress component of the i
member and allowable stress, respectively. J is
the total number of design variables or members.
M is the total number of members.

The structural optimization problem, Eq.(4)
can be rewritten, in a goal structural optimiz
ation model, as follows :

Minimize ~ Z=3 e Pldr+d)
k=12, K)
subject to W(x)|W,—14di —d*=0
a(i—1)(x)fo,~1+d7—di'=0
(=2, M, M+1)
and xt<x<xY, d7, dt>0
to find  xeRN )

where W(x) is the total weight of the struc-
ture, W, represents target weight or initial
weight. Using Eq.(2) to linearize the stress
constraints and neglecting the higher order
terms, the structural optimization problem bec-
omes :

Minimize  Z=3wqPddi+ d)
(k=12,-, K)
subject to Z=§:Pj1,xj/Wa+d1' —d"=b
Vo n(x")" x/ogt+d —di=b;
(1=2,, M, M+1)
and xT<x<xY, 4, d>0
to find X € RN 6)
where
bh=1

bi=14+v0o-1y (x™)T x"[o,—ay-1\(x")fa,

(for i=2,-, M, M+1)

This linear goal structural optimization problem
can be solved using the modified simplex method
[13.14]. By solving the LGP optimization problem
described, the nonlinear goal structural optimiz
ation problem can be solved via an iterative
process. The linearization starts about some initial
value x(@, After linearlization, the LGP algorithm
is used to determine the optimumn value for the
linearized equations. The new optimum values
xI are improvement on the original x@ values.
This process continues until || x™ — xim-D||
is less than or equal to some predetermined
termination criterion. Stress in the structure
members at each value of the design varabes
is obtained by using the finite element anaylsis.
The gradient information is obtained by using
the finite difference approximation.
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3. TEST CASES

The following is structural optimization exa-
mples to demonstrate the ability of the method
in solving large scale optimization problems. The
planar 10 member truss, 25 member space truss
and 200 member plane truss problems were
chosen, because their solutions are available in
[15,16]. Schmit et al.{15] introduced approxima-
tion concepts and used the NEWSUMT algor-
ithms which is a sequence of unconstraints
minimization technique based on the extended
interior function formulation. In Ref.[16] a ste-
epest descent algoritm was used for optimal
design of structures.

3.1 Planar 10 Member Truss

Fig.1 shows the geometry and dimensions of
the 10 member truss.

360"

Fig.1 10 Member Planar Truss

The truss element descriptions including initial
cross sectional area, minimum member size,
material properties and load data are specified
in Table 1.

Two cases are considered for the anaylsis.
The truss is designed to withstand a single
loading condition subject to weight and stress
goal constraints.

Table 1. Design Data for 10 Member Planar Truss

Modulus of elasticity=10* ksi

Material density=0.10 Ib/in®

Lower limit on cross-sectional areas=(.10 in*
Initial value of design variable=10 in®
Stress limit=425 ksi

Number of loading conditions=1

Load Data

Load component (kips) in Direction

Load Loading
Case No. Condition Node X y z
I 1 2 0.0 —100.0 0.0
4 0.0 -100.0 0.0
I 1 1 0.0 50.0 0.0
2 0.0 -150.0 0.0
3 00 50.0 0.0
4 00 -150.0 0.0

Results and Discussion

The results for the optimum cross-sectional
area of each member, the opimum weight, the
number of iterations, the number of active
constraints, the number of function evaluations,
and the maximum positive deviation are given
in Table 2 for case I and case [I. The results
obtained from the different nonlinear program-
ming algorithms [15, 16) are also shown in Table
2.

For case [, target weight is 1585 Ib and the
optimum weight of 1593.18 1b is obtained from
the LGP. There are 10 active constraints for
the optimum design, which are the minimum
size constraints on members 2, 5, 6 and 10 and
stress constraints on members 1, 3, 4, 7, 8 and
9. The maximum positive deviation of goal
constraints is 2.5x107.

For case [I, the target weight is 1655 lb and
the optimum weight of 1664.53 lb is obtained
from the LGP. There are 10 active constraints
for the optimum design, which are the minimum
size constraints on members 2, 5 and 10 and
the stress constraints on members 1, 3, 4 and
6—9. The maximum positive deviation of goal
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Table 2. Results for 10 Member Truss

Optimum Cross-Sectional Area in in?

Case [ Case [I
Member Number LGP Ref. 15 Ref. 16 LGP Ref. 15 Ref. 16
1 7.9379 7.938 7.9379 5.9477 5.948 5.9478
2 0.1 0.1 0.1 0.1 0.1 0.1
3 8.0621 8.062 8.0621 10.0523 10.05 10.0520
4 3.9379 3938 3.9379 39477 3.948 3.9478
5 0.1 0.1 0.1 0.1 0.1 0.1
6 0.1 0.1 0.1 2.0523 2.052 2.0522
7 5.7447 5.745 5.7447 8.5593 8.559 8.5592
8 5.5690 5.569 5.5690 2.7545 2.755 2.7545
9 5.5690 5.569 5.5690 5.5829 5.583 5.5830
10 0.1 0.1 0.1 0.1 0.1 0.1
Optimum Weight (Ib) 1593.18 1593.23 1593.18 1664.53 1664.55 1664.53
No. of Iterations 12 15 9 1 10 1
No. of active constraints 10 10 10 10 10 10
No. of Funtion Evaluations 143 132
Max. positive Deviation 2.5%10°® 2.6x10°°
Max. Constraint Violation 6.2x10™ 5.9x107°

constraints is 2.6x107.

By comparing data from Ref.[15] with LGP
data, the optimum values are almost the same

due to the same number of active

constraints.

3.2 25 Member Space Truss

A 25 member space truss is shown in Fig.2.

Fig.2 25 Member Space Truss

The design data for this truss are given in

Table 3.

Table 3. Design Data for 25 Member Space Truss

Modulus of elasticity=10' ksi

Material density=0.10 Ib/in®

Lower limit on cross-sectional areas=(.10 in’
Initial value of design variable=0.5 in®

Stress limit=440 ksi
Number of loading conditions=2

Load Data

Load component (kips) in Direction
Load
Condition Node X y z

1 1 05 0.0 0.0
2 0.5 0.0 0.0
3 1.0 10.0 -5.0
1 0.0 100 —-50
2 3 0.0 20.0 —5.0
4 0.0 ~20.0 ~5.0

Simple design variable linking is used to set
the double symmetry for this truss. This results
in 7 design variables. The truss is designed to
withstand a double loading condition subject tc
weight and stress goal constraints.
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Results and Discussion

Table 4 shows the optimum values of the
cross-sectional area of each member, the
optimum weight, the number of iterations, the
number of active constraints, the number of
function evaluations, and the maximum positive

deviations.

Table 4. Resuits for 25 Member Truss

Optimum Cross-Sectional Area in in

Member Numbers LGP Ref. 16
1 01 01 i
2.3.45 0.3766 0.3755
6,7 8 9 0.4705 04734
10, 11, 12, 13 0.1 0.1
14, 15, 16, 17 0.1 0.1
18, 19. 20. 21 0.2770 0.2786
22,23, 24, 25 0.3823 0.379%
Optimum Weight(lb) 91.24 91.27
No. of Iteration 6 5
No. of Active 7
Constraints
No. of Function 5
Evaluations
Max. Positive 4.1x10™
Deviation |

Also shown are the results from the different
[16]). The
target weight is 90 lb. The optimum weight
of 91.24 b is obtained form the LGP. There
are 7 active constraints for the optimum design.

nonlinear programming method

Four of these constraints are related to members
3, 4,5 9, 18, 21, 22 and 24. The rest of the
active constraints are related to the minimum
size constraints on members 1, 10, 11, 12, 13,
14, 15, 16, 17, 22, 23, 24 and 25. The maximum
positive deviation of goal constraints is 4x10™.
In comparison with Ref.[16] the LGP yields very
good results.

3.3 200 Member Plane Truss

The geometry and dimensions of a 200

member plane truss are shown in Fig.3.

Fig.3 200 Member Plane Truss

This structure has 77 jpints and 150 degrees
of freedom. The structure is designed to with-
stand 3 loading conditions. Becuase of its sym-
metry the design variables are reduced to 96
variables. Table 5 gives design information for
the structure. The plane truss is analyzed and
designed subject to weight and stress goal

constraints.

Results and Discussion

The optimum results for the 200 member
plane truss are given in Table 6. Also shown
are the results from the different nonlinear
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Table 5. Design Data for 200 Member Plane Truss

Modulus of elasticity=3x10* ksi

Material density=0.283 ib/in®

Lower limit on cross-sectional areas=0.10 in*
Initial value of design variable=1 in*

Stress limit==430 ksi

Number of loading conditions==3

Table 6. Results for 200 Member Truss

Loading Condition 1. One kip acting in position x direction
at node points 1, 6, 15, 20, 29, 34, 43, 48, 57, 62,

71.

Loading Condition 2. 10 kips acting in pcsition y direction
at node points 1, 2, 3, 4, 5, 6, 7. 8, 9, 10, 12, 14,
15, 16, 17, 18, 19, 20, 22, 24,---, 71, 72, 73, 74, 75.
Loading Condition 3. Loading Conditions 1 and 2 acting

together

Optimum Cross-Sectional Area in in?

Member Member Member

Numbers LGP Ref. 16 Numbers LGP Ref. 16 Numbers LGP Ref.16
14 0.1 0.1 69,71 0.1 0.1 146 2.3872 2.4116
2.3 0.1 0.1 70 1.1678 1.1731 153,156 0.4268 0.425
517 0.2422 0.2469 77,80 0.2033 0.1892 154,155 0.1 0.1
6.16 0.1243 0.1185 78,79 01 0.1 157,169 1.2747 1.3251
7.15 0.1 0.1 81,93 0.9726 1.0402 158,168 0.8334 0.8462
8.14 0.3696 0.3675 82,92 0.4335 0.4108 159,167 0.1 0.1
9,13 01 01 83,91 0.1 0.1 160,166 4.6461 4.588
10,12 01 0.1 84,90 2.2790 2.2576 161,165 0.1 0.1

11 0.2457 0.2454 85,89 01 0.1 162,164 0.1295 0.1276
18,25,56.63, 86,88 0.1 01 163 2.6533 26772
94,101,132,139, 0.1 01 87 1.4448 1.4567 171,172,175,176 0.1 0.1
170,177 95,96,99,100 0.1 01 173,174 0.1 01
19,20,23.24 01 0.1 98,98 01 01 178,190 1.6080 1.6597
21.22 0.1 01 102,114 1.3059 1.3481 179,189 0.1158 0.1156
26.38 0.5755 0.5815 103,113 0.1028 0.1111 180,188 0.9145 0.9181
2737 0.1 0.1 104,112 0.5003 0.4795 181,187 49795 4.9213
28.36 0.1809 0.1736 105,111 2.6123 2.5909 182,186 0.1348 0.1339
29.35 0.7030 0.7008 106.110 0.1029 0.1007 183,185 0.1 0.1002
30.34 01 0.1 107,108 0.1 0.1 184 2.9866 301
31.33 0.1 0.1 108 1.7781 1.7922 191,194 1.2073 1.2392
32 0.5790 0.5792 115,118 0.3054 0.2932 192,193 0.8204 0.8521
3942 0.1127 0.1035 116,117 0.1 0.1 195,200 2.2635 2.3257
4041 0.1 0.1 119,131 1.1883 1.2625 196,199 5.9840 59232
43.55 0.6547 0.676 120,130 0.6168 0.6050 197,198 2.5530 2.5718
44.54 0.2653 0.2489 121,129 0.1 0.1

4553 0.1 0.1 122,128 3.3982 3.3587 Optimum

46.52 1.2710 0.1 123,127 0.1 0.1 Weight 7472.7 7488
47.51 0.1 01 124,126 0.1157 0.106 by

48.50 0.1 0.1 125 2.0538 20771 No. of Iteration 52 15

49 0.8344 0.8402 133,134,137,138 0.1 0.1 No. of Active 96 0
57.58.61,62 0.1 0.1 135,136 0.1 0.1002 Constraints

59.60 0.1 0.1 140,152 1.5216 1.5748 No. of Function 5141

$4.76 0.9881 1.008 141,151 0.1246 0.1325 Evaluations

65.75 0.1 0.1 142,150 0.6913 0.6817 Max. Positive 6.7x10™

66.74 0.3276 0.3103 143.149 37315 3.692 Deviation

67.73 1.6044 1.5955 144,148 0.1183 0.1092 Max. Constraint 5.2x107*
68.72 0.1 0.10 145,147 0.1 0.1 Violation

- 140-



723 s A135(1992.3)

FefAL - Aol - S

Table 7. Active Constraints at the Optimum Design for 200
Member Plane Truss

Design Variables
(i) Active Stress (ii) Active Minimum size
Constraints (57) Constraints (39)
3.4.6.9,13,15,16,19, 1,25.7,8,10,11,12,
20,22,23,25,28,31,33, 14,17,18,21,24,26,27,
34,37,38,40.41,43.46, 29,30,32,35,36,39.41.
49,50,51,52,54,55,56, 44,45,47,48,54.57,60,
58,59,61,63.,64,67.68, 62,65,66,72,75,78,80,
69,70,71,73,74,76,77, 83,84, and 90.
79,81,82,85,86,87,83,
89,91,92,93,94,95,
and 96.

programming methods{16].

The target weight is 7480 lb., The opimum
weight obtained from the LGP is 7472.7 1b. The
active constraints are 96 for the optimum design.
57 of these constraints are related to stress
constraints and the rest are related to the
minimum size constraints. The detailed active
constraints are shown in Table 7.

The maximum positive deviation of goal
constraints is 6.7x10™. In comparison with Ref.
[16], 0.2% weight reduction is achieved by the
LGP.

4. CONCLUSION

A method is developed for solving large scale
nonlinear structural optimization problems using
linear goal programming. The method combines
the finite element analysis and linear goal pro-
gramming with successive linearization to solve
the nonlinear structural opimization problem. The
method has a wide range of applicability as a
design tool, in which the ability to solve mult-
i-conflicting objective problems is one of the
great advantages of the goal programming.

The structural optimization examples perfor-
med demonstrates the ability of the method in
solving large scale structural design problems.

While the method is applied only to truss stru-
ctures with stress constraints, it can be used
for the design of other types of structures with
different types of constraints. For some types
of constraints such as displacement constraints
a move limit techniques should be employed
with the successive linearization to assure con-
vergence.

5. REFERENCES

(1] Liri, Y., Management Goals and Accounting
for Control, Rand McNally, Chicago,
1965.

[2] Lee, SM,, Goal Progamming for Decision
Analysis, Auerback Publishers, Philadelphia,
1972.

[3] Fisk, J.C., “A Goal Programming Model
for QOutput Planning™, Decision Sciences,
Vol.10, No.4, pp.593—603, 1979.

[4) Wilson, J.M., “The Handling of Goals in
Marketing Problems”, Management Decision,
Vol.13, No.3, pp.175~180, 1975.

[5] Ignizio, J.P., Linear Programming in Single
and Multiple Objective Systems, Prentice-
-Hall, Englewood Cliffs, New Jersey, 1982

[6] Schniederjans, M.]., Linear Goal Program-
ming, Petrocelli Books, Princeton, New
Jersey, 1984.

[7] El-Sayed, M.E., Rigely, B.J., and Sandgren,
E., “Nonlinear Structural Optimizations
Using Goal Programming, “Computers and
Structures, Vol.32, No.1, pp.69—73, 1989.

[8] Dantzig, G.B., Programming in a Linear
Structure, Comptroller, United States Air
Force, Washington, D.C., 1948.

(9] Dantzig, G.B., Linear Programming and
Extensions, Princeton University Press,
Princeton, New Jersey, 1963.

(10] Griffith, R.E. and Stewart, R.A., “A Non-

- 141~



Application of Linear Goal Programming to Large Scale Nonlinear Structural Optimization

linear Programming Technique for the
Optimization of Continuous Processing
Systems”, Management Science, Vol.7, pp.
379—-392, 1961.

[11] Munem, M.A. and Foulis, D.J., Calculus
with Analytic Geometry, Worth Publishers,
New York, 1978.

[12} Reklatis, G.V., Ravindran, A., and Ragsdell,
K.M., Engineerings Optimization Methods
and Applications, John Wiley and Sons,
New York, 1983.

(13] Baumol, W.]., Economic Theory and Ope-

rations Analysis, 2nd ed., Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1965.

[14] Kwak, N.K., Mathematical Programming
with Bussiness Applications, McGraw-Hill
Book Company, New York, 1973.

[15] Schmit, A. and Miura, H., Approximation
Concepts for Efficient Structural Synthesis,
NASA CR-2552, Univ.of California, Los
Angeles, CA, 1976.

{16] Haug, E.J. and Arora, J.S., Applied Optimal
Design, John Wiley and Sons, New York,
1979.

- 142~



