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1. INTRODUCTION

In recent vyears, great attention has been

given to controller design for a path tracking
the thoery of variable
"t The VSS
is based on the concept of an attractive mani-
fold of

space on

problem by utilizing

structure systems (VSS)
the underlying state or error vector
which desired dynamic behavior is
assured The VSS are a special class of
characterized by a

which
set of

nonlinear systems

control action changes
reaching a sliding
A salient property of the VSS is the
sliding motion of the state on the sliding
During this sliding motion, the system

discontinuous
structure upon

surfaces,

surface.
has invariance properties yielding motion which
is independent of certain system parameters and

disturbances. Therefore the design of the sliding
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surface completely determines the performace of
system.

Most of sliding surfaces proposed so far have
consideration of given

been designed  without

initial conditions. Using these sliding surfaces,

the sliding mode occurs only after the system
reaches to the surfaces. Therefore, the tracking
can be hindered by the disturbance especially
during the reaching phasc. Furthermore, the
convergence to the surfaces may only be
asymptotic, so that the benefits of the VSS
cannot be realized. One casy way to minimize

the reaching phase, hence to get fast tracking

is to employ the larger control inpul. Young
et al. © used the high-gain feedback to speed
up the reaching phase. However, this may

cause higher chattering which is undesirable in
suggested
a sliding surface in the error state space in

physical system. Slotine and Sastry’
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order to eliminate the by

imposing a constraint that the initial errors be

reaching phase

zero. However, this situation is not gereral but
strictly special. Typically the initial conditions
of actual system, hence the initial errors may
be located arbitrarily.

It is also known that the gradients (slopes
in case of second-order system) of most of

sliding surfaces are
determined in an ad-hoc manner. Ashchepkov

conventional usually
established and proved the necessary conditions
of optimality of the sliding surface in the sense
of speed. For given arbitrary initial conditions
the optimal
value of slope of the surface was determined
by
However.

and properly designed controller.
minimizing the quadratic performace index.
in his specific example.
conditions to be

he imposed
the sliding
hence did not treat the reaching phase.
also proposed
synthesizing sliding
having optimal motion with respect to several

initial located on
surface,
Urkin

procedures

and Yang® various

for surface
performance indices in the sliding mode along
the In fact,
order to get fast tracking we need to construct
sliding
performance index evaluated at two phases: a
reaching phase and a sliding phase.

In this paper, we formulate an optimal sliding
surface in the sence of motion speed before
The optimal
surface is constructed by evaluating the tracking

intersection of their surfaces. in

an optimal surface minmizing a

introducing a new sliding surface.

error performance index in both reaching and
phases. The the
performance index, slope of the surface and
And a
com-

sliding relationship among
discontinuous control gain is presented.
specific
parison between

tracking example is given for
the optimal
sliding surfaces. Then
sliding surface adaptable
conditions. The surface is initially designed to

pass given initial errors and subsequently moves

and nonoptimal
we introduce a new

to arbitrary initial

towards a predetermined surface via rotating or-
and shifting. We call 1t
surface (MSS) comparing with the conventional

as a moving sliding

A9
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ones, for instances, employed by Slotine and
Sastry * or Spurgeon ’. Using the MSS, it is

shown that the tracking is much faster than
the optimal without increasing the
magnitude of discontinuous control gain. To
demonstrate some advantages of the proposed

we apply the MSS to the path tracking
of a 1two-degree-of-freedom robotic

even one

method,
controi
manipulator subjected to external disturbances.

2. OPTIMAL SLIDING SURFACE

Consider typical second-order linear sysiem
described by
xi(t) = x2(t)
x2(t) = arx1{t) + azxz(t) + bu(t) (1)
x1{to) = x10, x2(to) = xz0.
where a,, a, and b(s0) are known constants.
and x... x,. are initial conditions given at initial

time t.. The control problem is to get x(t) = (x,

(. %, 7 to track a desired trajectory Xd( =
(Xd, (t), Xd, (t))" which belongs to the class of

C' functions on (t., o). In other words, the
controller should force the tracking error to zero
asymptotically for any given initial states. Thus
we define the tracking error e(t) as
e(t) = x(t) - %i{t) or
(er(t), e2(t))T = (x1(t)-xdar(t),
x2{t)-xd2(t))T (2)
and also define the sliding surface stetti) (a

in the error state space by

(3)

line in this case!

s(e{t)) = cer(t) + e2(t), c >0,

We see rhat the tracking error e{t!—( for any
given initial conditions provided that there exists
S0 as to cause the trajectory
x (1t} to slide along the surface defined by (3}.
This can be achieved by satisfyving the sliding

a control ult

condition
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s{e(t))s(e(t)) <0 (4)

We construct a discontinuous control u{t) from
the concept of equivalent control as follow.
u(t) = [~aixi(t) - (craz)x2(t) + cxdz(t)

+ %d2(t) - k sgn(s(e(t)))]/b (5)

where k might be any positive number. Then
the tracking problem reduces to following

quation.
e1(t) = ez2(t)
e2(t) = -cez2(t) - k sgn(s(e(t))) (6)

ei(to) = vi, eal(tp) = vz

From the trajectory behavior of the error
states e, (t) and e,{t) in the sense of
convergence speed to zero, we may assume sle
(to)),o. Then, we obtain the solution of the
equation (6) in two phases. the reaching phase
{t 7t 1 and the sliding phase(t=t ), where t
is the time at which the sliding mode begins,
Le..

| ) the reaching phase (t<t )

e1(t) = k/c(-exp(-ct)/c -t) - vz exp(-ct)/c
+ (k/c + v2)/c + vy

k/c(exp(-ct) - 1) + vz exp(-ct)
(7)

1]

e2(t)

i) the sliding phase )
er{t) = {ksc? (-1 + exp({c2vy + cva)/k))
- vaz/c} x exp(-ct) (8)

{k/c (exp{(c2v; + cv2)/k) - 1)
va} exp(-ct)

e2(t)

+

where t = (cv,+v,)/k

QOur objective is to get tracking as fast as
possible, hence we may choose performance
index J as follow.

[-<]

J = | e2(t) dt
0
ts ©
= J er2(t) dt + [ e;2(t) dt (9)
0 ts

Minimizing J, we can obtain optimal value of
¢ lor k) with given initial errors (v, v,) and
k (or c).

tb)

Fig.1 Variation of the performance index : (a)
tvi,v,) =12, 1); (bylv,v,)=1(2 -1).

Figure 1 presents the variation of the
performace index J with respect to the values
of ¢ and k under specified initial errors. We
clearly observe that the optimal value of ¢
which minimizes the ] heavily depends upon the
discontinuous control gain k and also initial
errors. To manifest this feature, we consider

following example used by Hong and Wu

x1(t) = xz2(t)

x2(t) = x(t) + 2x2(t) + 3u(t) (10)
And the desired state trajectory is chosen by

xd1(t) = 0.2t

xd2(t) = 0.2

Then the controller(5) for satisfying the sliding
condition (4) becomes
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u(t) = [-x1{t) - {(c+2)x2(t) + 0.2¢c has larger magnitude of the slope. Of course,
- ksgn(s(e(t)))]/3 (11) if We Jr?crease the gam k, the situation becomes
quite different. This, however, may cause ex-

where k=0.5. Figure 2 shows the state tra- treme system sensitivity to unmodelled dynamics,

jectory with different initial conditions. In this actuator saturation and undesirable higher
chattering as well, [t is noted that the sliding

figure, T. represents the tracking time . ) L .
surface defined by the equation(3) is fixed with

determined on the basis that the tracking error
between the desired and actual trajectories
enters below one percent. The optimal slope

constatnt slope of ¢ or ¢ ;. in the error state
space. In the subsequent section. we improve
tracking behavior of the system without
increasing the gain k by introducting a new
sliding surface called the moving sliding surface.

¢+ Is chosen by minimizing the performance
index | in equation(9), and the value of c=
3.000 is chosen arbitrarily. We clearly observe
that the optimal sliding surface provides much
faster tracking than arbitrarily chosen one which

3. MOVING SLIDING SURFACE

As mentioned in Introduction, the basic phi-
osophy of the moving sliding surface/\SS: is
that the surface is initially chosen to pass given

arbitrary initial conditions. and we subsquentlv
move the surface towards the predetermined
sliding surface. The movement can be executed
by rotating or‘and shifting. Thus, we divide the
MSS into two types and call them as the
- — — —: (desired rotating sliding surface (RSS) and the shifting
———: copt = 1.087 sliding surface(SSS), respectively. The

—-— i ¢ = 3.000 movement for RSS is associated with time-
varying slope of the surface which belongs to
Time (sec) a ~lep fouclion to be defined below. On the
(a) other hand., the movement for SSS is
accomplished by employing time-varying intercept
of the surface which also belongs to a ~/cp

3] Ty = 10571 / Jeerelion,
\ Definition 1. A function ¢:R—R defined on

‘a.b) is called a ~fcp fonclion if there is
a partition given by a=v(v,{---{v.=b, such that
¢ is constant on each open subinterval (v ,,

-]
o
o
L=
I
)
>

14 ~
=7 To = 7199 v Iksn,
e
. /// — — — ! desired
© Copt ;000';65 3.1 Rotating Sliding Surface
. SeEs Let us define the rotating sliding surface as
0 3 8 9 i2 15 18
Time (sec) sr(e(t),t) = cr(t) e)(t) + ez(t)
(b) sr(e(to),t0) = sro = cro e1(to) + e2(tg)

Fig. 2 State trajectories : (a) (x,(0).x,(0)) = (2,

1
L2): (b (% (0. %.(0)) = (2 0.8 (an

45



A52 - 5 - 083

We obviously see that the surface initially

goes through given initial errors ef(t,) with the

corresponding slope c¢.,. In other words, the
representative point (RP) initially lies on the
surface s., as shown in Figure 3(a). In this

s, represents the predetermined sliding
s,=c.e (t) +e,(t). Before
we summarize

figure,
surface defined by
describing a moving algorithm,
the argument for existence of sliding mode in
a following theorem.

Fig. 3 Rotating sliding surface : {a) configuration;
(b} mechanism.
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Theorem 1. If ¢ (t) in equation(l1) is chosen
to be a for tc (t,, t) with
terminal values of c. (t,)=-e,(t,) /e (t,) and c, (t)
=¢,, and c (t) be a constant function when
tc {t,e} with c (t)=c,, (1) with
controller (5) incorporating the sliding surface
(11) satisfies sliding condition $.{e, t)§. (e, t)<0
almost everywhere.

step o funelion

the system

proof : From Definition 1, there exists a par-

tition P={v,, v, - v}, le., t,=vv,(v,=t
such that ¢ (t) is constant on each open
subinterval {(v.,, v.), I<k<n. Trivially, P is a
finite set. So we can prove that P is
measurable and m(P)=me(P)=0"", where m
denotes Lebesgue measure and m stands for
Lebesgue exterior measure. Therefore, since we
chose ¢ (t) to be a ~/cp funelion on [t,, t ],
¢ ()=0 for t t,, tJ-P and ¢ (t})=0 for (1,
o), Hence the control system (1) and (5 with

the sliding surface (11) obviously satisfies sliding
condition; s, (e,t)$. (e, t) <0 for ec R*-s., tt (t,, t J-
P and s {e t)$ (e, t)<0 for et R*-s, ti (t,6 oo},
This concludes the proof.

Now we can move the sliding surface s,, to
the s, by employing time-varying slope c. (t)
without violating
everywhere. The moving algorithm proposed in
this study may be outlined as follows.

the sliding condition almost

~lcp 1. We determine an appropriate constant
A\, required to rotate the surface and
define (refer to Figure 3(b)) A . =A
+A,
magnitude of

where /A denotes the vicinity
the due to
nonidealities such as delay, hysteresis
and etc. The value of A plays a
crucial role for improving the tracking

surface

behavior., The smaller value of A,
the faster If A,

approaches to zero, the RP may cross
the sliding surface resulting in sluggish

tracking time.

motion.
~lep 2.We  calculate the initial slope c.,
satisfying the equation s,,=0

according to given initial errors e(t,);
C=-e,(t) /el (tu) .
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~fcp 3.The rotating direction is determined
from the values c., and c,, i.e., if
c{c,; clockwise(CW), and if c..c.
counter-clockwise (CCW).
We instantaneously rotate the s., to
s,, which has the slope c., obtained
by solving the equation ic,e,{t,) +e,(t
J1l=A... The larger value of two
solutions c¢,, is chosen as the slope
the other
The surface

~lap 4.

clockwise, and for
counter-clockwise. S
stays for a finite time (we call it as
the dwelling {At) of the
surface) before moving to the next
surface s.,whose slope C., is obtained
by solving the equation 'c.,e(t,) +e,(t
Jo=A .. where t,=t,+A7. We know
that the dwelling time At also plays
a crucial role as the A for the
system performance. The shorter
dwelling time Art, the faster tracking
If the At is chosen to be long,
the RP may cross the sliding surface.
Then the control input signal which
has opposite sign is activated to drive
the RP the opposite direction
resulting sluggish motion. The
rotating is continuously performed in
a same manner until following step is
checked.
We stop the rotating under following
condition, i.e., if c¢.>c., then fix c. ()
=c,;CW, and if c.{c,, then ¢ =c
CCW. The slope c.. is obtained by
solving the equation ic.e(t. ) +e,{t. )
;=A , where t, ,=t,+(n-1)AT
From the configuration of Figure 3 one can
naturally ask how about the initial errors are
located in the unstable zone, the first and
third quadrants. If we define the sliding surface
through the conditions and the
origin as well, the surface itself is unstable.
Therefore, it is no doubt that the RP on the
sliding surface goes away from the origin until
it arrives to stable zone. From the mathematical

for

time

time.

to
in

~lhop 5,

i.e.,

to go initial

H9d A3&
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though it is possible to drive
the RP to the origin in a finite time by em-
ploying the RSS, this may cause much longer
tracking time than the conventional one given
by the equation (3). in practice
this may give rise to the destruction of the
physical To avoid this problem
propose the shifting sliding surface.

point of view,

Furthermore,

system. we

3.2 Shifting Sliding Surface
We define the shifting sliding surface as

ss(e(t),t) = cper(t) + ez2(t) + a(t)
(12)

sso = cper{tg) + e2(tp) « ao

ss{e(to), t0) =

(b)

Fig. 4 Shifting sliding surface : {(a) configuration:
{b) mechanism.
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where ¢, is the slope of the predetermined
stiding surface s,, and «l(t) is the time-varying
intercept of the e, axis. The surface initially
goes through given initial errors with appropriate
initial intercept @, as shown in Figure 4(a).
Similar te the RSS, we obtain following theorem
regarding to the existence of sliding mode with
the sliding surface (12).

Theorem 2. If a(t) in equation (12} is chosen
to be a ~lep [funclion for w (t,,t ] with ter-
minal values of a(t)=-e,(t,) -e,(t,) and alt)=
0, and alt) be a constat function when t: {t,
) with a(t)=0, the system (1) with controller
(5) incorporating the sliding surface (12)
satisfies sliding condition s (e, t}§ (e.t)<0 almost
everywhere.

The proof can be easily completed similar to
the proof of Theorem 1. The movement is
performed by calculating updated intercept a(t)
until the surface s, becomes to the s, The
algorithm to move the s, to the s, is outlined
as follows.

sfcp 1. We determine an appropriate constant

A required to shift the surface and
define (refer to Figure 4(b)) A. =A
+A.
~lcp 2. We calculate the initial intercept a,
satisfying the equation s.,=0 according
to given initial errors elt,); a,=-c e,
o) —e, (ty)

~lcp 3. The shifting directionis is determined
from the values of a,, ie., if a,)0;
upward, and if a,{0; downward.

~!cp 4, The surface s,, is immediately shifted
to s, which has the intercept of a,
obtained by solving the equation Ic,e,
(t) +e,lty) +a, | =Ays The larger value
of two solutions @, is chosen as the
intercept for upward, and the other
for downward. The surface s, stays
for a finite time (A7) before shifting
to the next surface s, whose intercept
@, is obtained by solving the equation
lce (t) +e,(t) +a, =Ayss where t,=t,
+At. The shifting is continuously

UEY o §%

undertaken in a same manner until
following step is checked.
~lcp 5. We stop the shifting under following
condition, i.e., if ,)0, then fix al(t)
=(; upward, and if «.<0, then fix «
(t) =0: downward. The intercept a. is
obtained by solving the equation {c.e,
{t. ) +e,lt. ) +a. =4, where t, =t
+ (n-1} At
From the intuition, we may combine the RSS
and the SSS to get better result in the sense
of fast tracking time. For instance, if the initial
crrors are located in the unstable zone, the SSS
1s used until the RP enters to the stable zone,
and subsequently RSS is employved throughout.
Consequently, we may define the moving sliding
surface (MSS) as

sm(e(t),t) = c(t)e;(t) + ez(t) + alt)

sm(e(to),to) = c(to)ej(to) + e2(to) + a(tg)
(13)

The* intercept «ft)=0 for the RSS and the
slope c(t)=c. for the SSS.

Figure 5 presents control responses of the
system (10} obtained using the MSS (13). The
dwelling time At for both RSS and SSS is
chosen to be (.001 seconds, and the slope of
the predetermined surface is taken by 5.0. The
initial condition {x,(0), x,(0))=12,1.2) Iis
imposed. We clearly observe that the tracking
time T of the MSS is remarkably shortened

x1

- \ — — — : desired
] . = 4.833
o4 Te 4.83 . MSS
— -~ Copt = 1.087
-1 . : : ‘ -
0 3 [ 9 12 15 18

Time (sec)
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Fig. 5 Control responses with the MSS.
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Fig. 6 Surface characteristics of the MSS.

by comparing with the typical one but having
optimal slope. From the input histories, we also
see that the chattering magnitude of both cases

are same. This improvement of the tracking

A9
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behavior without increasing the gain k, hence

undesirable cattering will furnish lots more
benefits in practice. From the surface trajectory
shown in Figure 6, we easily know that the
SSS with A =0.001 is executed first followed
by the RSS with A.=0.002 (A =0.001 for the
both RSS and SSS). we start the

movement {shifting or rotating) according to the

In general,

It is also observed that
the RP never crosses the surface during the
reaching phase. The chattering of the surface
during the reaching phase is due to the imposed
dwelling time A7t the larger
magnitude. From the variation of the slope clu
we observe that it indeed falls into the
Joreelion, In the subsequent section.

location of initial errors.

The longer /A.t.

~top
we appiy
the MSS to the control of a two-degiree-of-
freedom manipulator.

4. APPLICATION TO A ROBOTIC
MANIPULTOR

To illustrate the efficiency of the proposed
method, a two-degree-of-freedom manipulator
studied by Fu and Liao '* is taken ({see Figure
7). The equations of motion of the system are
given by

%1 = [{uxi(t) + M(x1(t)+a)}x22(t)
+up(t) + di(t)] 7 [p + M)
X2 = [-2{ux1(t) + M(x1(t) + a)}x;(t)x2(t)

tua(t) + da(t)) 7 [J1 + J2 + uxy2(t)
+ M(x3(t) + a)?) (14)

X

Fgi.7 A

two-degree-of-freedom manipulator.
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where g is the mass of the motional link, M X coordinate : (xd1(t) + a) cos(xdz2(t))
is the payload, J, and ], are the moments of y coordinate : (xdi(t) + a) sin(xaz2(t))
inertia of the motional link with respect to the (19)
vertical axis through ¢ and o respectively, and We know that the output motion in the (x,y)
d (t) is the unknown but bounded external plane is snail-type required frequently in the
disturbance such that id,(t) {<§. community of various control environments. For
The control objective is to force x,(t) and the simulation, following numerical values are
x,(t) to track asymptotically the desired employed: n=M=1kg, J,=J],=1lkg-m* a=Im,
trajectories x,, (t) and x.{t}, respectively. Thus, k,=0.2, k.,=0.5 d,(t)=0.2cos(5zt), d,(t)=
the control inputs u,{t) and u,(t) should be 0.5cos(5zt), and (x, (0}, x.0), %,(0), x,0))=(-
determined to undergo that the trajectory error 0.15. 0.349, -0.2. 0.987).
is to be zero asymptotically for any given initial
conditons. Accordingly. in view of (13} we 12
define the moving sliding surface as
si(t) = cilt) (xi(t) - xdi(t)) + (%i(v) — ] O~
- xdi{t)) +ai(t), i =1, 2 (15) 'i(u- —\\
si(to) = ci(to) (xi(to) - xdi(to)) *E \\
+ (%i(to) - %di{to)) + ai(to) . ‘
Though the control problem is a multi-input ©
case, it is treated as m silgle-input problems; 47 — — — :desired
the i-th sliding surface s (t) depends only upon s “actual
¢.(t) and e (t). Hence, from the concept of T 05 9 05 \ 15
equivalent control the discontinuous control laws Coordinate x (m)
to satisfy the sliding condition .
silt)si(t) <0 (16) g“%
can be obtained as follows. R
T O P ALY WL W
ur(t) = -{uxi(t) + M(x(t) + a)}xz2(t) £
o (s e (1) G () = %ar(1)) S
+ %a1(1) - kisgn(si (1))} < 1
uz{t) = 2{ux1(t) + M(xs(t) + a)}xi(t)xz2(t) Z 757
+ {dr o+ Jz o+ mxp2(t) + M(xi(t) + a)2} _’_ 0 o A Y PN S
# {~ca(t)(Xa(t) - xaz(t)) + %az(t) O
- kasgn(sz(t))} (17) S
And the desired trajectory x, {t) is chosen by ’ : ‘Time (Sez) ’ *
xar(t) = -0.75sin(nt/20) (m] : ¢t < 10 [sec] Fig.8 Control responses using the
xdi(t) = -0.75 [m] ot > 10 [sec] conventional sliding surface
xdz{t). = 2nsin(nt/20) [rad] : t < 10 [sec] {nonoptimal;c,=c,=5.0).
xd2(t) = 2n [rad] Dt > 10 [sec]
(18) Figure 8 presents the control responses
so that the desired output motion (end-point obtained by employing the conventional sliding
trajectory) in the (x,y) plane becomes surfaces defined by

50
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si(t) = ci(xi(t) - xai(t)) « (xi(t)
- xdi(t)), i=1,2 (20)

where the value of constant slope ¢, is
chosen as 5 for i=1,2. It is noted that the
surfaces (20) are exactly same as ones em-
ployed by Fu and Liao'*. The tracking time
T in this figure is determined on the basis that
the tracking error
actual

between the desired and
trajectories enters below one percent.
From the control imput history, we observe the
disturbance effect during the reaching phase.
On the other hand, Figure 9-shows the control
responses obtained by employing the optimal

sliding surfaces. By evaluating the performance

index defined by the equation (9), the optimal
value of the slope is calculated by ¢ =1.512
1.2
0.8
> 04 1
®
3
2
=3
=1
()
-0.4 K,/ .
— — — tdesired
:actual
-0.8 . :
-1 -05 0 0.5 | t.5
Coordinate x (m)
5 +
= ]
254
3 0—;~\ﬁm“mummmmmmm
5-2.5%
_5 ;
- B
Z 75
_g 0 A LI LT YT AR AN XTI TR AT
2
= -751
<
o
-5 T T T ~r
0 2 1 8 8 10

Time {sec)
Fig.9 Control responses using the conventional
sliding surface (optimal: c...,=1.512. ¢ ;.
,=1.351).
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for the s,(t) and c¢. =1.351 for the s,{t),
respectively. We clearly observe that the optimal

51

sliding surface provides much faster tracking
time than arbitrarily chosen one
larger magnitude of the slope.

which has
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Fig. 10 Control
MSS.

responses using the proposed

Figure 10 presents the control responses
obtained by employing the proposed MSS. We
see that the tracking behavior is impressively
imroved without increment of the discontinuities
the control For this simulation,
following numerical values are used; ¢, =5. Af
=0.005. A =0.015. A =0.01 and Ar=0.00!
seconds. Simulation results this
quite self-explanatory justifying that the proposed
method very effective for the

in input.

in work are

is improving
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tracking behavior of the system subjected to
disturbances. Without loss of generality the
proposed method can be also applied to the
system subjected to parameter variations.

5. CONCLUSIONS

The new type of the sliding surface called
as the moving sliding surface (MSS) has been
proposed to improve the tracking behavior of
the second-order linear and nonlinear system.
The MSS was designed first 1o pass given initial
move towards the
predetermined sliding surface via rotating or/and
shifting. Employing the MSS, it was possible
to remarkably lessen the tracking time without
increasing undesirable chattering of the control
input signals. It has been shown thal the

proposed method could be applied to both single
-input and multi-input systems. In multi-input

systems, sliding surface moves
independently according to given initial errors.

errors and subsequently

each
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